首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
渗透胁迫下外源ABA能提高小麦幼苗根和叶中的含水量 ,其对叶中的作用大于根部。外源ABA还能提高根叶中ABA及CaM含量 ,30 0 μmol·L-1ABA对二者的作用比 10 0 μmol·L-1更显著。随着胁迫时间的延长 ,根中ABA和CaM含量可分别高出叶片 9倍和 3倍  相似文献   

2.
茉莉酸甲酯和ABA对野葛毛状根中异黄酮含量的影响   总被引:7,自引:1,他引:6  
10~ 10 0 μmol·L-1茉莉酸甲酯 (MJ)可提高野葛毛状根培养液中葛根素和大豆甙元的水平 ,促进毛状根内总异黄酮含量的增加。而用 0 .5~ 2 .0mg·L-1ABA处理后 ,无论对野葛毛状根还是培养液中葛根素、大豆甙元的含量仅略有提高 ,但对总异黄酮的合成与分泌等则有显著的促进。 10 0 μmol·L-1MJ和 1mg·L-1ABA处理 2 4~ 72h ,可促进毛状根内葛根素和培养液中总异黄酮的水平 ,以处理 4 8h的增加量最大  相似文献   

3.
以黄瓜‘津研四号’幼苗为试材, 采用Hoagland营养液栽培, 研究了不同浓度(0、0.01、0.1、1和10 μmol·L-1) IAA处理对50 mmol·L-1 NaHCO3胁迫下黄瓜幼苗光合特性及抗氧化系统的影响。结果表明, 碱胁迫对黄瓜幼苗的生长有抑制作用, 0.01-1 μmol·L-1外源IAA处理可显著增加黄瓜幼苗的生物量; 使叶中Na+积累降低, K+积累增加, 且IAA的缓解效果具有浓度效应。叶绿素a、叶绿素b和类胡萝卜素含量提高, 净光合速率(Pn)和气孔导度(Gs)增加, 以1 μmol·L-1 IAA处理的效果最好。添加1 μmol·L-1外源IAA显著提高了碱胁迫下黄瓜叶中超氧化物歧化酶(SOD)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)、脱氢抗坏血酸还原酶(DHAR)和谷胱甘肽还原酶(GR)的活性及还原型抗坏血酸(AsA)和谷胱甘肽(GSH)的含量, 降低了碱胁迫诱导的活性氧积累和膜脂过氧化反应; 而10 μmol·L-1外源IAA处理则加剧碱胁迫对黄瓜幼苗的危害。  相似文献   

4.
几种生理因素对玉米木质部汁液中蛋白质含量的影响   总被引:1,自引:0,他引:1  
受干旱胁迫的玉米叶和茎木质部汁液中蛋白质含量降低,根中蛋白质含量升高.偏酸性营养液中的玉米各营养器官木质部汁液中蛋白质含量降低,中性或碱性营养液中的则升高.以100mmol·L-1的ABA营养液处理后的玉米根、茎和叶片的木质部汁液中蛋白质含量都升高;而用2 mmol·L-1EGTA、80 mmol·L-1三氟啦嗪或100mmol·L-1异博定处理后的木质部汁液中蛋白质含量变化不明显.  相似文献   

5.
旨在探讨外源脱落酸(ABA)对低温胁迫下小桐子幼苗耐冷性及甜菜碱积累的影响。用150μmol/L ABA处理低温胁迫下的小桐子幼苗,研究其对小桐子幼苗存活率,根系活力,电解质渗漏率,MDA含量,甜菜碱含量及其代谢关键酶BADH活性和Jc BADH基因表达水平的影响。结果表明,外源150μmol/L ABA处理可显著提高低温胁迫下小桐子幼苗的存活率和根系活力,降低电解质渗漏率和MDA含量;ABA也提高了低温胁迫下小桐子幼苗的甜菜碱含量,上调了BADH的活性和Jc BADH的表达水平。因此,ABA可提高低温胁迫下小桐子幼苗的耐冷性,并且在ABA诱发的小桐子幼苗耐冷性的提高过程中,甜菜碱发挥着重要作用。  相似文献   

