首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water transport across cellular membranes is regulated by a family of water channel proteins known as aquaporins (AQPs). As most abiotic stresses like suboptimal temperatures, drought or salinity result in cellular dehydration, it is imperative to study the cause–effect relationship between AQPs and the cellular consequences of abiotic stress stimuli. Although plant cells have a high isoform diversity of AQPs, the individual and integrated roles of individual AQPs in optimal and suboptimal physiological conditions remain unclear. Herein, we have identified a plasma membrane intrinsic protein gene (MusaPIP1;2) from banana and characterized it by overexpression in transgenic banana plants. Cellular localization assay performed using MusaPIP1;2::GFP fusion protein indicated that MusaPIP1;2 translocated to plasma membrane in transformed banana cells. Transgenic banana plants overexpressing MusaPIP1;2 constitutively displayed better abiotic stress survival characteristics. The transgenic lines had lower malondialdehyde levels, elevated proline and relative water content and higher photosynthetic efficiency as compared to equivalent controls under different abiotic stress conditions. Greenhouse‐maintained hardened transgenic plants showed faster recovery towards normal growth and development after cessation of abiotic stress stimuli, thereby underlining the importance of these plants in actual environmental conditions wherein the stress stimuli is often transient but severe. Further, transgenic plants where the overexpression of MusaPIP1;2 was made conditional by tagging it with a stress‐inducible native dehydrin promoter also showed similar stress tolerance characteristics in in vitro and in vivo assays. Plants developed in this study could potentially enable banana cultivation in areas where adverse environmental conditions hitherto preclude commercial banana cultivation.  相似文献   

2.
The amniotic membrane encloses the amniotic fluid and plays roles in the regulation of amniotic fluid flux through the intramembranous pathway during pregnancy. Aquaporins (AQPs) 1, 3, 8, and 9 are expressed in amniotic membranes. AQPs are water channel proteins that facilitate the rapid flux of water or small molecules across the plasma membrane. Recently, additional roles of AQPs in facilitating cell migration, proliferation, and apoptosis have been suggested, with AQPs being distributed in the appropriate subcellular regions for their functions. The cellular and subcellular distributions of AQPs in the amniotic membrane however remain unclear. We have examined the cellular and subcellular localization of AQPs in amniotic membranes during pregnancy in mice. After embryonic day 12 (E12), AQP1 was distributed in the plasma membrane of finely branched cell processes in the amniotic fibroblasts. AQP3 was present in both epithelial cells and fibroblasts between E10 and E12. The distribution of AQP3 in the epithelial cells dynamically changed as follows: at E14 in the lateral membrane and apical junction; at E16 in the lateral membrane alone; at E17 in the lateral membrane and cytoplasm. AQP8 was expressed in the epithelial cells and complementarily localized in the apical junction and the lateral membrane. AQP9 was detected only in the apoptotic cells of the epithelium. These cellular and subcellular localizations of amniotic AQPs indicate that each AQP plays distinct functional roles, such as in water and urea transport, cell migration, cell proliferation, and apoptosis, for amniotic fluid homeostasis or tissue remodeling of amniotic membranes.  相似文献   

3.
Among the structural phospholipids that form the bulk of eukaryotic cell membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the common precursor for low‐abundance regulatory lipids, collectively referred to as polyphosphoinositides (PPIn). The metabolic turnover of PPIn species has received immense attention because of the essential functions of these lipids as universal regulators of membrane biology and their dysregulation in numerous human pathologies. The diverse functions of PPIn lipids occur, in part, by orchestrating the spatial organization and conformational dynamics of peripheral or integral membrane proteins within defined subcellular compartments. The emerging role of stable contact sites between adjacent membranes as specialized platforms for the coordinate control of ion exchange, cytoskeletal dynamics, and lipid transport has also revealed important new roles for PPIn species. In this review, we highlight the importance of membrane contact sites formed between the endoplasmic reticulum (ER) and plasma membrane (PM) for the integrated regulation of PPIn metabolism within the PM. Special emphasis will be placed on non‐vesicular lipid transport during control of the PtdIns biosynthetic cycle as well as toward balancing the turnover of the signaling PPIn species that define PM identity.  相似文献   

