首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
整合素相关激酶在糖尿病肾病的表达及其意义   总被引:6,自引:0,他引:6  
目的探讨整合素相关激酶(Integrin-Linked Kinase,ILK)在糖尿病肾病患者肾组织中的表达及其意义.方法对3例正常肾组织,14例糖尿病肾病患者肾穿刺活检标本,应用免疫组织化学方法检测ILK和FN在肾组织的阳性表达强度,并作图像分析处理.结果在正常肾组织,ILK主要表达于肾小球脏层上皮细胞,系膜细胞和小管上皮细胞呈弱表达.在糖尿病肾病,ILK表达于肾小球脏层上皮细胞和系膜细胞,在萎缩变性的肾小管上皮细胞表达增强.在肾小球结节硬化时,ILK表达明显减少.此外,ILK和FN的表达量在糖尿病肾病早、中期成正相关(P<0.001),在糖尿病肾病晚期成负相关(P<0.05).结论 ILK在糖尿病肾病肾组织中表达量显著增加,并与FN的表达有一定的相关性,说明其可能通过促进细胞外基质FN等的积聚,在糖尿病肾小球硬化过程中发挥重要作用.  相似文献   

2.
The molecular mechanism(s) by which high glucose induces fibronectin expression via G-protein activation in the kidney are largely unknown. This investigation describes the effect of high glucose (HG) on a small GTP-binding protein, Rap1b, expression and activation, and the relevance of protein kinase C (PKC) and Raf pathways in fibronectin synthesis in cultured renal glomerular mesangial cells (MCs). In vivo experiments revealed a dose-dependent increase in Rap1b expression in glomeruli of diabetic rat kidneys. Similarly, in vitro exposure of MCs to HG led to an up-regulation of Rap1b with concomitant increase in fibronectin (FN) mRNA and protein expression. The up-regulation of Rap1b mRNA was mitigated by the PKC inhibitors, calphostin C, and bisindolymaleimide, while also reducing HG- induced FN expression in non-transfected MCs. Overexpression of Rap1b by transfection with pcDNA 3.1/Rap1b in MCs resulted in the stimulation of FN synthesis; however, the PKC inhibitors had no significant effect in reducing FN expression in Rap1b-transfected MCs. Transfection of Rap1b mutants S17N (Ser --> Asn) or T61R (Thr --> Arg) in MCs inhibited the HG-induced increased FN synthesis. B-Raf and Raf-1 expression was investigated to assess whether Rap1b effects are mediated via the Raf pathway. B-Raf, and not Raf-1, expression was increased in MCs transfected with Rap1b. HG also caused activation of Rap1b, which was largely unaffected by anti-platelet-derived growth factor (PDGF) antibodies. HG-induced activation of Rap1b was specific, since Rap2b activation and expression of Rap2a and Rap2b were unaffected by HG. These findings indicate that hyperglycemia and HG cause an activation and up-regulation of Rap1b in renal glomeruli and in cultured MCs, which then stimulates FN synthesis. This effect appears to be PKC-dependent and PDGF-independent, but involves B-Raf, suggesting a novel PKC-Rap1b-B-Raf pathway responsible for HG-induced increased mesangial matrix synthesis, a hallmark of diabetic nephropathy.  相似文献   

