首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Proton nuclear magnetic resonance spectroscopy at 250 MHz has been used to investigate the conformations of proximal histidyl residues of human normal adult hemoglobin, hemoglobin Kempsey [beta 99(G1) Asp leads to Asn], hemoglobin Osler [beta 145(HC2) Tyr leads to Asp], and hemoglobin McKees Rocks [beta 145(HC2) Tyr leads to Term] around neutral pH in H2O at 27 degrees C, all in the deoxy form. Two resonances that occur between 58 and 76 ppm downfield from the water proton signal have been assigned to the hyperfine shifted proximal histidyl NH-exchangeable protons of the alpha- and beta-chains of deoxyhemoglobin. These two resonances are sensitive to the quaternary state of hemoglobin, amino acid substitutions in the alpha 1 beta 2-subunit interface and in the carboxy-terminal region of the beta-chain, and the addition of organic phosphates. The experimental results show that there are differences in the heme pockets among these four hemoglobins studied. The structural and dynamic information derived from the hyperfine shifted proximal histidyl NH-exchangeable proton resonances complement that obtained from the ferrous hyperfine shifted and exchangeable proton resonances of deoxyhemoglobin over the spectral region from 5 to 20 ppm downfield from H2O. The relationship between these findings and Perutz's stereochemical mechanism for the cooperative oxygenation of hemoglobin is discussed.  相似文献   

2.
L W Fung  C Ho 《Biochemistry》1975,14(11):2526-2535
Proton nuclear magnetic resonance spectra of human hemoglobins in water reveal several exchangeable protons which are indicators of the quaternary structures of both the liganded and unliganded molecules. A comparison of the spectra of normal human adult hemoglobin with those of mutant hemoglobins Chesapeake (FG4alpha92 Arg yields Leu), Titusville (G1alpha94 Asp yields Asn), M Milwaukee (E11beta67 Val yields Glu), Malmo (FG4beta97 His yields Gln), Kempsey (G1beta99 Asp yields Asn), Yakima (G1beta99 Asp yields His), and New York (G15beta113 Val yields Glu), as well as with those of chemically modified hemoglobins Des-Arg(alpha141), Des-His(beta146), NES (on Cys-beta93)-Des-Arg(alpha141), and spin-labeled hemoglobin [Cys-beta93 reacted with N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)iodoacetamide], suggests that the proton in the important hydrogen bond between the tyrosine at C7alpha42 and the aspartic acid at G1beta99, which anchors the alpha1beta2 subunits of deoxyhemoglobin (a characteristic feature of the deoxy quaternary structure), is responsible for the resonance at -9.4 ppm from water at 27 degrees. Another exchangeable proton resonance which occurs at -6.4 ppm from H2O is a spectroscopic indicator of the deoxy structure. A resonance at -5.8 ppm from H2O, which is an indicator of the oxy conformation, is believed to originate from the hydrogen bond between the aspartic acid at G1alpha94 and the asparagine at G4beta102 in the alpha1beta2 subunit interface (a characteristic feature of the oxy quaternary structure). In the spectrum of methemoglobin at pH 6.2 both the -6.4- and the -5.8ppm resonances are present but not the -9.4-ppm resonance. Upon the addition of inositol hexaphosphate to methemoglobin at pH 6.2, the usual resonance at -9.4 ppm is shifted to -10 ppm and the resonance at 6.4 ppm is not observed. In the spectrum of methemoglobin at pH greater than or equal to 7.6 with or without inositol hexaphosphate, the resonance at -5.8 ppm is present, but not those at -10 and -6.4 ppm, suggesting that methemoglobin at high pH has an oxy-like structure. Two resonances (at -8.2 and -7.3 ppm) which remain invariant in the two quaternary structures could come from exchangeable protons in the alpha1beta1 subunit interface and/or other exchangeable protons in the hemoglobin molecule which undergo no conformational changes during the oxygenation process. These exchangeable proton resonances serve as excellent spectroscopic probes of the quaternary structures of the subunit interfaces in studies of the molecular mechanism of cooperative ligand binding to hemoglobin.  相似文献   

