首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The conformational properties of the competitive angiotensin II antagonist sarmesin [Sar-Arg-Val-Tyr(Me)-His-Pro-Phe] and its heptapeptide analogue [des1]sarmesin in dimethylsulphoxide-d6 were investigated by nuclear Overhauser effect (NOE) enhancement studies. Assignment of all backbone and side-chain protons was possible by combining information from intraresidue NOE studies with two-dimensional correlated spectroscopy (COSY) studies. Saturation of the His C alpha proton of sarmesin produced essentially the same interresidue NOE enhancement of the two Pro C delta protons, illustrating the presence of the trans His-Pro bond. Saturation of the Sar N-methyl group caused enhancement of one of the His C beta protons, suggesting the presence of a turn in the N-terminal region of the molecule. Saturation of His C2 in sarmesin and [des1]sarmesin enhanced the Tyr(Me) methyl signal. Saturation of the Tyr(Me) methyl protons in [des1]sarmesin produced NOE enhancement of the His C2 and C4 protons, and saturation of the His C2 proton enhanced the Tyr(Me) meta and ortho proton signals. Interresidue interactions between the Tyr(Me) and His protons in sarmesin and [des1]sarmesin illustrate that these two side-chains remain in close proximity even in the absence of the postulated hydrogen bond between Tyr hydroxyl and the His imidazole ring in angiotensin II. The data suggest a preferred conformation for sarmesin in DMSO in which the peptide backbone is S-shaped and similar to that for angiotensin II.  相似文献   

2.
The two histidines of the insulin monomer play a vital role in the organization of insulin into insulin hexamers. The B10 histidines bind to zinc to form two-zinc insulin hexamer, and both the B5 and B10 histidines are implicated in the formation of four-zinc insulin hexamer. These two histidines are both accessible to solvent in the dimeric form of insulin, the predominant species present at pH 2–3. In the present work we report the first 500-MHz1H NMR studies of insulin. At this frequency all four proton resonances from the two histidines of each equivalent monomer are resolved. The resonances are assigned to the C(2)- and C(4)-imidazole protons of B5 His and B10 His employing Carr-Purcell pulse sequences to detect singlets and to observe approximateT 2 relaxation times. Zinc-free bovine insulin at pH 2.9 was examined at temperatures up to 60°C in acetate buffer and in urea of varying concentrations. The environments of B5 His in molecule I and molecule II of the dimer must be the same, with the same being true for B10 His, since a total of only four sharp resonances are seen. Our assignments for the two C(2) protons are consistent with those determined from recent studies of human (B5 Ala) insulin.  相似文献   

3.
D E Wemmer  S H Chou  D R Hare  B R Reid 《Biochemistry》1984,23(10):2262-2268
The resonances of most of the nonexchangeable protons of both + and - strands of the consensus Pribnow dodecamer d( CGTTATAATGCG ) have been assigned by two-dimensional nuclear magnetic resonance methods. Application of the two-dimensional nuclear Overhauser effect ( NOESY ) sequential connectivity method, combined with two-dimensional autocorrelated ( COSY ) spectra to reveal scalar-coupled protons, results in assignment of virtually all of the base and sugar protons, except the sugar C5 protons which are inadequately resolved. Analysis of the nuclear Overhauser data indicates that the helix assumes a fairly uniform B form conformation.  相似文献   

4.
J M Matsoukas  G Bigam  N Zhou  G J Moore 《Peptides》1990,11(2):359-366
The conformational properties of the octapeptide [Sar1]ANG II in dimethylsulfoxide-d6 were investigated by rotating frame nuclear Overhauser effect spectroscopy (ROESY). Interresidue ROESY interactions were observed between Tyr ortho and Phe ring protons, between Phe ring and Pro C gamma protons, and also between His C alpha and Pro C delta protons. A weak connectivity was also observed between the Sar N-CH3 protons and a Tyr ortho proton. Intraresidue interactions between alpha and beta protons in Tyr, His and Phe indicated restricted rotation for the side-chains of the three aromatic residues. These findings suggest that [Sar1]ANG II takes up a folded conformation in DMSO in which the three aromatic rings form a cluster. Connectivities between the His C alpha proton and the two Pro C delta protons illustrated a preferred conformation for angiotensin II in DMSO in which the His-Pro bond exists as the trans isomer. The NMR spectroscopic evidence is consistent with the presence of a Tyr charge relay system in the biologically active conformation of angiotensin II and with the postulated role of the Tyr hydroxyl group in angiotensin II for receptor activation.  相似文献   