6.
为探索ABA对叶子花正常叶和变态叶部分生理生化指标的影响,利用不同浓度ABA溶液处理叶子花正常叶和变态叶,6h后,测定其叶绿素、可溶性糖、可溶性蛋白、游离脯氨酸含量和SOD酶活性.结果表明:处理后,变态叶和正常叶的叶绿素含量,SOD酶活性,游离脯氨酸含量和变态叶可溶性糖含量均先增加后降低,在ABA浓度为100 μmol/L时最大.正常叶的可溶性糖含量、正常叶和变态叶的可溶性蛋白含量在ABA浓度为50 μmol/L时最大.这表明50~100 μmol/L浓度的ABA能提高叶子花的抗逆性.  相似文献   

7.
海水胁迫下CoCl2对油菜生长和抗氧化生理指标的影响   总被引:1,自引:0,他引:1  
以 '高油605'油菜品种为材料,通过室内水培实验考察了不同浓度CoCl2处理对海水胁迫下油菜种子的萌发、幼苗生长及相关生理指标的影响.结果表明:(1)Hoagland+30%海水(CK3)处理的油菜种子萌发和生长受到显著抑制,但添加50~100 μmol·L-1 CoCl2处理的油菜种子发芽率比CK3显著提高31.98%~32.91%,发芽势极显著增加54.17%~59.03%(P<0.01),鲜重显著增加25.49%~50.98%;而添加150~1 000 μmol·L-1 CoCl2则对油菜遭受海水胁迫的缓解作用减弱,抑制了油菜幼苗的根系生长.(2)CK3幼苗的抗坏血酸和叶绿素含量显著降低;但添加10~100 μmol·L-1 CoCl2处理的抗坏血酸含量比CK3极显著提高1.26~1.87倍,添加30、50和100 μmol·L-1 CoCl2处理的叶绿素含量比CK3显著提高;但200~1 000 μmol·L-1 CoCl2使油菜幼苗抗坏血酸含量显著降低,1 000 μmol·L-1 CoCl2使幼苗叶绿素含量显著下降.(3)10 μmol·L-1 CoCl2处理幼苗的POD和SOD活性分别比对照显著增加60.2%和18.19%,APX活性却降低6.20%;10~70 μmol·L-1 CoCl2使油菜幼苗POD活性降低,SOD和APX活性增加,MDA含量降低,显著缓解了海水胁迫压力;而100~1 000 μmol·L-1 CoCl2使POD先升后降,SOD和APX活性降低,MDA含量增加.研究发现,适宜浓度CoCl2能够显著提高海水胁迫下油菜幼苗的抗氧化酶活性,增强其清除活性氧能力,降低膜质过氧化作用,从而有效缓解海水胁迫伤害,诱导增强其耐盐性,促进幼苗生长;10~100 μmol·L-1 CoCl2对30%海水胁迫的缓解效果最好,更高浓度的CoCl2反而对油菜幼苗产生毒害作用.  相似文献   

8.
采用水培法,研究了Cu单一处理及Cu与EGTA和丹皮酚磺酸钠(SPS)复合处理对凤丹(Paeonia suffruticosa ‘Feng Dan’)幼苗根长、根系中Cu和丹皮酚含量的影响,并研究了Cu和SPS单一及复合处理对幼苗根系离体质膜和液泡膜微囊H+-ATPase活性的影响.结果显示:经5μmol·L-1Cu处理后凤丹幼苗根长和丹皮酚含量均略高于对照但总体上差异不显著;经10、20和30 μmol·L-1 Cu处理后,幼苗根长和丹皮酚含量总体上均低于对照,且随Cu浓度增加和处理时间延长,降幅增大.与10 μmol·L-1Cu单一处理相比,10 μmol·L-1Cu- 10μmol·L-1EGTA和10 μmo1.L-1Cu-10 μmol·L-1 SPS复合处理均可以使根系中Cu含量显著降低、丹皮酚含量显著提高;其中,10μmol·L-1Cu-10 μmol·L-1EGTA处理组幼苗根系中Cu含量的降低幅度最大,而10 μmol·L-1 Cu-10 μmol·L-1SPS处理组幼苗根系中丹皮酚含量的增加幅度最大且显著高于对照.与对照相比,经5、10和20μmol · L-1 Cu单一处理后丹凤根系离体质膜和液泡膜微囊H+-ATPase活性均降低,且随Cu浓度提高降低幅度增大;而经0.1、0.2、0.5和1.0μmol·L-1SPS单一处理总体上可使膜微囊H+-ATPase活性逐渐增加;与10 μmol·L-1Cu单一处理相比,10 μmol·L-1Cu与0.1、0.2和0.5 μmol·L-1SPS复合处理均可使膜微囊H+- ATPase活性提高,且H+-ATPase活性均呈现随SPS浓度提高逐渐增加的趋势.研究结果揭示:较高浓度Cu胁迫对凤丹幼苗根系生长及丹皮酚合成以及质膜和液泡膜微囊H+-ATPase活性均有明显抑制作用,但添加外源丹皮酚磺酸钠对Cu胁迫伤害具有一定的缓解效应.  相似文献   