4.
Mitochondria consist of four compartments, outer membrane, intermembrane space, inner membrane, and matrix; each harboring specific functions and structures. In this study, we used LC‐MS/MS to characterize the protein composition of Trypanosoma brucei mitochondrial (mt) membranes, which were enriched by different biochemical fractionation techniques. The analyses identified 202 proteins that contain one or more transmembrane domain(s) and/or positive GRAVY scores. Of these, various criteria were used to assign 72 proteins to mt membranes with high confidence, and 106 with moderate‐to‐low confidence. The sub‐cellular localization of a selected subset of 13 membrane assigned proteins was confirmed by tagging and immunofluorescence analysis. While most proteins assigned to mt membrane have putative roles in metabolic, energy generating, and transport processes, ~50% have no known function. These studies result in a comprehensive profile of the composition and sub‐organellar location of proteins in the T. brucei mitochondrion thus, providing useful information on mt functions.  相似文献   

5.
Far from a homogeneous environment, biological membranes are highly structured with lipids and proteins segregating in domains of different sizes and dwell times. In addition, membranes are highly dynamics especially in response to environmental stimuli. Understanding the impact of the nanoscale organization of membranes on cellular functions is an outstanding question. Plant channels and transporters are tightly regulated to ensure proper cell nutrition and signaling. Increasing evidence indicates that channel and transporter nano-organization within membranes plays an important role in these regulation mechanisms. Here, we review recent advances in the field of ion, water, but also hormone transport in plants, focusing on protein organization within plasma membrane nanodomains and its cellular and physiological impacts.

This article reviews our current knowledge about the role of membrane organization and dynamics for transport functions in plants.  相似文献   

6.
The constitutive cycling of plant plasma membrane (PM) proteins is an essential component of their function and regulation under resting or stress conditions. Transgenic Arabidopsis plants that express GFP fusions with AtPIP1;2 and AtPIP2;1, two prototypic PM aquaporins, were used to develop a fluorescence recovery after photobleaching (FRAP) approach. This technique was used to discriminate between PM and endosomal pools of the aquaporin constructs, and to estimate their cycling between intracellular compartments and the cell surface. The membrane trafficking inhibitors tyrphostin A23, naphthalene-1-acetic acid and brefeldin A blocked the latter process. By contrast, a salt treatment (100 mm NaCl for 30 min) markedly enhanced the cycling of the aquaporin constructs and modified their pharmacological inhibition profile. Two distinct models for PM aquaporin cycling in resting or salt-stressed root cells are discussed.  相似文献   

7.
Aquaporins (AQPs) are ubiquitous membrane proteins whose identification, pioneered by Peter Agre's team in the early nineties, provided a molecular basis for transmembrane water transport, which was previously thought to occur only by free diffusion. AQPs are members of the Major Intrinsic Protein (MIP) family and often referred to as water channels. In mammals and plants they are present in almost all organs and tissues and their function is mostly associated to water molecule movement. However, recent studies have pointed out a wider range of substrates for these proteins as well as complex regulation levels and pathways. Although their relative abundance in plants and mammals makes it difficult to investigate the role of a particular AQP, the use of knock-out and mutagenesis techniques is now bringing important clues regarding the direct implication of specific AQPs in animal pathologies or plant deficiencies. The present paper gives an overview about AQP structure, function and regulation in a broad range of living organisms. Emphasis will be given on plant AQPs where the high number and diversity of these transport proteins, together with some emerging aspects of their functionalities, make them behave more like multifunctional, highly adapted channels rather than simple water pores.  相似文献   