3.
Hydrogen peroxide-inducible clone-5 (Hic-5) is a transforming growth factor (TGF)-β1-inducible focal adhesion protein. We previously demonstrated that Hic-5 was localized in mesangial cells and its expression was associated with glomerular cell proliferation and matrix expansion in human and rat glomerulonephritis (GN). In the present study, we first assessed the role of Hic-5 in mesangioproliferative GN by injecting Habu venom into heminephrectomized wild type (Hic-5+/+) and Hic-5-deficient (Hic-5-/-) mice. Hic-5+/+ GN mice exhibited glomerular cell proliferation on day 7. Surprisingly, glomerular cell number and Ki-67-positive cells in Hic-5-/- GN mice were significantly greater than those in Hic-5+/+ GN mice on day 7, although the number of glomerular apoptotic cells and the expression of growth factors (platelet-derived growth factor-BB and TGF-β1) and their receptors were similarly increased in both Hic-5+/+ and Hic-5-/- GN mice. In culture experiments, proliferation assays showed that platelet-derived growth factor-BB and TGF-β1 enhanced the proliferation of Hic-5-/- mesangial cells compared with Hic-5+/+ mesangial cells. In addition, mitogenic regulation by Hic-5 was associated with altered and coordinated expression of cell cycle-related proteins including cyclin D1 and p21. The present results suggest that Hic-5 might regulate mesangial cell proliferation in proliferative GN in mice. In conclusion, modulation of Hic-5 expression might have a potential to prevent mesangial cell proliferation in the acute mitogenic phase of glomerulonephritis.  相似文献   

4.
5.
Focal adhesions play a critical role as centers that transduce signals by cell-matrix interactions and regulate fundamental processes such as proliferation, migration, and differentiation. Focal adhesion kinase (FAK), paxillin, integrin-linked kinase (ILK), and hydrogen peroxide–inducible clone-5 (Hic-5) are major proteins that contribute to these events. In this study, we investigated the expression of focal adhesion proteins in the developing rat kidney. Western blotting analysis revealed that the protein levels of FAK, p-FAK397, paxillin, p-paxillin118, and Hic-5 were high in embryonic kidneys, while ILK expression persisted from the embryonic to the mature stage. Immunohistochemistry revealed that FAK, p-FAK397, paxillin, and p-paxillin118 were strongly expressed in condensed mesenchymal cells and the ureteric bud. They were detected in elongating tubules and immature glomerular cells in the nephrogenic zone. Hic-5 was predominantly expressed in mesenchymal cells as well as immature glomerular endothelial and mesangial cells, suggesting that Hic-5 might be involved in mesenchymal cell development. ILK expression was similar to that of FAK in the developmental stages. Interestingly, ILK was strongly expressed in podocytes in mature glomeruli. ILK might play a role in epithelial cell differentiation as well as kidney growth and morphogenesis. In conclusion, the temporospatially regulated expression of focal adhesion proteins during kidney development might play a role in morphogenesis and cell differentiation.  相似文献   

6.
Diabetic nephropathy is characterized by accumulation of glomerular extracellular matrix proteins, such as fibronectin (FN). Here, we investigated whether sphingosine kinase (SphK)1 pathway is responsible for the elevated FN expression in diabetic nephropathy. The SphK1 pathway and FN expression were examined in streptozotocin-induced diabetic rat kidney and glomerular mesangial cells (GMC) exposed to high glucose (HG). FN up-regulation was concomitant with activation of the SphK1 pathway as reflected in an increase in the expression and activity of SphK1 and sphingosine 1-phosphate (S1P) production in both diabetic kidney and HG-treated GMC. Overexpression of wild-type SphK1 (SphK(WT)) significantly induced FN expression, whereas treatment with a SphK inhibitor, N,N-dimethylsphingosine, or transfection of SphK1 small interference RNA or dominant-negative SphK1 (SphK(G82D)) abolished HG-induced FN expression. Furthermore, addition of exogenous S1P significantly induced FN expression in GMC with an induction of activator protein 1 (AP-1) activity. Inhibition of AP-1 activity by curcumin attenuated the S1P-induced FN expression. Finally, by inhibiting SphK1 activity, both N,N-dimethylsphingosine and SphK(G82D) markedly attenuated the HG-induced AP-1 activity. Taken together, these results demonstrated that the SphK1 pathway plays a critical role in matrix accumulation in GMC under diabetic condition, suggesting that the SphK1 pathway could be a potential therapeutic target for diabetic nephropathy.  相似文献   