5.
The spatial structure of "long" toxin 3 Naja naja siamensis in solution has been studied by methods of two-dimensional (2D) 1H NMR spectroscopy. The individual signal assignments for 67 out of 71 residues and analysis of nuclear Overhauser effects between distinct protons of the molecule allowed the comparison of the toxin 3 conformations at different pH values and temperatures. It was shown that the deprotonated imidazole ring of His22 residue (at pH greater than or equal to 7,5) is surrounded by the side chains of Cys17, Pro18, Val23, Cys24, Cys45, Ala46 and Thr48 residues. On the contrary, the protonated imidazole ring of His22 (at pH less than 4,0) is exposed into solvent. Ionization of His22 is accompanied by a change in the Tyr25 aromatic ring orientation and affects the conformational mobility of the Cys17, His22, Cys45 and Ala47 side chains. The revealed conformational features of toxin 3 in solution are discussed in connection with the differences between "long" and "short" neurotoxins in the kinetics of their binding to acetylcholine receptor.  相似文献   

6.
The complex of Lactobacillus casei dihydrofolate reductase with the substrate folate and the coenzyme NADP+ has been shown to exist in solution as a mixture of three slowly interconverting conformations whose proportions are pH-dependent [Birdsall, B., Gronenborn, A. M., Hyde, E. I., Clore, G. M., Roberts, G. C. K., Feeney, J., & Burgen, A. S. V. (1982) Biochemistry 21, 5831]. The assignment of the resonances of all the aromatic protons of the ligand molecules in all three conformational states of the complex has now been completed by using a variety of NMR methods, particularly two-dimensional exchange experiments. The resonances of the nicotinamide protons of the coenzyme and the pteridine 7-proton of the folate have different chemical shifts in the three conformations, in some cases differing by more than 1 ppm. Comparison of the COSY spectra of the complex at low pH (conformation I) and high pH (conformations IIa and IIb) with that of the enzyme-methotrexate-NADP+ complex shows only slight differences in the conformation of the protein. The pattern of chemical shift changes in the ligand and the protein indicates that the structural differences are localized within the active site of the enzyme. Nuclear Overhauser effects (NOEs) are observed between the nicotinamide 5- and 6-protons and the methyl resonance of Thr 45 at both low and high pH, indicating that there is no major movement of the nicotinamide ring. By contrast, NOEs are observed between the pteridine 7-proton and the methyl protons of Leu 19 and Leu 27 in conformations I and IIa but not in conformation IIb.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The aromatic H NMR spectrum of the kringle 1 domain from human plasminogen has been investigated by proton Overhauser experiments, acid-base titration, and two-dimensional chemical shift correlated spectroscopy. Spin-echo and pH response experiments lead to the identification of the N-terminal Tyr-3 phenol ring signals. The connectivities among the tryptophanyl aromatic protons have been established and sets of singlet-doublet-triplet resonances stemming from each of the two indole groups sorted according to their common side chain origin. Similarly, the four histidyl singlets have been identified and paired per imidazole group. From their pH responses, it is indicated that a histidyl (His31) and a tryptophanyl (Trp-II) residue are placed in the neighborhood of carboxyl groups. The high-field chemical shifts observed for proton resonances of the ligand epsilon-aminocaproic acid upon binding to kringle 1 indicate that the ligand-binding site is rich in aromatic components. Overhauser experiments reveal that Leu46 is surrounded by a cluster of interacting aromatic side chains, which includes Trp25, Phe36, His41, Trp62, and Tyr64, and define a hydrophobic region contiguous to the kringle lysine-binding site. Relative internuclear distances have been estimated for aromatic H-atoms in the vicinity of Leu46 by reference to one of the latter's CH3 sigma, sigma' groups. Some of the connectives have previously been found for Leu46 in kringle 4 which further supports the idea of a common structure for the homologous domains.  相似文献   