8.
Aquaporins (AQPs) were originally identified as channels facilitating water transport across the plasma membrane. They have a pair of highly conserved signature sequences, asparagine-proline-alanine (NPA) boxes, to form a pore. However, some have little conserved amino acid sequences around the NPA boxes unclassifiable to two previous AQP subfamilies, classical AQPs and aquaglyceroporins. These will be called unorthodox AQPs in this review. Interestingly, these unorthodox AQPs have a highly conserved cysteine residue downstream of the second NPA box. AQPs also have a diversity of functions: some related to water transport such as fluid secretion, fluid absorption, and cell volume regulation, and the others not directly related to water transport such as cell adhesion, cell migration, cell proliferation, and cell differentiation. Some AQPs even permeate nonionic small molecules, ions, metals, and possibly gasses. AQP gene disruption studies have revealed their physiological roles: water transport in the kidney and exocrine glands, glycerol transport in fat metabolism and in skin moisture, and nutrient uptakes in plants. Furthermore, AQPs are also present at intracellular organelles, including tonoplasts, mitochondria, and the endoplasmic reticulum. This review focuses on the evolutionary aspects of AQPs from bacteria to humans in view of the structural and functional diversities of AQPs.  相似文献   

9.
Sterols are moved between cellular membranes by nonvesicular pathways whose functions are poorly understood. In yeast, one such pathway transfers sterols from the plasma membrane (PM) to the endoplasmic reticulum (ER). We show that this transport requires oxysterol-binding protein (OSBP)-related proteins (ORPs), which are a large family of conserved lipid-binding proteins. We demonstrate that a representative member of this family, Osh4p/Kes1p, specifically facilitates the nonvesicular transfer of cholesterol and ergosterol between membranes in vitro. In addition, Osh4p transfers sterols more rapidly between membranes containing phosphoinositides (PIPs), suggesting that PIPs regulate sterol transport by ORPs. We confirmed this by showing that PM to ER sterol transport slows dramatically in mutants with conditional defects in PIP biosynthesis. Our findings argue that ORPs move sterols among cellular compartments and that sterol transport and intracellular distribution are regulated by PIPs.  相似文献   

10.
干旱胁迫是严重影响全球作物生产的非生物胁迫之一,研究植物耐旱机制已成为一个重要领域。水通道蛋白是一类特异、高效转运水及其它小分子底物的膜通道蛋白,在植物中具有丰富的亚型,参与调节植物的水分吸收和运输。近10年来,水通道蛋白在植物不同生理过程中的作用,一直受到研究人员的关注,特别是在非生物胁迫方面,而研究表明水通道蛋白在干旱胁迫下对植物的耐旱性起着至关重要的作用,能维持细胞水分稳态和调控环境胁迫快速响应。水通道蛋白在植物耐旱过程中的调控机制及功能较复杂,而关于其应答机制和不同亚型功能性研究的报道甚少。该文综述了植物水通道蛋白的分类、结构、表达调控和活性调节,分别从植物水通道蛋白响应干旱表达调控机制、水通道蛋白基因表达的时空特异性、水通道蛋白基因的表达与蛋白丰度,水通道蛋白基因的耐旱转化四个方面阐明干旱胁迫下植物水通道蛋白的表达,重点阐述其参与植物干旱胁迫应答的作用机制,并提出水通道蛋白研究的主要方向。  相似文献   

11.
植物水通道蛋白生理功能的研究进展   总被引:1,自引:0,他引:1  
自1992年第一个水通道蛋白AQP1被人们认识以来,从植物中分离得到了大量AQPs基因。AQPs在植物体内形成选择性运输水及一些小分子溶质和气体的膜通道,参与介导多个植物生长发育的生理活动,如细胞伸长、气孔运动、种子发育、开花繁殖和逆境胁迫等。就植物水通道蛋白的生理功能进行概述。  相似文献   