7.
Immune-complex (IC) mediated glomerulonephritis (GN) is a common cause of chronic kidney disease associated with increased levels of tumor necrosis factor (TNF)-α in renal cells. TNF-α signaling pathways involve complicated interactions between multiple proteins including TNF-receptor-associated factor (TRAF)-2. We have previously found markedly up-regulated expression of TRAF-2 in renal tissues from IC mediated lupus nephritis patients. Here we investigated the effect of TRAF-2 on inflammatory response in rat mesangial cells (MCs). The results showed that treatment with soluble aggregated IgG (AIgG) resulted in a time- and dose-dependent increase in the expression of interleukin (IL)-1β and IL-6. Significant cell proliferation was also observed after the treatment with soluble AIgG. Knockdown TRAF-2 by siRNA significantly suppressed soluble AIgG induced up-regulation of TRAF-2, IL-1β, and IL-6. Meanwhile the cell proliferation was inhibited and apoptotic cells were increased. It was concluded that TRAF-2 could induce the proinflammatory and proliferative effects of soluble AIgG on rat MCs. Thus, TRAF-2 may represent a future target for therapy of IC mediated GN.  相似文献   

8.
Platelet-derived growth factor (PDGF) plays critical roles in mesangial cell (MC) proliferation in mesangial proliferative glomerulonephritis. We showed previously that Smad1 contributes to PDGF-dependent proliferation of MCs, but the mechanism by which Smad1 is activated by PDGF is not precisely known. Here we examined the role of c-Src tyrosine kinase in the proliferative change of MCs. Experimental mesangial proliferative glomerulonephritis (Thy1 GN) was induced by a single intravenous injection of anti-rat Thy-1.1 monoclonal antibody. In Thy1 GN, MC proliferation and type IV collagen (Col4) expression peaked on day 6. Immunohistochemical staining for the expression of phospho-Src (pSrc), phospho-Smad1 (pSmad1), Col4, and smooth muscle α-actin (SMA) revealed that the activation of c-Src and Smad1 signals in glomeruli peaked on day 6, consistent with the peak of mesangial proliferation. When treated with PP2, a Src inhibitor, both mesangial proliferation and sclerosis were significantly reduced. PP2 administration also significantly reduced pSmad1, Col4, and SMA expression. PDGF induced Col4 synthesis in association with increased expression of pSrc and pSmad1 in cultured MCs. In addition, PP2 reduced Col4 synthesis along with decreased pSrc and pSmad1 protein expression in vitro. Moreover, the addition of siRNA against c-Src significantly reduced the phosphorylation of Smad1 and the overproduction of Col4. These results provide new evidence that the activation of Src/Smad1 signaling pathway plays a key role in the development of glomerulosclerosis in experimental glomerulonephritis.  相似文献   

9.
10.
 Extracellular matrix accumulation is crucial in the pathogenesis of glomerulosclerosis in mesangial proliferative glomerulonephritis (GN). In an attempt to explore the distribution of type VI collagen and its synthesizing cells in normal and diseased glomeruli, we investigated mRNA and protein expression of type VI collagen in renal biopsy sections, histologically diagnosed as mesangial proliferative GN. Five renal biopsies from patients diagnosed as having minor glomerular abnormalities and one surgical renal tissue were also simultaneously examined as controls. Immunohistochemical studies revealed type VI collagen immunostaining in the mesangium and glomerular basement membrane of the control glomeruli. Compared to the control, increased deposition of type VI collagen was noted in the mesangial proliferative and sclerotic lesions in GN. To identify the cells responsible for the synthesis of type VI collagen mRNA, renal sections were hybridized in situ with digoxigenin-labeled antisense oligo-DNA probe complementary to a part of α1 (VI) mRNA. Occasionally intraglomerular cells hybridized with digoxigenin-labeled antisense pro α1 (VI) oligo-DNA in control glomeruli. An increased number of intraglomerular cells (mostly epithelial cells) were, however, positive for α1 (VI) mRNA expression in GN sections. The present study documents the distribution of type VI collagen in the normal glomeruli and provides further evidence of accelerated synthesis of this collagen in mesangial proliferative GN. Accepted: 21 July 1998  相似文献   