8.
In order to monitor the conformational changes of tryptophan synthase alpha-subunit from Escherichia coli in solution resulting from amino acid substitutions, we have assigned the Tyr resonances in the aromatic region of the 1H-NMR spectrum to specific residues. In the spectrum of the alpha-subunit deuterated with [2,3,4,5,6-2H5]Phe and [3,5-2H2]Tyr, the C2 and C6 protons of Tyr gave completely isolated signals at acidic p2H. Some of the C3 and C5 proton resonances overlapped with each other at acidic p2H. By using a series of mutant alpha-subunits in which each Tyr was singly substituted with His or Phe, we can now assign each of seven Tyr resonances in the aromatic region to a specific residue. We have previously studied the conformational stability of a series of variant alpha-subunits at position 49 [Yutani et al. (1987) Proc. Natl Acad. Sci. USA 84, 4441-4444]. We now compare the 1H-NMR spectra in the aromatic region of the wild-type alpha-subunit and mutant alpha-subunits substituted with Phe or Gly in place of Glu-49. The results suggest that the major conformational effects of substitutions at position 49 are localized close to the position of substitution.  相似文献   

9.
The oxidized and hydroquinone forms of synthetic 8 alpha-N-imidazolylriboflavin have been investigated by proton nuclear magnetic resonance spectroscopy at 360 MHz. Proton resonances due to the imidazole ring, isoalloxazine ring, and ribityl side chain have been assigned on the basis of two-dimensional 1H-1H correlated spectra (COSY), selective decoupling, and nuclear Overhauser effect difference spectra and by comparison of computer-simulated with experimental spectra. The effect of pH on the imidazolyl resonances shows a pKa for the unsubstituted imidazole nitrogen of 6.0 +/- 0.1 for the oxidized form and a value of 7.0 +/- 0.1 for the reduced form, in good agreement with the values obtained from oxidation-reduction potential data in a previous paper [Williamson, G., & Edmondson, D. E. (1985) Biochemistry 24, 7790-7797]. Slow exchange of the flavin 8 alpha-methylene and imidazolyl C(2) protons was observed at pH 6.1 but not at pH values below 4.0 for the oxidized form of the flavin. The reduced form, but not the oxidized form, of the flavin exhibits geminal coupling of the 8 alpha-methylene protons and of the C(1') methylene protons of the ribityl side chain. The magnetic nonequivalence of the protons of these two methylene groups is suggested to result from intermolecular association of the reduced flavin in aqueous solutions at the concentrations required for the spectral experiments.  相似文献   

10.
O Gursky  J Badger  Y Li    D L Caspar 《Biophysical journal》1992,63(5):1210-1220
To determine the effect of variations in the charge distribution on the conformation of a protein molecule, we have solved the structures of bovine cubic insulin over a pH range from 7 to 11 in 0.1 M and 1 M sodium salt solutions. The x-ray data were collected beyond 2-A resolution and the R factors for the refined models ranged from 0.16 to 0.20. Whereas the positions of most protein and well-ordered solvent atoms are conserved, about 30% of residues alter their predominant conformation as the pH is changed. Conformational switching of A5 Gln and B10 His correlates with the pH dependence of monovalent cation binding to insulin in cubic crystals. Shifts in the relative positions of the A chain NH2-terminal and B chain COOH-terminal groups are probably due to titration of the A1 alpha-amino group. Two alternative positions of B25 Phe and A21 Asn observed in cubic insulin at pH 11 are similar to those found in two independent molecules of the 2Zn insulin dimer at pH 6.4. The conformational changes of the insulin amino acids appear to be only loosely coupled at distant protein sites. Shifts in the equilibrium between distinct conformational substates as the charge distribution on the protein is altered are analogous to the electrostatically triggered movements that occur in many functional protein reactions.  相似文献   