3.
G Viggiano  N T Ho  C Ho 《Biochemistry》1979,18(23):5238-5247
The proton nuclear magnetic resonance spectrum of human adult deoxyhemoglobin in D2O in the region from 6 to 20 ppm downfield from the proton resonance of residual water shows a number of hyperfine shifted proton resonances that are due to groups on or near the alpha and beta hemes. The sensitivity of these resonances to the ligation of the heme groups and the assignment of these resonances to the alpha and beta chains provide an opportunity to investigate the cooperative oxygenation of an intact hemoglobin molecule in solution. By use of the nuclear magnetic resonance correlation spectroscopy technique, at least two resonances, one at approximately 18 ppm downfield from HDO due to the beta chain and the other at approximately 12 ppm due to the alpha chain, can be used to study the binding of oxygen to the alpha and beta chains of hemoglobin. The present results using approximately 12% hemoglobin concentration in 0.1 M Bistris buffer at pD 7 and 27 degrees C with and without organic phosphate show that there is no significant line broadening on oxygenation (from 0 to 50% saturation) to affect the determination of the intensities or areas of these resonances. It is found that the ratio of the intensity of the alpha-heme resonance at 12 ppm to that of the beta-heme resonance at 18 ppm is constant on oxygenation in the absence of organic phosphate but decreases in the presence of 2,3-diphosphoglycerate or inositol hexaphosphate, with the effect of the latter being the stronger. On oxygenation, the intensities of the alpha-heme resonance at 12 ppm and of the beta-heme resonance at 18 ppm decreases more than the total number of deoxy chains available as measured by the degree of O2 saturation of hemoglobin. This shows the sensitivity of these resonances to structural changes which are believed to occur in the unligated subunits upon the ligation of their neighbors in an intact tetrameric hemoglobin molecule. A comparison of the nuclear magnetic resonance data with the populations of the partially saturated hemoglobin tetramers (i.e., hemoglobin with one, two, or three oxygen molecules bound) leads to the conclusion that in the presence of organic phosphate the hemoglobin molecule with one oxygen bound maintains the beta-heme resonance at 18 ppm but not the alpha-heme resonance at 12 ppm. These resluts suggest that some cooperativity must exist in the deoxy quaternary structure of the hemoglobin molecule during the oxygenation process. Hence, these results are not consistent with the requirements of two-state concerted models for the oxygenation of hemoglobin. In addition, we have investigated the effect of D2O on the oxygenation of hemoglobin by measuring the oxygen dissociation curves of normal adult hemoglobin as a function of pH in D2O andH2O media. We have found that (1) the pH dependence of the oxygen equilibrium of hemoglobin (the Bohr effect) in higher pH in comparison to that in H2O medium and (2) the Hill coefficients are essentially the same in D2O and H2O media over the pH range from 6.0 to 8.2...  相似文献   

4.
The high-resolution proton nuclear magnetic resonance spectra of carp hemoglobin have been compared to those of human normal adult hemoglobin. Carp deoxy and carbonmonoxy hemoglobins in the deoxy-type quaternary state exhibit two downfield exchangeable proton resonances as compared to four seen in human normal adult deoxyhemoglobin. This suggests that two of the hydrogen bonds present in human normal adult deoxyhemoglobin are absent or occur in very different environments in carp hemoglobin. One of the exchangeable proton resonances of carp hemoglobin, while present in the deoxy-type quaternary state of the carbonmonoxy and deoxy derivatives, is absent in the oxy-type quaternary state of both, in agreement with the assignments of these quaternary structures by other methods. The ring-current-shifted proton resonances (sensitive tertiary structural markers) of carp carbonmonoxyhemoglobin are substantially different from those of human normal adult hemoglobin. The aromatic proton resonance region of carp hemoglobin has fewer resonances than that of human normal adult hemoglobin, consistent with its much reduced histidine content. The hyperfine-shifted proximal histidyl NH-exchangeable proton resonances of carp hemoglobin suggest that during the transition from the oxy to the deoxy quaternary structure, there is a greater alteration in the heme pocket of one type of subunits (presumably the beta chain) than that in the other subunit. The present results suggest that there are differences in both tertiary and quaternary structures between carp and human normal adult hemoglobins which could contribute to the great differences in the functional properties between these two proteins.  相似文献   