11.
Platelet-derived growth factor-BB (PDGF-BB) has been implicated in the pathogenesis of progressive glomerulonephritis (GN). Previous studies have reported that PDGF-BB stimulates mesangial cells (MCs)-induced collagen matrix remodeling through enhancement of alpha1beta1 integrin-dependent migratory activity. To determine the cell signaling pathway responsible for abnormal MC-related mesangial matrix remodeling in progressive GN, we studied the involvement of the extracellular signal-regulated kinase (ERK)/activator protein-1 (AP-1) pathway in PDGF-BB-enhanced collagen gel contraction. Western blotting and gel shift assay revealed that MC-induced gel contraction resulted in ERK activation in parallel with that of AP-1 binding, peaking at 4 h and lasting at least for 24 h. Application of the MEK inhibitor, U0126, and the c-jun/AP-1 inhibitor, curcumin, inhibited gel contraction and AP-1 activity, respectively, dose dependently. PDGF-BB enhanced not only gel contraction but ERK phosphorylation and AP-1 activity by MCs. Marked inhibitory effects on PDGF-BB-induced gel contraction and ERK/AP-1 activity were observed in the presence of either function blocking anti-alpha1- or anti-beta1-integrin antibody or U0126. Consistently, AP-1-inactive MCs expressing a dominant-negative mutant of c-jun showed a significant decrease of PDGF-BB-induced gel contraction as compared with mock-transfected MCs. Finally, migration assay showed that ERK/AP-1 activity is required for PDGF-BB-stimulated alpha1beta1 integrin-dependent MC migration to collagen I. These results indicated that PDGF-BB enhances alpha1beta1 integrin-mediated collagen matrix reorganization through the activation of the ERK/AP-1 pathway that is crucial for MC migration. We conclude that the ERK/AP-1 pathway plays an important role in PDGF-BB-induced alpha1beta1 integrin-dependent collagen matrix remodeling; therefore, the inhibition of its pathway may provide a novel approach to regulate abnormal collagen matrix remodeling in progressive GN.  相似文献   

12.
Glomerular expression of tensin was immunohistochemically studied in normal and diseased rat kidneys to determine whether tensin might be related to specific binding in individual glomerular cells. Normal rat kidneys displayed an intense immunofluorescence reaction for tensin along the basal aspects of proximal and distal tubule cells and parietal epithelial cells of Bowman's capsules. In glomeruli, a positive reaction for tensin was detected only in the mesangial areas. Immunoelectron microscopy revealed a positive reaction in the mesangial cell (MC) processes. RT-PCR and immunoprecipitation demonstrated mRNA and protein levels of tensin in cultured rat MCs. Mesangial tensin expression was decreased when the mesangium was injured by Habu snake venom. During the regenerative process after mesangiolysis, tensin expression was not detected in early-phase proliferating MCs that did not have extracellular matrix (ECM). The expression of tensin recovered in late-phase proliferating MCs, which became attached to regenerated ECM. It appears that tensin is related to MC attachment to surrounding ECM, which suggests that signal transduction regulated by tensin may be related to a specific mechanism of MC matrix regeneration. Furthermore, tensin can act as a marker for rat MCs because the expression of tensin was detected only in MCs in glomeruli.  相似文献   