9.
对0、30、150、300、450和600μmol·L-1Pb胁迫条件下狭叶香蒲(TyphaangustifoliaLinn.)种子的萌发特性进行了研究,并分析了0、450、900、1800和2700μmol·L-1Pb胁迫对狭叶香蒲幼苗叶片及根系中部分生理生化指标的影响。结果表明:随Pb浓度提高,狭叶香蒲种子的发芽率、发芽势、发芽指数和活力指数以及下胚轴长度均逐渐下降且低于对照,而其下胚轴长度抑制指数则逐渐增大,但在30μmol·L-1Pb胁迫条件下各项萌发指标均与对照无显著差异。叶片叶绿素a、叶绿素b及总叶绿素含量随Pb浓度提高呈逐渐下降趋势,但在450和900μmol·L-1Pb胁迫条件下与对照无显著差异,而在1800和2700μmol·L-1Pb胁迫条件下显著低于对照。在Pb胁迫条件下叶片和根中SOD活性均显著高于对照但变化趋势不同;随Pb浓度提高,叶片SOD活性呈波动但整体上升的趋势,而根中SOD活性则呈逐渐降低的趋势。叶片和根中POD活性均随Pb浓度提高呈持续上升的趋势,其中,在450和900μmol·L-1Pb胁迫条件下叶片的POD活性低于对照、根的POD活性高于对照,但均与对照无显著差异;而在1800和2700μmol·L-1Pb胁迫条件下叶片和根的POD活性均显著高于对照。在Pb胁迫条件下叶片和根中AsA和MDA含量均高于对照。随Pb浓度提高,叶片的AsA含量总体上逐渐增加但在450和900μmol·L-1Pb胁迫条件下与对照无显著差异;而根的AsA含量则呈先增加后降低的趋势且均与对照差异显著。随Pb浓度提高,叶片的MDA含量先增后降但均与对照无显著差异;而根的MDA含量呈“高-低-高”的波动趋势且仅在450μmol·L-1Pb胁迫条件下与对照差异显著。综合分析结果显示:狭叶香蒲幼苗根系对Pb胁迫的敏感性可能强于叶片;狭叶香蒲种子可在轻度Pb污染水体中萌发和生长;其幼苗对Pb胁迫具有一定的耐性,可用于中度Pb污染水体的修复。  相似文献   

10.
分根时 ,受渗透胁迫的根系和叶片中ABA和CaM含量显著高于全根受胁迫的根系。根系含水量虽有下降 ,但仍高于全根受胁迫的根系 ;叶片含水量非但未下降 ,反而略有增高。处于营养液中的根系于 2 4h时出现明显的ABA和CaM峰值 ,且含水量也稍有增高。  相似文献   

11.
Formation and breakdown of ABA   总被引:17,自引:0,他引:17  
The phytohormone, abscisic acid (ABA) is found in all photosynthetic organisms. The amount of ABA present is determined by the dynamic balance between biosynthesis and degradation: these two processes are influenced by development, environmental factors such as light and water stress, and other growth regulators. ABA is synthesized from a C40 carotenoid precursor and the first enzyme committed specifically to ABA synthesis is a plastid- localized 9-cis-epoxycarotenoid dioxygenase, which cleaves an epoxycarotenoid precursor to form xanthoxin. Subsequently, xanthoxin is converted to ABA by two cytosolic enzymes via abscisic aldehyde, but there appears to be at least one minor alternative pathway. The major catabolic route leads to 8′-hydroxy ABA and phaseic acid formation, catalyzed by the cytochrome P450 enzyme ABA 8′-hydroxylase. In addition, there are alternate catabolic pathways via conjugation, 4′-reduction and 7′-hydroxylation. As a consequence of recent developments, the mechanism by which the concentration of hormonally active ABA is controlled at the cellular, tissue and whole plant level can now be analyzed in detail.  相似文献   