11.
High-resolution proton nuclear magnetic resonance spectroscopy and nuclear Overhauser effects for the low-field exchangeable proton resonances of human normal adult hemoglobin in aqueous solvents are being used to confirm and extend the assignments of these resonances to specific protons at the intersubunit interfaces of the molecule. Most of these exchangeable proton resonances of human normal adult hemoglobin have been found to be absent in the spectra of isolated alpha or beta subunits. This finding indicates that they are specific spectral markers for the quaternary structure of the hemoglobin tetramer. Based on the nuclear Overhauser effect results, we have assigned the exchangeable proton resonance at +7.4 ppm downfield from H2O to the hydrogen-bonded proton between alpha 103(G10)His and beta 108(G10)Asn at the alpha 1 beta 1 interface. The nuclear Overhauser effect results have also confirmed the assignments of the exchangeable proton resonances at +9.4 and +8.2 ppm downfield from H2O previously proposed by workers in this laboratory based on a comparison of human normal adult hemoglobin and appropriate mutant hemoglobins. This independent confirmation of previously proposed assignments is necessary in view of the possible long-range conformational effects of single amino-acid substitutions in mutant hemoglobin molecules.  相似文献   

12.
P L Weber  D E Wemmer  B R Reid 《Biochemistry》1985,24(17):4553-4562
The cro repressor protein from bacteriophage lambda has been studied in solution by two-dimensional nuclear magnetic resonance spectroscopy (2D NMR). Following the approach of Wüthrich and co-workers [Wüthrich, K., Wider, G., Wagner, G., & Braun, W. (1982) J. Mol. Biol. 155, 311-319], individual spin systems were identified by J-correlated spectroscopy (COSY) supplemented, where necessary, by relayed coherence transfer spectroscopy (RELAY). Nuclear Overhauser effect spectroscopy (NOESY) was used to obtain sequence-specific assignments. From the two-dimensional spectra, the peptide backbone resonances (NH and C alpha H) for 65 of the 66 amino acids were assigned, as well as most of the side chain resonances. The chemical shifts for the assigned protons are reported at 35 degrees C in 10 mM potassium phosphate, pH 6.8, and in 10 mM potassium phosphate, pH 4.6, 0.2 M KCl, and 0.1 mM EDTA. Small shifts were observed for some resonances upon addition of salt, but no major changes in the spectrum were seen, indicating that no global structural change occurs between these ionic strengths. NOE patterns characteristic of alpha-helices, beta-strands, and turns are seen in various regions of the primary sequence. From the location of these regions the secondary structure of cro in solution appears to be virtually identical with the crystal structure [Anderson, W. F., Ohlendorf, D. H., Takeda, Y., & Matthews, B. W. (1981) Nature (London) 290, 754-758]. Missing assignments include the Pro-59 resonances and the peripheral protons of the eight lysine, the three arginine, and three of the five isoleucine residues.  相似文献   