13.
Insulin-like growth factor (IGF)-1 is accumulated in the diabetic kidney and is considered to be involved in the development of glomerular sclerosis. Here, we investigate IGF-1 regulation of laminin, an extracellular matrix (ECM) component, and cyclin D1 and p21Cip1, cell-cycle progression factor, expressions in glomerular mesangial cells. We show that IGF-1 increases the level of laminin gamma1 and beta1 subunits approximately 1.5- and 2.5-fold, respectively, in a time-dependent manner. IGF-1 also stimulates protein kinase Akt/PKB phosphorylation at Thr 308, which correlates with its activity, up to 24 h. The Akt activation is coupled with Ser 9 phosphorylation of its downstream target, glycogen synthase kinase-3beta (GSK-3beta), which inhibits its kinase activity. Laminin beta1 is reduced significantly (P < 0.03) by inhibitors of Akt and p38MAPK whereas laminin gamma1 is not affected. Surprisingly, IGF-1 activates the expression of both cyclin D1 and cell-cycle arrest factor, p21Cip1 parallely. Pharmacological inhibition of calcineurin by cyclosporin A blocks IGF-1-induced cyclin D1 and p21Cip1expression significantly (P < 0.05). IGF-1 enhances cellular metabolic activity and viability of rat mesangial cells; however, they are arrested at the G1 phase of cell cycle as revealed by the FACS analysis. These results indicate that IGF-1 mediates mesangial cell-cycle progression, hypertrophy, and ECM protein synthesis. The Akt/GSK-3beta, p38MAPK, and calcineurin pathways may play an important role in IGF-1 signaling, cell-cycle regulation, and matrix gene expression in mesangial cells leading to the development of diabetic glomerulopathy.  相似文献   

14.
Abnormal mesangial extracellular matrix remodeling by mesangial cells (MCs) is the hallmark of progressive glomerulonephritis (GN). We recently showed, using a type I collagen gel contraction assay, that alpha 1 beta 1 integrin-dependent MC adhesion and migration are necessary cell behaviors for collagen matrix remodeling. To further determine the mechanism of alpha 1 beta 1 integrin-mediated collagen remodeling, we studied the signaling pathways of MCs that participate in the regulation of collagen gel contraction. Immunoprecipitation and phosphotyrosine detection revealed that gel contraction is associated with the enhanced activity and phosphorylation of ERK1/2 by MCs. The tyrosine kinase inhibitors herbimycin and genistein inhibited collagen gel contraction dose dependently. Furthermore, targeting ERK1/2 activity with a MEK inhibitor, PD98059, and antisense ERK1/2 hindered gel contraction in a dose-dependent manner. Similar inhibitory effects on gel contraction and ERK1/2 phosphorylation were observed when MC-mediated gel contraction was performed in the presence of function-blocking anti-alpha1 or anti-beta1 integrin antibodies. However, cell adhesion and migration assays indicated that PD98059 and antisense ERK1/2 blocked alpha 1 beta 1 integrin-dependent MC migration, but did not interfere with collagen adhesion, although there was a marked decrease in ERK1/2 phosphorylation and ERK1/2 protein expression in cell adhesion on type I collagen. None of the above could affect membrane expression of alpha 1 beta 1 integrin. These results suggested that ERK1/2 activation is critical for the alpha 1 beta 1 integrin-dependent MC migration necessary for collagen matrix reorganization. We therefore conclude that ERK1/2 may serve as a possible target for pharmacological inhibition of pathological collagen matrix formation in GN.  相似文献   

