首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Information about demographic history is essential for the understanding of the processes of divergence and speciation. Patterns of genetic variation within and between closely related species provide insights into the history of their interactions. Here, we investigated historical demography and genetic exchange between the Carpathian (Lissotriton montandoni, Lm) and smooth (L. vulgaris, Lv) newts. We combine an extensive geographical sampling and multilocus nuclear sequence data with the approximate Bayesian computation framework to test alternative scenarios of divergence and reconstruct the temporal and spatial pattern of gene flow between species. A model of recent (last glacial period) interspecific gene flow was favoured over alternative models. Thus, despite the relatively old divergence (4–6 mya) and presumably long periods of isolation, the species have retained the ability to exchange genes. Nevertheless, the low migration rates (ca. 10?6 per gene copy per generation) are consistent with strong reproductive isolation between the species. Models allowing demographic changes were favoured, suggesting that the effective population sizes of both species at least doubled as divergence reaching the current ca. 0.2 million in Lm and 1 million in Lv. We found asymmetry in rates of interspecific gene flow between Lm and one evolutionary lineage of Lv. We suggest that intraspecific polymorphism for hybrid incompatibilities segregating within Lv could explain this pattern and propose further tests to distinguish between alternative explanations. Our study highlights the importance of incorporating intraspecific genetic structure into the models investigating the history of divergence.  相似文献   

2.
Hispaniola is a geotectonically complex island consisting of two palaeo-islands that docked c. 10 Ma, with a further geological boundary subdividing the southern palaeo-island into eastern and western regions. All three regions have been isolated by marine barriers during the late Cenozoic and possess biogeographically distinct terrestrial biotas. However, there is currently little evidence to indicate whether Hispaniolan mammals show distributional patterns reflecting this geotectonic history, as the island's endemic land mammal fauna is now almost entirely extinct. We obtained samples of Hispaniolan hutia (Plagiodontia aedium), one of the two surviving Hispaniolan land mammal species, through fieldwork and historical museum collections from seven localities distributed across all three of the island's biogeographic regions. Phylogenetic analysis using mitochondrial DNA (cytochrome b) reveals a pattern of historical allopatric lineage divergence in this species, with the spatial distribution of three distinct hutia lineages biogeographically consistent with the island's geotectonic history. Coalescent modelling, approximate Bayesian computation and approximate Bayes factor analyses support our phylogenetic inferences, indicating near-complete genetic isolation of these biogeographically separate populations and differing estimates of their effective population sizes. Spatial congruence of hutia lineage divergence is not however matched by temporal congruence with divergences in other Hispaniolan taxa or major events in Hispaniola's geotectonic history; divergence between northern and southern hutia lineages dates to c. 0.6 Ma, significantly later than the unification of the palaeo-islands. The three allopatric Plagiodontia populations should all be treated as distinct management units for conservation, with particular attention required for the northern population (low haplotype diversity) and the south-western population (high haplotype diversity but highly threatened).  相似文献   

3.
Geographic isolation in rainforest refugia and local adaptation to ecological gradients may both be important drivers of evolutionary diversification. However, their relative importance and the underlying mechanisms of these processes remain poorly understood because few empirical studies address both putative processes in a single system. A key question is to what extent is divergence in signals that are important in mate and species recognition driven by isolation in rainforest refugia or by divergent selection across ecological gradients? We studied the little greenbul, Andropadus virens, an African songbird, in Cameroon and Uganda, to determine whether refugial isolation or ecological gradients better explain existing song variation. We then tested whether song variation attributable to refugial or ecological divergence was biologically meaningful using reciprocal playback experiments to territorial males. We found that much of the existing song variation can be explained by both geographic isolation and ecological gradients, but that divergence across the gradient, and not geographic isolation, affects male response levels. These data suggest that ecologically divergent traits, independent of historical isolation during glacial cycles, can promote reproductive isolation. Our study provides further support for the importance of ecology in explaining patterns of evolutionary diversification in ecologically diverse regions of the planet.  相似文献   