13.
I J Byeon  R F Kelley  M Llinás 《Biochemistry》1989,28(24):9350-9360
The kringle 2 domain of human tissue-type plasminogen activator (t-PA) has been characterized via 1H NMR spectroscopy at 300 and 620 MHz. The experiments were performed on the isolated domain obtained by expression of the 174-263 portion of t-PA in Escherichia coli [Cleary et al. (1989) Biochemistry 28, 1884-1891]. The spectrum of t-PA kringle 2 is characteristic of a globular structure and shows overall similarity to that of the plasminogen (PGN) kringle 4. Spectral comparison with human and bovine PGN kringle 4 identifies side-chain resonances from Leu46, which afford a fingerprint of kringle folding, and from most of the aromatic ring spin systems. Assignment of signals arising from the His13, His48a, and His64 side chains, which are unique to t-PA kringle 2, was assisted by the availability of a His64----Tyr mutant. Ligand-binding studies confirm that t-PA kringle 2 binds L-lysine with an association constant Ka approximately 11.9 mM-1. The data indicate that homologous or conserved residues relative to those that compose the lysine-binding sites of PGN kringles 1 and 4 are involved in the binding of L-lysine to t-PA kringle 2. These include Tyr36 and, within the kringle inner loop, Trp62, His64, Trp72, and Tyr74. Acid/base titration of aromatic singlets in the presence of L-lysine yields pKa* approximately 6.25 and approximately 4.41 for His13 and His64, respectively, and shows that the His48a imidazole group does not protonate down to pH* approximately 4.3. Thus, the His48a and His64 side chains are in solvent-shielded locations. As observed for the PGN kringles, the Trp62 indole group titrates with pKa* approximately 4.60, which indicates proximity of the side chain to a titratable carboxyl group, most likely that of Asp57 at the binding site. Several labile NH protons of t-PA kringle 2 exhibit retarded H-exchange kinetics, requiring more than a week in 2H2O for full deuteration in the presence of L-lysine at 37 degrees C. This reveals that kringle 2 is endowed with a compact, dynamically stable conformation. Proton Overhauser experiments in 1H2O, centered on well-resolved NH resonances between 9.8 and 12 ppm, identify signals arising from the His48a imidazole NH3 proton and the three Trp indole NH1 protons. A strong dipolar interaction was observed among the Trp25 indole NH1, the Tyr50 amide NH, and the His48a imidazole CH2 protons, which affords evidence for an aromatic cluster in t-PA kringle 2 similar to that found at the hydrophobic kernel of PGN kringles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The effects of pH and ionic strength on the midpoint reduction potential (Emp) of Clostridium acidi-urici ferredoxin were determined using hydrogen gas and hydrogenase. The Emp of native ferredoxin at 24-25 degrees in 0.1 M Tris-chloride buffer, pH 7.0, is--0.434 V. In the pH range examined, the Emp becomes approximately 13 mv more negative per each pH unit increase. A plot of the log of ionic strength versus the apparent Emp of ferredoxin in 0.1 M Tris-chloride buffer, pH 7.5, Was linear over the range of 1.0 to 0.01 ionic strength with Emp values of--0.414 and--0.475 V, respectively, at these extremes. This effect is the same with sodium chloride, sodium bromide, or ammonium sulfate. Potassium phosphate buffer caused a similar change, but the absolute values of Emp differed from those obtained in the presence of the other salts. This effect of pH and ionic strength on Emp may be general for clostridial-type (Fe4S4)2-ferredoxins, since the apparent Emp of Clostridium pasteurianum ferredoxin is affected in a similar manner by these two variables. The Emp of this ferredoxin in 0.1 M Tris-chloride buffer pH 7.0, is--0.405 V. Since the NH2-terminal amino acid residue, Ala1, and Tyr2 of C. acidi urici ferredoxin are near an (Fe4S4)2-cluster in the protein, the apparent Emp of derivatives that contained amino acid replacements in these two positions were determined. Under similar conditions, the Emp of most of the 13 derivatives examined, including those of [Leu2]- and[3-NH2-Tyr30]ferredoxin, is approximately the same as that of native ferredoxin. However, the Emp of [His2]ferredoxin is approximately 15 mv more positive, whereas that of [Trp2]ferredoxin is 22 mv more negative than that of native C. acidi-urici ferredoxin. Variations in sodium chloride concentration and pH also affected the apparent Emp of the derivatives. It is suggested that the changes observed in the Emp of C. acidi-urici ferredoxin are caused by protein conformational changes.  相似文献   