12.
13.
Aquaporins (AQPs) are a family of channel proteins, which transport water and/or small solutes across cell membranes. AQPs are present in Bacteria, Eukarya, and Archaea. The classical AQP evolution paradigm explains the inconsistent phylogenetic trees by multiple transfer events and emphasizes that the assignment of orthologous AQPs is not possible, making it difficult to integrate functional information. Recently, a novel phylogenetic framework of eukaryotic AQP evolution showed congruence between eukaryotic AQPs and organismal trees identifying 32 orthologous clusters in plants and animals (Soto et al. Gene 503:165–176, 2012). In this article, we discuss in depth the methodological strength, the ability to predict functionality and the AQP community perception about the different paradigms of AQP evolution. Moreover, we show an updated review of AQPs transport functions in association with phylogenetic analyses. Finally, we discuss the possible effect of AQP data integration in the understanding of water and solute transport in eukaryotic cells.  相似文献   

14.
Fluid transport across epithelial and endothelial barriers occurs in the neonatal and adult lungs. Biophysical measurements in the intact lung and cell isolates have indicated that osmotic water permeability is exceptionally high across alveolar epithelia and endothelia and moderately high across airway epithelia. This review is focused on the role of membrane water-transporting proteins, the aquaporins (AQPs), in high lung water permeability and lung physiology. The lung expresses several AQPs: AQP1 in microvascular endothelia, AQP3 in large airways, AQP4 in large- and small-airway epithelia, and AQP5 in type I alveolar epithelial cells. Lung phenotype analysis of transgenic mice lacking each of these AQPs has been informative. Osmotically driven water permeability between the air space and capillary compartments is reduced approximately 10-fold by deletion of AQP1 or AQP5 and reduced even more by deletion of AQP1 and AQP4 or AQP1 and AQP5 together. AQP1 deletion greatly reduces osmotically driven water transport across alveolar capillaries but has only a minor effect on hydrostatic lung filtration, which primarily involves paracellular water movement. However, despite the major role of AQPs in lung osmotic water permeabilities, AQP deletion has little or no effect on physiologically important lung functions, such as alveolar fluid clearance in adult and neonatal lung, and edema accumulation after lung injury. Although AQPs play a major role in renal and central nervous system physiology, the data to date on AQP knockout mice do not support an important role of high lung water permeabilities or AQPs in lung physiology. However, there remain unresolved questions about possible non-water-transporting roles of AQPs and about the role of AQPs in airway physiology, pleural fluid dynamics, and edema after lung infection.  相似文献   

15.
Bound water is a major component of biological membranes and is required for the structural stability of the lipid bilayer. It has also been postulated that it is involved in water transport, membrane fusion, and mobility of membrane proteins and lipids. We have measured the fluorescence emission of membrane-bound 1-anilino-8-naphthalenesulfonate (ANS) and the infrared spectra of membranes, both as a function of hydration. ANS fluorescence is sensitive to polarity and fluidity of the membrane-aqueous interface, while infrared absorption is sensitive to the hydrogen bonding and vibrational motion of water and membrane proteins and lipids. The fluorescence results provide evidence of increasing rigidity and/or decreasing polarity of the membrane-aqueous interface with removal of water. The membrane infrared spectra show prominent hydration-dependent changes in a number of bands with possible assignments to cholesterol (vinyl CH bend, OH stretch), protein (amide A, II, V), and bound water (OH stretch). Further characterization of the bound water should allow its incorporation into current models of membrane structure and give insight into the role of membrane hydration in cell surface function.  相似文献   

16.
Cyanobacteria are unique eubacteria with an organized subcellular compartmentalization of highly differentiated internal thylakoid membranes (TM), in addition to the outer and plasma membranes (PM). This leads to a complicated system for transport and sorting of proteins into the different membranes and compartments. By shotgun and gel-based proteomics of plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803, a large number of membrane proteins were identified. Proteins localized uniquely in each membrane were used as a platform describing a model for cellular membrane organization and protein intermembrane sorting and were analyzed by multivariate sequence analyses to trace potential differences in sequence properties important for insertion and sorting to the correct membrane. Sequence traits in the C-terminal region, but not in the N-terminal nor in any individual transmembrane segments, were discriminatory between the TM and PM classes. The results are consistent with a contact zone between plasma and thylakoid membranes, which may contain short-lived "hemifusion" protein traffic connection assemblies. Insertion of both integral and peripheral membrane proteins is suggested to occur through common translocons in these subdomains, followed by a potential translation arrest and structure-based sorting into the correct membrane compartment.  相似文献   