5.
Histidine-binding protein J of Salmonella typhimurium has been chosen as a model system for a proton nuclear magnetic resonance spectroscopic investigation of binding protein-ligand interaction. This interaction is involved in the recognition step of the osmotic shock-sensitive active transport systems. When J protein binds L-histidine, four new, low-field, exchangeable proton resonances appear in the region +7 to +12 parts per million downfield from the water proton resonance (or +11.7 to +16.7 parts per million downfield from the methyl proton resonance of 2,2-dimethyl-2-silapentane-5-sulfonate). Due to their chemical shift range and other properties, they indicate the formation of both intra- and intermolecular hydrogen bonds. Experiments with 15N-labeled compounds confirm this conclusion. The specificity of the hydrogen-bond formation is demonstrated by observing the effects of substrate analogs, temperature, pH, and mutations on the exchangeable proton resonances. Proton-proton nuclear Overhauser effect measurements suggest that two of these exchangeable proton resonances (at +7.2 and +10.6 parts per million from H2O) are most likely from intramolecular hydrogen-bonded protons, while the other two (at +7.1 and +9.5 parts per million from H2O) are intermolecular hydrogen bonds. Our finding of L-histidine-induced hydrogen-bond formation in histidine-binding protein J in the solution state is an excellent demonstration of the production of specific conformational changes in a periplasmic binding protein upon binding of ligand.  相似文献   

6.
High-resolution proton nuclear magnetic resonance studies of deoxyhemoglobins Osler (beta145HC2 Tyr replaced by Asp) and McKees Rocks (beta 145HC2 Tyr replaced by term) indicate that these hemoglobins are predominately in the oxy quaternary structure in 0.1 M [bis(2-hydroxyethyl)imino]-tris(hydroxymethyl) methane buffer at pH 7. Upon the addition of inositol hexaphosphate, the proton nuclear magnetic resonance spectra of these hemoglobins become similar to those characteristic of a hemoglobin molecule in the deoxy quaternary structure. The exchangeable proton resonance which is found at -6.4 ppm from H2O in the spectrum of normal human adult deoxyhemoglobin is absent in the spectra of these two mutant hemoglobins. Consequently we believe the hydrogen bond between the hydroxyl group of tyrosine-beta145HC2 and the carboxyl oxygen of valine-beta98FG5 gives rise to this resonance. This assignment allows us to use the -6.4ppm resonance as an important tertiary structural probe in the investigation of the cooperative oxygenation of hemoglobin.  相似文献   

7.
S Roy  A G Redfield 《Biochemistry》1983,22(6):1386-1390
Yeast tRNAPhe has been studied by using proton NMR and nuclear Overhauser effect (NOE) with deuterium substitution. Direct NOE evidence is presented for assignment of imino resonances of 23 of 27 base pairs in this tRNA. Other indirect evidence is presented for tentative assignment of four other base pairs. Almost total assignment also has been made of the important noninternally bonded imino protons and tertiary interactions (however, G18-psi 55 remains unassigned). The most surprising result has been identification of GC11 at -13.68 ppm; this is the first time a GC base pair has been identified so far downfield. This peak (GC11) is also identified as the resonance of the unique imino proton that exchanges in a time of more than 1 day, as previously described. These identifications of imino proton resonances made it possible to reinterpret the proton solvent exchange rate data previously published on this tRNA and understand them better. The assignments of resonances should pave the way for more detailed solution study of this tRNA and its interaction with biologically relevant molecules.  相似文献   