15.
The sequence-specific 1H nuclear magnetic resonance (n.m.r.) assignment of 49 of the 51 amino acid residues of human B9(Asp) insulin in water at low pH is reported. Spin systems were identified using a series of two-dimensional n.m.r. techniques. For the majority of the amino acid residues with unique spin systems, particularly Ala, Thr, Val, Leu, Ile and Lys, the complete spin systems were identified. Sequence-specific assignments were obtained from sequential nuclear Overhauser enhancement (NOE) connectivities. The results indicate that the solution structure of the mutant closely resembles the crystal structure of native insulin. Thus, the NOE data reveal three helical domains all consistent with the secondary structure of the native human 2Zn insulin in the crystal phase. Numerous slowly exchanging amide protons support these structural elements, and indicate a relatively stable structure of the protein. A corresponding resemblance of the tertiary structures in the two phases is also suggested by slowly exchanging amide protons, and by the extreme chemical shift values observed for the beta-protons of B15(Leu) that agree with a close contact between this residue and the aromatic rings of B24(Phe) and B26(Tyr), as found in the crystal structure of the 2Zn insulin. Finally, there are clear indications that the B9(Asp) insulin mutant exists primarily as a dimer under the given conditions.  相似文献   

16.
Nuclear Overhauser effect studies are described for yeast tRNAAsp in 0.1 M NaCl, pH 7.0. A primary aim is to develop a general method for attacking the problem of assignment in transfer ribonucleic acids (tRNAs). Previously, we have demonstrated the utility of the nuclear Overhauser effect (NOE) between protons on adjacent base pairs combined with C8 deuterium substitution, by assigning the imino protons of the dihydrouridine stem and the two reverse-Hoogsteen base pairs T54-A58 and U8-A14. Here, we extend that approach to other parts of the molecule. We also describe several NOE-connected patterns for, e:g., m5CG and psi 55 N3H imino protons which may be of general utility. For the first time, a purine-15-pyrimidine-48 base pair (in this case A15-U48) has been assigned. A total of 13 of 25 base pairs from all parts of the molecule and several noninternally bonded imino protons have now been assigned unambiguously. This is a general method for assigning resonances in tRNA and perhaps in all double-stranded nucleic acids. This, and the distance information inherent in NOE measurements, should make NMR more generally applicable to nucleic acids.  相似文献   

17.
The binding of L-Lys, D-Lys and epsilon-aminocaproic acid (epsilon ACA) to the kringle 4 domain of human plasminogen has been investigated via one and two-dimensional 1H-nuclear magnetic resonance spectroscopy at 300 and 600 MHz. Ligand-kringle association constants (Ka) were determined assuming single site binding. At 295 K, pH 7.2, D-Lys binds to kringle 4 much more weakly (Ka = 1.2 mM-1) than does L-Lys (Ka = 24.4 mM-1). L-Lys binding to kringle 4 causes the appearance of ring current-shifted high-field resonances within the -1 approximately less than delta approximately less than 0 parts per million range. The ligand origin of these signals has been confirmed by examining the spectra of kringle 4 titrated with deuterated L-Lys. A systematic analysis of ligand-induced shifts on the aromatic resonances of kringle 4 has been carried out on the basis of 300 MHz two-dimensional chemical shift correlated (COSY) and double quantum correlated spectroscopies. Significant differences in the effect of L-Lys and D-Lys binding to kringle 4 have been observed in the aromatic COSY spectrum. In particular, the His31 H4 and Trp72 H2 singlets and the Phe64 multiplets appear to be the most sensitive to the particular enantiomers, indicating that these residues are in proximity to the ligand C alpha center. In contrast, the rest of the indole spectrum of Trp72 and the aromatic resonances of Trp62 and Tyr74, which are affected by ligand presence, are insensitive to the optical nature of the ligand isomer. These results, together with two-dimensional proton Overhauser studies and ligand-kringle saturation transfer experiments reported previously, enabled us to generate a model of the kringle 4 ligand-binding site from the crystallographic co-ordinates of the prothrombin kringle 1. The latter, although lacking recognizable lysine-binding capability, is otherwise structurally homologous to the plasminogen kringles.  相似文献   