17.
Bae EK  Lee H  Lee JS  Noh EW 《Gene》2011,483(1-2):43-48
Water uptake across cell membranes is a principal requirement for plant growth at both the cellular and whole-plant levels; water movement through plant membranes is regulated by aquaporins (AQPs) or major intrinsic proteins (MIPs). We examined the expression characteristics of the poplar plasma membrane intrinsic protein 1 gene (PatPIP1), a type of MIP, which was isolated from a suspension cell cDNA library of Populus alba×P. tremula var. glandulosa. Examination of protoplasts expressing the p35S-PatPIP1::sGFP fusion protein revealed that the protein was localized in the plasma membrane. Northern blot analysis revealed that the gene was strongly expressed in poplar roots and leaves. Gene expression was inducible by abiotic factors including drought, salinity, cold temperatures and wounding, and also by plant hormones including gibberellic acid, jasmonic acid and salicylic acid. Since we found that the PatPIP1 gene was strongly expressed in response to mannitol, NaCl, jasmonic acid and wounding, we propose that PatPIP1 plays an essential role in the defense of plants against water stress.  相似文献   

18.
The structural basis of water permeation and proton exclusion in aquaporins   总被引:2,自引:0,他引:2  
Fu D  Lu M 《Molecular membrane biology》2007,24(5-6):366-374
Aquaporins (AQPs) represent a ubiquitous class of integral membrane proteins that play critical roles in cellular osmoregulations in microbes, plants and mammals. AQPs primarily function as water-conducting channels, whereas members of a sub-class of AQPs, termed aquaglyceroporins, are permeable to small neutral solutes such as glycerol. While AQPs facilitate transmembrane permeation of water and/or small neutral solutes, they preclude the conduction of protons. Consequently, openings of AQP channels allow rapid water diffusion down an osmotic gradient without dissipating electrochemical potentials. Molecular structures of AQPs portray unique features that define the two central functions of AQP channels: effective water permeation and strict proton exclusion. This review describes AQP structures known to date and discusses the mechanisms underlying water permeation, proton exclusion and water permeability regulation.  相似文献   

19.
Aquaporins (AQPs) represent a ubiquitous class of integral membrane proteins that play critical roles in cellular osmoregulations in microbes, plants and mammals. AQPs primarily function as water-conducting channels, whereas members of a sub-class of AQPs, termed aquaglyceroporins, are permeable to small neutral solutes such as glycerol. While AQPs facilitate transmembrane permeation of water and/or small neutral solutes, they preclude the conduction of protons. Consequently, openings of AQP channels allow rapid water diffusion down an osmotic gradient without dissipating electrochemical potentials. Molecular structures of AQPs portray unique features that define the two central functions of AQP channels: effective water permeation and strict proton exclusion. This review describes AQP structures known to date and discusses the mechanisms underlying water permeation, proton exclusion and water permeability regulation.  相似文献   

20.
Aquaporins (AQPs) are intramolecular channels essential for transport of H2O, CO2, and other small substrates across membranes. Through this function, AQPs can modulate CO2 uptake and assimilation in plants and regulate water relations and many other physiological processes in all living organisms. To execute their physiological roles, AQPs may experience 3 types of hetero-molecular interaction, between AQPs and their kinases; between AQP isoforms; and between AQPs and other proteins that are neither AQPs nor kinases. Interacting with non-AQP non-kinase proteins may enable AQPs to extend their functions beyond substrate transport, and most fascinatingly, to serve as a gateway control for translocation of virulence effectors from pathogenic bacteria into the cytosol of eukaryotic cells. In this mini review, we will summarize the latter 2 types of interaction and discuss the physiological and/or pathological significance. We will also discuss a research angle to elucidate the structural basis of AQP-partnering protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号