4.
Demography impacts the observed standing level of genetic diversity present in populations. Distinguishing the relative impacts of demography from selection requires a baseline of expressed gene variation in naturally occurring populations. Six nuclear genes were sequenced to estimate the patterns and levels of genetic diversity in natural Arabidopsis lyrata subsp. petraea populations that differ in demographic histories since the Pleistocene. As expected, northern European populations have genetic signatures of a strong population bottleneck likely due to glaciation during the Pleistocene. Levels of diversity in the northern populations are about half of that in central European populations. Bayesian estimates of historical population size changes indicate that central European populations also have signatures of population size change since the last glacial maxima, suggesting that these populations are not as stable as previously thought. Time since divergence amongst northern European populations is higher than amongst central European populations, suggesting that the northern European populations were established before the Pleistocene and survived glaciation in small separated refugia. Estimates of demography based on expressed genes are complementary to estimates based on microsatellites and transposable elements, elucidating temporal shifts in population dynamics and confirming the importance of marker selection for tests of demography.  相似文献   

5.
Understanding the biotic consequences of Pleistocene range shifts and fragmentation remains a fundamental goal in historical biogeography and evolutionary biology. Here, we combine species distribution models (SDM) from the present and two late Quaternary time periods with multilocus genetic data (mitochondrial DNA and microsatellites) to evaluate the effect of climate‐induced habitat shifts on population genetic structure in the Large‐blotched Ensatina (Ensatina eschscholtzii klauberi), a plethodontid salamander endemic to middle and high‐elevation conifer forest in the Transverse and Peninsular Ranges of southern California and northern Baja California. A composite SDM representing the range through time predicts two disjunct refugia, one in southern California encompassing the core of the species range and the other in the Sierra San Pedro Mártir of northern Baja California at the southern limit of the species range. Based on our spatial model, we would expect a pattern of high connectivity among populations within the northern refugium and, conversely, a pattern of isolation due to long‐term persistence of the Sierra San Pedro Mártir population. Our genetic results are consistent with these predictions based on the hypothetical refugia in that (i) historical measures of population connectivity among stable areas are correlated with gene flow estimates; and (ii) there is strong geographical structure between separate refugia. These results provide evidence for the role of recent climatic change in shaping patterns of population persistence and connectivity within the Transverse and Peninsular Ranges, an evolutionary hotspot.  相似文献   

6.
Geographic patterns of genetic variation are strongly influenced by historical changes in species habitats. Whether such patterns are common to co‐distributed taxa may depend on the extent to which species vary in ecology and vagility. We investigated whether broad‐scale phylogeographic patterns common to a number of small‐bodied vertebrate and invertebrate species in eastern Australian forests were reflected in the population genetic structure of an Australo‐Papuan forest marsupial, the red‐legged pademelon (Macropodidae: Thylogale stigmatica). Strong genetic structuring of mtDNA haplotypes indicated the persistence of T. stigmatica populations across eastern Australia and southern New Guinea in Pleistocene refugial areas consistent with those inferred from studies of smaller, poorly dispersing species. However, there was limited divergence of haplotypes across two known historical barriers in the northeastern Wet Tropics (Black Mountain Barrier) and coastal mideastern Queensland (Burdekin Gap) regions. Lack of divergence across these barriers may reflect post‐glacial recolonization of forests from a large, central refugium in the Wet Tropics. Additionally, genetic structure is not consistent with the present delimitation of subspecies T. s. wilcoxi and T. s. stigmatica across the Burdekin Gap. Instead, the genetic division occurs further to the south in mideastern Queensland. Thus, while larger‐bodied marsupials such as T. stigmatica did persist in Pleistocene refugia common to a number of other forest‐restricted species, species‐specific local extinction and recolonization events have resulted in cryptic patterns of genetic variation. Our study demonstrates the importance of understanding individualistic responses to historical climate change in order to adequately conserve genetic diversity and the evolutionary potential of species.  相似文献   