18.
Since 1H-NMR spectra of the calcium bound form (holo) and the calcium free form (apo) of equine lysozyme have an overall similarity, the folded structure of apo equine lysozyme seems to be similar to the holo structure at 25 degrees C and pH 7.0, even at low ionic strengths except for subtle conformational change. However, calcium titration experiments showed that a number of resonances change by a slow exchange process. The changes saturated at one calcium ion per one lysozyme molecule, and no more change was observed by further addition of calcium ions. This shows that just one calcium ion binds to equine lysozyme. To make assignments for these changed proton resonances, two-dimensional 1H-NMR studies, correlated spectroscopy (COSY), two-dimensional homonuclear Hartmann-Hahn spectroscopy (HOHAHA) and nuclear Overhauser effect spectroscopy (NOESY) were carried out. A structural model of equine lysozyme based on the crystal structure of human lysozyme was estimated and used to assign some resonances in the aromatic and beta-sheet regions. It was possible to use some proton signals as a probe to determine the specific conformational change induced by calcium ions. The calcium binding constant KCa was estimated from calcium titration experiments in which changes in the proton signal were monitored. The log KCa value was found to be on the order of 6-7, which is in agreement with the calcium binding constant determined by fluorescence probes. This means that the protons are affected by specific calcium binding.  相似文献   

19.
The first 25 amino acids of the coat protein of cowpea chlorotic mottle virus are essential for binding the encapsidated RNA. Although an alpha-helical conformation has been predicted for this highly positively charged N-terminal region [Argos, P. (1981) Virology 110, 55-62; Vriend, G., Verduin, B. J. M., & Hemminga, M. A. (1986) J. Mol. Biol. 191, 453-460], no experimental evidence for this conformation has been presented so far. In this study, two-dimensional proton NMR experiments were performed on a chemically synthesized pentacosapeptide containing the first 25 amino acids of this coat protein [Ten Kortenaar, P. B. W., Krüse, J., Hemminga, M. A., & Tesser, G. I. (1986) Int. J. Pept. Protein Res. 27, 401-413]. All resonances could be assigned by a combined use of two-dimensional correlated spectroscopy and nuclear Overhauser enhancement spectroscopy carried out at four different temperatures. Various NMR parameters indicate the presence of a conformational ensemble consisting of helical structures rapidly converting into more extended states. Differences in chemical shifts and nuclear Overhauser effects indicate that lowering the temperature induces a shift of the dynamic equilibrium toward more helical structures. At 10 degrees C, a perceptible fraction of the conformational ensemble consists of structures with an alpha-helical conformation between residues 9 and 17, likely starting with a turnlike structure around Thr9 and Arg10. Both the conformation and the position of this helical region agree well with the secondary structure predictions mentioned above.  相似文献   

20.
We have investigated intermolecular interactions and conformational features of the netropsin X d(G-G-A-A-T-T-C-C) complex by one- and two-dimensional NMR studies in aqueous solution. Netropsin removes the 2-fold symmetry of the d(G-G-A-A-T-T-C-C) duplex at the AATT binding site and to a lesser extent at adjacent dG X dC base pairs resulting in doubling of resonances for specific positions in the spectrum of the complex at 25 degrees C. We have assigned the amide, pyrrole, and CH2 protons of netropsin, and the base and sugar H1' protons of the nucleic acid from an analysis of the nuclear Overhauser effect (NOESY) and correlated (COSY) spectra of the complex at 25 degrees C. We observe intermolecular nuclear Overhauser effects (NOE) between all three amide and both pyrrole protons on the concave face of the antibiotic and the minor groove adenosine H2 proton of the two central A4 X T5 base pairs of the d(G1-G2-A3-A4-T5-T6-C7-C8) duplex. Weaker intermolecular NOEs are also observed between the pyrrole concave face protons and the sugar H1' protons of residues T5 and T6 in the AATT minor groove of the duplex. We also detect intermolecular NOEs between the guanidino CH2 protons at one end of netropsin and adenosine H2 proton of the two flanking A3 X T6 base pairs of the octanucleotide duplex. These studies establish a set of intermolecular contacts between the concave face of the antibiotic and the minor groove AATT segment of the d(G-G-A-A-T-T-C-C) duplex in solution. The magnitude of the NOEs require that there be no intervening water molecules sandwiched between the antibiotic and the DNA so that release of the minor groove spine of hydration is a prerequisite for netropsin complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号