15.
16.
17.
The alphav integrins present on the membrane of numerous cells, mediate attachment to matrix proteins, cell proliferation, migration and survival. We studied the expression of alphav integrinis and CD47 (a beta3 chain integrin associated protein) in various forms of glomerulonephritis (GN) characterized by mesangial proliferation and/or increased mesangial matrix. In normal glomeruli, epithelial cells expressed alphavbeta3, alphavbeta5 and CD47; endothelial cells expressed alpha5beta1 and CD47; mesangial cells expressed alphavbeta5, CD47, and to a less extent alphavbeta3. In acute post infectious GN (APIGN), membrano-proliferative GN (MPGN) and diabetic nephropathy(DN), we observed that the beta3 chain, normally expressed by mesangial cells, was not detectable in the mesangium while its expression by epithelial cells was not modified. Parallel to the disappearance of alphavbeta3, the CD47 expression was decreased on the mesangial cells in MPGN, APIGN and DN. The expression of alphavbeta5 was clearly increased on podocytes and on proliferating mesangial cells in APIGN. By contrast, the mesangial expression of alphavbeta was normal or decreased in DN. The alpha5 chain of integrin, absent on normal mesangial cell, was expressed on proliferating mesangial cells in MPGN and APIGN. Thus, we observed modifications of alphavbeta3 and alphavbeta5 expression during human GN. The modulations of alphavbeta3 and alphavbeta5 expression differed according to the different glomerular cell types and were not parallel in glomerular cells: alphavbeta3 was decreased (and alphavbeta5 unchanged) on proliferating mesangial cells and alphavbeta5 was increased (and alphavbeta3 unchanged) in podocytes. This may reflect the existence of two distinct regulatory pathways.  相似文献   

18.
K Huang  W Liu  T Lan  X Xie  J Peng  J Huang  S Wang  X Shen  P Liu  H Huang 《PloS one》2012,7(8):e43874
The accumulation of glomerular extracellular matrix (ECM) is one of the critical pathological characteristics of diabetic renal fibrosis. Fibronectin (FN) is an important constituent of ECM. Our previous studies indicate that the activation of the sphingosine kinase 1 (SphK1)-sphingosine 1- phosphate (S1P) signaling pathway plays a key regulatory role in FN production in glomerular mesangial cells (GMCs) under diabetic condition. Among the five S1P receptors, the activation of S1P2 receptor is the most abundant. Berberine (BBR) treatment also effectively inhibits SphK1 activity and S1P production in the kidneys of diabetic models, thus improving renal injury. Based on these data, we further explored whether BBR could prevent FN production in GMCs under diabetic condition via the S1P2 receptor. Here, we showed that BBR significantly down-regulated the expression of S1P2 receptor in diabetic rat kidneys and GMCs exposed to high glucose (HG) and simultaneously inhibited S1P2 receptor-mediated FN overproduction. Further, BBR also obviously suppressed the activation of NF-κB induced by HG, which was accompanied by reduced S1P2 receptor and FN expression. Taken together, our findings suggest that BBR reduces FN expression by acting on the S1P2 receptor in the mesangium under diabetic condition. The role of BBR in S1P2 receptor expression regulation could closely associate with its inhibitory effect on NF-κB activation.  相似文献   

19.
20.
Protein kinase C (PKC)-induced changes in glomerular mesangial cell (MC) phenotypic behavior has been implicated in diabetes. The activity of diacylglycerol-sensitive PKC isoforms in MCs is altered by ambient changes in glucose, but the regulation of PKC activity and subsequent intracellular signaling events are not yet clearly defined. Small GTP-binding proteins of the ADP-ribosylation factor (Arfs) family, may regulate protein kinase membrane recruitment and hence its activity in signaling events of non-polarized cells. Members of the ARF family may coordinate membrane dynamics and other cellular functions through their interaction with PKC. We studied the activation of Arf, PKC betaI and phospholipase D (PLD) in MCs cultured under normal or high glucose conditions. MCs cultured in high glucose medium exhibited predominantly cytosolic localization of PKC betaI, Arf3 and Arf6. However, phorbol ester (PMA) stimulation of cells cultured in high glucose significantly enhanced membrane association of PKC betaI and Arf6, but not Arf3. Using [3H]choline chloride to prelabel MCs and measuring [3H]choline-containing metabolite release as PLD activity, PMA stimulated a significant increase of PLD activity under high glucose condition. Our data suggest that Arf6 plays a specific role in activation of PKC betaI and PLD under high glucose condition, and may be a significant intracellular event in the change of the mesangial cell phenotype associated with diabetic nephropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号