8.
Ni(II)-Fe(II) hybrid hemoglobins, alpha(Fe)2 beta(Ni)2 and alpha(Ni)2 beta(Fe)2 have been characterized by proton nuclear magnetic resonance with Ni(II) protoporphyrin IX (Ni-PP) incorporated in apoprotein, which serves as a permanent deoxyheme. alpha(Fe)2 beta(Ni)2, alpha(Ni)2 beta(Fe)2, and NiHb commonly show exchangeable proton resonances at 11 and 14 ppm, due to hydrogen-bonded protons in a deoxy-like structure. Upon binding of carbon monoxide (CO) to alpha(Fe)2 beta(Ni)2, these resonances disappear at pH 6.5 to pH 8.5. On the other hand, the complementary hybrid alpha(Ni)2 beta(Fe-CO)2 showed the 11 and 14 ppm resonances at low pH. Upon raising pH, the intensities of both resonances are reduced, although these changes are not synchronized. Electronic absorption spectra and hyperfine-shifted proton resonances indicate that the ligation of CO in the beta(Fe) subunits induced changes in the coordination and spin states of Ni-PP in the alpha subunits. In a deoxy-like structure, the coordination of Ni-PP in the alpha subunits is predominantly in a low-spin (S = 0) four-coordination state, whereas in an oxy-like structure the contribution of a high-spin (S = 1) five-coordination state markedly increased. Ni-PP in the beta subunits always takes a high-spin five-coordination state regardless of solution conditions and the state of ligation in the partner alpha(Fe) subunits. In the beta(Ni) subunits, a significant downfield shift of the proximal histidyl N delta H resonance and a change in the absorption spectrum of Ni-PP were detected, upon changing the quaternary structure of the hybrid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
T Y Fang  M Zou  V Simplaceanu  N T Ho  C Ho 《Biochemistry》1999,38(40):13423-13432
Site-directed mutagenesis has been used to construct two mutant recombinant hemoglobins (rHbs), rHb(betaH116Q) and rHb(betaH143S). Purified rHbs were used to assign the C2 proton resonances of beta116His and beta143His and to resolve the ambiguous assignments made over the past years. In the present work, we have identified the C2 proton resonances of two surface histidyl residues of the beta chain, beta116His and beta143His, in both the carbonmonoxy and deoxy forms, by comparing the proton nuclear magnetic resonance (NMR) spectra of human normal adult hemoglobin (Hb A) with those of rHbs. Current assignments plus other previous assignments complete the assignments for all 24 surface histidyl residues of human normal adult hemoglobin. The individual pK values of 24 histidyl residues of Hb A were also measured in deuterium oxide (D(2)O) in 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid (HEPES) buffer in the presence of 0.1 M chloride at 29 degrees C by monitoring the shifts of the C2 proton resonances of the histidyl residues as a function of pH. Among those surface histidyl residues, beta146His has the biggest contribution to the alkaline Bohr effect (63% at pH 7.4), and beta143His has the biggest contribution to the acid Bohr effect (71% at pH 5.1). alpha20His, alpha112His, and beta117His have essentially no contribution; alpha50His, alpha72His, alpha89His, beta97His, and beta116His have moderate positive contributions; and beta2His and beta77His have a moderate negative contribution to the Bohr effect. The sum of the contributions from 24 surface histidyl residues accounted for 86% of the alkaline Bohr effect at pH 7.4 and about 55% of the acid Bohr effect at pH 5.1. Although beta143His is located in the binding site for 2,3-bisphosphoglycerate (2,3-BPG) according to the crystal structure of deoxy-Hb A complexed with 2, 3-BPG, beta143His is not essential for the binding of 2,3-BPG in the neutral pH range according to the proton NMR and oxygen affinity studies presented here. With the accurately measured and assigned individual pK values for all surface histidyl residues, it is now possible to evaluate the Bohr effect microscopically for novel recombinant Hbs with important functional properties, such as low oxygen affinity and high cooperativity. The present study further confirms the importance of a global electrostatic network in regulating the Bohr effect of the hemoglobin molecule.  相似文献   

10.
The 1H nuclear magnetic resonance spectral characteristics of the cyano-Met form of Chironomus thummi thummi monomeric hemoglobins I, III and IV in 1H2O solvent are reported. A set of four exchangeable hyperfine-shifted resonances is found for each of the two heme-insertion isomers in the hyperfine-shifted region downfield of ten parts per million. An analysis of relaxation, exchange rates and nuclear Overhauser effects leads to assignments for all these resonances to histidine F8 and the side-chains of histidine E7 and arginine FG3. It is evident that in aqueous solution, the side-chain from histidine E7 does not occupy two orientations, as found for the solid state, rather the histidine E7 side-chain adopts a conformation similar to that of sperm whale myoglobin or hemoglobin A, oriented into the heme pocket and in contact with the bound ligand. Evidence is presented to show that the allosteric transition in the Chironomus thummi thummi hemoglobins arises from the "trans effect". An analysis of the exchange with bulk solvent of the assigned histidine E7 labile proton confirms that the group is completely buried within the heme pocket in a manner similar to that found for sperm whale cyano-Met myoglobin, and that the transient exposure to solvent is no more likely than in mammalian myoglobins with the "normal" distal histidine orientation. Finally, a comparison of solvent access to the heme pocket of the three monomeric C. thummi thummi hemoglobins, as measured from proton exchange rates of heme pocket protons, is made and correlated to binding studies with the diffusible small molecules such as O2.  相似文献   