12.
13.
14.
15.
Three wheat (Triticum aestivum L.) mutants that lacked dormancyat maturity were isolated from an ethylmethane sulphonate-treatedpopulation of a dormant red-grained line, Kitakei-1354 (Kitakei).The three mutants (EH47-1, EH47-2-5 and EH47-2-6) were selectedin segregating generations derived from one M2 plant. They differin morphological and physiological characteristics, showingthat these mutants contained several mutations besides non-dormancy.Despite these differences, embryos of all the mutants rapidlylost sensitivity to abscisic acid (ABA) during the later halfof seed maturation while Kitakei embryos maintained the sensitivityeven after maturity. These results suggest that embryo sensitivityto ABA plays a key role in seed dormancy. The profile of ABAcontent of EH47-1 embryos during seed development was similarto that of Kitakei, except for a significantly lower level at30 d after pollination (DAP). This reduced level of ABA at DAP30is discussed in relation to the development of seed dormancyand ABA sensitivity of the embryos. Segregation ratios for non-dormancyin progeny of EH47-1Kitakei crosses suggest that the non-dormancyof EH47-1 is a single dominant mutation. Key words: Abscisic acid, wheat, seed dormancy, inheritance, mutant  相似文献   

16.
The plant hormone abscisic acid (ABA) is involved in regulating a number of major processes such as seed dormancy, seedling development, and biotic and abiotic stress responses. The function and effect of ABA on pathogens are still unclear, but the roles of ABA in seed germination and abiotic stress responses have been well characterized. Abiotic stresses elevate ABA levels and activate ABA signaling; thus, inducing a variety of responses, including the expression of stress-related genes and stomatal closure. The past decade has witnessed many significant advances in our understanding of ABA signal transduction due to application of a combination of approaches including genetics, biochemistry, electrophysiology, and chemical genetics. A number of proteins associated with the ABA signal transduction pathway such as PYR/PYL/RCAR family of START proteins, have been identified. These ABA receptors bind to ABA and positively regulate ABA signaling via inactivation of PP2C phosphatase activity, which inhibits SnRK2-type kinases by direct interaction and dephosphorylation. Additionally, SnRK2-type kinases and PP2Cs interact with one another and with other components of ABA signaling and function as positive and negative ABA regulators, respectively. In this review, we focus on ABA function to abiotic stresses and highlight each component in relation to ABA and its interactions.  相似文献   

17.
18.
ABA与植物的耐盐性   总被引:1,自引:0,他引:1  
文章介绍近年来ABA与植物耐盐性的研究进展。  相似文献   

19.
ABA 与植物胁迫抗性   总被引:1,自引:0,他引:1  
吴耀荣  谢旗 《植物学报》2006,23(5):511-518
ABA是一种重要的植物激素, 受到生物胁迫和非生物胁迫的调控, 在植物对胁迫耐受性和抗性中发挥着重要作用。本文着重阐述了植物胁迫对ABA的生物合成和代谢的调控、ABA在调控气孔关闭和调控基因表达从而调控植物耐逆性方面的作用, 以及植物胁迫信号转导途径间的联系和交叉。  相似文献   

20.
ABA与植物胁迫抗性   总被引:19,自引:0,他引:19  
吴耀荣  谢旗 《植物学通报》2006,23(5):511-518
ABA是一种重要的植物激素,受到生物胁迫和非生物胁迫的调控,在植物对胁迫耐受性和抗性中发挥着重要作用。本文着重阐述了植物胁迫对ABA的生物合成和代谢的调控、ABA在调控气孔关闭和调控基因表达从而调控植物耐逆性方面的作用,以及植物胁迫信号转导途径间的联系和交叉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号