11.
I M Russu  A K Lin  C P Yang  C Ho 《Biochemistry》1986,25(4):808-815
High-resolution proton nuclear magnetic resonance spectroscopy and relaxation techniques have been used to investigate the interactions of sickle cell hemoglobin (Hb S) and human normal adult hemoglobin (Hb A) with p-bromobenzyl alcohol, L-phenylalanine, L-tryptophan, and L-valine. With the exception of valine, all these compounds inhibit the polymerization of deoxy-Hb S [Noguchi, C. T., & Schechter, A. N. (1978) Biochemistry 17, 5455)). Using transferred nuclear Overhauser effects among the proton resonances of the compound of interest and the corresponding longitudinal relaxation rates (T1(-1], we have shown that the binding of each of the compounds investigated to deoxy-Hb S is comparable to that to deoxy-Hb A. Intermolecular transferred nuclear Overhauser effects have been observed between proton resonances of the anti-sickling compounds and specific protons situated in the heme pockets of Hb. On the basis of these results, we suggest that one binding site, common to all compounds with anti-sickling activity, is at or near the heme pockets in the alpha and beta chains of both deoxy-HB S and deoxy-Hb A. The proton T1(-1) values of the histidyl residues situated over the surface of the hemoglobin molecule indicate that a second binding site is located at or near the beta 6 position, containing the mutation in Hb S (beta 6Glu----Val). The binding of the compounds investigated to the latter site induces conformational changes in the amino-terminal domains of the beta chains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Pseudomonas putida and Azotobacter vinelandii ferredoxins each contain one [4Fe-4S] cluster and one [3Fe-4S] cluster. Their polypeptide chains are nearly identical, differing by only 15 residues out of a total of 106. T1 measurements and temperature dependence studies of the 1H NMR spectrum of each ferredoxin demonstrate that all six resolved downfield resonances are near an iron-sulfur center. The five most downfield resonances are shown to arise from protons on cysteinyl beta-carbons by incorporation of cysteine deuterated at the beta-carbon into cell protein. The sixth peak (10.5 ppm) is shown to be a non-cysteinyl proton. This peak resolves into two resonances of approximately equal intensity at temperatures below 15 degrees or above 25 degrees C. A nuclear Overhauser effect observed between the two downfield-most resonances of A. vinelandii ferredoxin indicates that they originate from a geminal pair of beta-cysteinyl protons. An Overhauser effect observed between the resonances at 22.3 and 15.7 ppm, in conjunction with other results, implies that the resonance at 22.3 ppm arises from a beta-proton on the 3Fe-center-bound Cys16, while the resonance at 15.7 ppm arises from Cys45 beta-proton, which is bound to the 4Fe center. The five most downfield resonances are pH-dependent. The sixth peak (10.5 ppm in P. putida ferredoxin) is pH-independent. Possible origins for the observed pH dependencies are discussed.  相似文献   

13.
M R Busch  J E Mace  N T Ho  C Ho 《Biochemistry》1991,30(7):1865-1877
Assessment of the roles of the carboxyl-terminal beta 146 histidyl residues in the alkaline Bohr effect in human normal adult hemoglobin by high-resolution proton nuclear magnetic resonance spectroscopy requires assignment of the resonances corresponding to these residues. Previous resonance assignments in low ionic strength buffers for the beta 146 histidyl residue in the carbonmonoxy form of hemoglobin have been controversial [see Ho and Russu (1987) Biochemistry 26, 6299-6305; and references therein]. By a careful spectroscopic study of human normal adult hemoglobin, enzymatically prepared des(His146 beta)-hemoglobin, and the mutant hemoglobins Cowtown (beta 146His----Leu) and York (beta 146His----Pro), we have resolved some of these conflicting results. By a close incremental variation of pH over a wide range in chloride-free 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer, a single resonance has been found to be consistently missing in the proton nuclear magnetic resonance spectra of these hemoglobin variants. The spectra of each of these variants show additional perturbations; therefore, the assignment has been confirmed by an incremental titration of buffer conditions to benchmark conditions, i.e., 0.2 M phosphate, where the assignment of this resonance is unambiguous. The strategy of incremental titration of buffer conditions also allows extension of this resonance assignment to spectra taken in 0.1 M [bis(2-hydroxyethyl)amino]tris(hydroxymethyl)methane buffer. Participation of the beta 146 histidyl residues in the Bohr effect has been calculated from the pK values determined for the assigned resonances in chloride-free 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer. Our results indicate that the contribution of the beta 146 histidyl residues is 0.52 H+/hemoglobin tetramer at pH 7.6, markedly less than the 0.8 H+/hemoglobin tetramer estimated by study of the mutant hemoglobin Cowtown (beta 146His----Leu) by Shih and Perutz [(1987) J. Mol. Biol. 195, 419-422]. We have found that at least two histidyl residues in the carbonmonoxy form of this mutant have pK values that are perturbed, and we suggest that these pK differences may in part account for this discrepancy. Furthermore, summation of the positive contribution of the beta 146 histidyl residues and the negative contribution of the beta 2 histidyl residues to the maximum Bohr effect measured in 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer suggests that additional sites in the hemoglobin molecule account for proton release upon ligation greater than the contribution of the beta 146 histidyl residues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Isolated beta chains from human adult hemoglobin at millimolar concentration are mainly associated to form beta 4 tetramers. We were able to obtain relevant two-dimensional proton nuclear magnetic resonance (NMR) spectra of such supermolecular complexes (Mr approximately 66,000) in the carboxylated state. Analysis of the spectra enabled us to assign the major part of the proton resonances corresponding to the heme substituents. We also report assignments of proton resonances originating from 12 amino acid side chains mainly situated in the heme pocket. These results provide a basis for a comparative analysis of the tertiary heme structure in isolated beta(CO) chains in solution and in beta(CO) subunits of hemoglobin crystals. The two structures are generally similar. A significantly different position, closer to the heme center, is predicted by the NMR for Leu-141 (H19) in isolated beta chains. Comparison of the assigned resonances of conserved amino acids in alpha chains, beta chains and sperm whale myoglobin indicates a close similarity of the tertiary heme pocket structure in the three homologous proteins. Significant differences were noted on the distal heme side, at the position of Val-E11, and on Leu-H19 and Phe-G5 position on the proximal side.  相似文献   

15.
Hemoglobin Saint Mandé (beta N102Y) is a low-affinity mutant with the substitution site situated in the quaternary-sensitive alpha 1 beta 2 interface. In adult hemoglobin the Asn102 beta contributes to the stability of the liganded (R) state, forming a hydrogen bond with Asp94 alpha. The quaternary and tertiary perturbations subsequent to the Tyr for Asn substitution in monocarboxylated hemoglobin Saint Mandé have been investigated by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. Analysis of the one-dimensional NMR spectra of the liganded and unliganded samples in 1H2O provides evidence that both R and T quaternary structures of Hb Saint Mandé are different from the corresponding ones in HbA. In the monocarboxylated form of the mutant hemoglobin, at acid pH, we have observed the disappearance of an R-type hydrogen bond and the appearance of a new one whose proton resonates like a deoxy T marker. Using two-dimensional NMR methods and on the basis of previous results on the monocarboxylated HbA, we have obtained a significant number of resonance assignments in the spectra of monocarboxylated Hb Saint Mandé at pH 5.6 in the presence or absence of a strong allosteric effector, inositol hexaphosphate. This enabled us to characterize the tertiary conformational changes (relative to the liganded normal hemoglobin) triggered by the quaternary-state modification. The observed structural variations are confined within the heme pocket regions but concern both the alpha and beta subunits. Most of them, localized in the C, F, G, and FG segments, could result directly from the side-chain substitution, while others, such as Leu141 beta, could be explained only by long-range interactions.  相似文献   

16.
M J Kime  D T Gewirth  P B Moore 《Biochemistry》1984,23(15):3559-3568
The downfield (9-15 ppm) proton NMR spectra of oligonucleotides derived from the ribonuclease A resistant fragment of Escherichia coli 5S RNA have been examined in aqueous solution at 500 MHz. Comparison of these spectra with those of the 5S RNA fragment and intact 5S RNA using both chemical shift and nuclear Overhauser enhancement effect criteria indicates that several aspects of 5S RNA secondary structure are also present in the structures assumed in solution by these much smaller molecules. Analysis of these spectra permits the assignment of some imino proton resonances which could not be assigned with certainty on the basis of NMR data previously obtained on intact 5S RNA or its nucleoprotein complexes. Several previous resonance assignments are confirmed. Studies on oligonucleotide components of fragment and a reconstituted fragment show that at least two conformations of the procaryotic loop exist.  相似文献   

17.
Application of two-dimensional nuclear Overhauser enhancement (NOE) spectroscopy to yeast tRNAPhe in H2O solution demonstrates that all imino-proton resonances, related to the secondary structure, and nearly all imino proton resonances, originating from the tertiary structure, can be assigned efficiently by this method. The results corroborate the assignments of the imino-proton resonances of this tRNA as established previously by one-dimensional NOE experiments (only the assignment of base pairs G1 X C72 and C2 X G71 should be reversed). The advantages of two-dimensional NOE spectroscopy over one-dimensional NOE spectroscopy for the assignments of imino-proton resonances and the structure elucidation of tRNA are illustrated and discussed. Furthermore, the use of non-exchangeable proton resonances as probes of the molecular structure is explored.  相似文献   

18.
High-resolution two-dimensional NMR studies have been completed on the self-complementary d(C-G-C-G-A-G-C-T-T-G-C-G) duplex (designated G.T 12-mer) and the self-complementary d(C-G-C-G-A-G-C-T-O4meT-G-C-G) duplex (designated G.O4meT 12-mer) containing G.T and G.O4meT pairs at identical positions four base pairs in from either end of the duplex. The exchangeable and nonexchangeable proton resonances have been assigned from an analysis of two-dimensional nuclear Overhauser enhancement (NOESY) spectra for the G.T 12-mer and G.O4meT 12-mer duplexes in H2O and D2O solution. The guanosine and thymidine imino protons in the G.T mismatch resonate at 10.57 and 11.98 ppm, respectively, and exhibit a strong NOE between themselves and to imino protons of flanking base pairs in the G.T 12-mer duplex. These results are consistent with wobble pairing at the G.T mismatch site involving two imino proton-carbonyl hydrogen bonds as reported previously [Hare, D. R., Shapiro, L., & Patel, D. J. (1986) Biochemistry 25, 7445-7456]. In contrast, the guanosine imino proton in the G.O4meT pair resonates at 8.67 ppm. The large upfield chemical shift of this proton relative to that of the imino proton resonance of G in the G.T mismatch or in G.C base pairs indicates that hydrogen bonding to O4meT is either very weak or absent. This guanosine imino proton has an NOE to the OCH3 group of O4meT across the pair and NOEs to the imino protons of flanking base pairs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The aromatic region of the proton NMR spectrum of human adult hemoglobin (HbA) contains resonances from at least 11 titratable histidine residues. Assignments for five beta chain histidines have previously been proposed. In order to further characterize the aromatic spectra of HbA we studied 11 histidine-substituted and -perturbed hemoglobin variants in oxy and deoxy states and at different pH values by 400 MHz NMR spectroscopy. We propose assignments for the resonances corresponding to the C2 protons of His alpha 20, His alpha 72, His alpha 112, and His beta 77 in oxy and deoxy spectra and of His beta 97 and His beta 117 in deoxy spectra. Our assignments for His beta 2 and His beta 117 in the oxy state agree with those previously reported for the CO form, but in the deoxy state our spectra suggest a different assignment. Studies with Hb variants in which a histidine is perturbed by a neighboring substitution suggest additional assignments for His alpha 50 and His alpha 89 and demonstrate a strong dependence of the imidazole ring pK on hydrogen bond interactions and on the net charge of neighboring residues. Some of the newly proposed assignments of histidine resonances are used to discuss specific intermolecular interactions implicating His alpha 20, His beta 77, and His beta 117 in deoxy HbS polymers.  相似文献   

20.
Studies of proton-proton nuclear Overhauser effects were used to obtain individual assignments of 17 amide proton resonances in the 360 MHz proton nuclear magnetic resonance spectrum of the basic pancreatic trypsin inhibitor. First, optimizing the conditions for obtaining selective nuclear Overhauser effects in the presence of spin diffusion in macromolecules is discussed. Truncated driven nuclear Overhauser experiments were used to assing the amide proton resonances of the beta-sheet in the inhibitor. It is suggested that these techniques could serve quite generally to obtain individual resonance assignments in beta-sheet secondary structures of proteins. Combination of nuclear Overhauser studies with spin decoupling further resulted in individual assignments of the gamma-methyl resonances of the two isoleucines and numerous Calpha and Cbeta protons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号