7.
The accumulation of biodiversity in tropical forests can occur through multiple allopatric and parapatric models of diversification, including forest refugia, riverine barriers and ecological gradients. Considerable debate surrounds the major diversification process, particularly in the West African Lower Guinea forests, which contain a complex geographic arrangement of topographic features and historical refugia. We used genomic data to investigate alternative mechanisms of diversification in the Gaboon forest frog, Scotobleps gabonicus, by first identifying population structure and then performing demographic model selection and spatially explicit analyses. We found that a majority of population divergences are best explained by allopatric models consistent with the forest refugia hypothesis and involve divergence in isolation with subsequent expansion and gene flow. These population divergences occurred simultaneously and conform to predictions based on climatically stable regions inferred through ecological niche modelling. Although forest refugia played a prominent role in the intraspecific diversification of S. gabonicus, we also find evidence for potential interactions between landscape features and historical refugia, including major rivers and elevational barriers such as the Cameroonian Volcanic Line. We outline the advantages of using genomewide variation in a model‐testing framework to distinguish between alternative allopatric hypotheses, and the pitfalls of limited geographic and molecular sampling. Although phylogeographic patterns are often species‐specific and related to life‐history traits, additional comparative studies incorporating genomic data are necessary for separating shared historical processes from idiosyncratic responses to environmental, climatic and geological influences on diversification.  相似文献   

8.
Aim Glacial refugia during the Pleistocene had major impacts on the levels and spatial apportionment of genetic diversity of species in northern latitude ecosystems. We characterized patterns of population subdivision, and tested hypotheses associated with locations of potential Pleistocene refugia and the relative contribution of these refugia to the post‐glacial colonization of North America and Scandinavia by common eiders (Somateria mollissima). Specifically, we evaluated localities hypothesized as ice‐free areas or glacial refugia for other Arctic vertebrates, including Beringia, the High Arctic Canadian Archipelago, Newfoundland Bank, Spitsbergen Bank and north‐west Norway. Location Alaska, Canada, Norway and Sweden. Methods Molecular data from 12 microsatellite loci, the mitochondrial DNA (mtDNA) control region, and two nuclear introns were collected and analysed for 15 populations of common eiders (n = 716) breeding throughout North America and Scandinavia. Population genetic structure, historical population fluctuations and gene flow were inferred using F‐statistics, analyses of molecular variance, and multilocus coalescent analyses. Results Significant inter‐population variation in allelic and haplotypic frequencies were observed (nuclear DNA FST = 0.004–0.290; mtDNA ΦST = 0.051–0.927). Whereas spatial differentiation in nuclear genes was concordant with subspecific designations, geographic proximity was more predictive of inter‐population variance in mitochondrial DNA haplotype frequency. Inferences of historical population demography were consistent with restriction of common eiders to four geographic areas during the Last Glacial Maximum: Belcher Islands, Newfoundland Bank, northern Alaska and Svalbard. Three of these areas coincide with previously identified glacial refugia: Newfoundland Bank, Beringia and Spitsbergen Bank. Gene‐flow and clustering analyses indicated that the Beringian refugium contributed little to common eider post‐glacial colonization of North America, whereas Canadian, Scandinavian and southern Alaskan post‐glacial colonization is likely to have occurred in a stepwise fashion from the same glacial refugium. Main conclusions Concordance of proposed glacial refugia used by common eiders and other Arctic species indicates that Arctic and subarctic refugia were important reservoirs of genetic diversity during the Pleistocene. Furthermore, suture zones identified at MacKenzie River, western Alaska/Aleutians and Scandinavia coincide with those identified for other Arctic vertebrates, suggesting that these regions were strong geographic barriers limiting dispersal from Pleistocene refugia.  相似文献   

9.
Parallel phenotypic differentiation is generally attributed to parallel adaptive divergence as an evolutionary response to similar environmental contrasts. Such parallelism may actually originate from several evolutionary scenarios ranging from repeated parallel divergence caused by divergent selection to a unique divergence event followed by gene flow. Reconstructing the evolutionary history underlying parallel phenotypic differentiation is thus fundamental to understand the relative contribution of demography and selection on genomic divergence during speciation. In this study, we investigate the divergence history of replicate European whitefish (Coregonus lavaretus), limnetic and benthic species pairs from two lakes in Norway and two lakes in Switzerland. Demographic models accounting for semi‐permeability and linked selection were fitted to the unfolded joint allele frequency spectrum built from genome‐wide SNPs and compared to each other in each species pair. We found strong support for a model of asymmetrical post‐glacial secondary contact between glacial lineages in all four lakes. Moreover, our results suggest that heterogeneous genomic differentiation has been shaped by the joint action of linked selection accelerating lineage sorting during allopatry, and heterogeneous migration eroding divergence at different rates along the genome following secondary contact. Our analyses reveal how the interplay between demography, selection and historical contingency has influenced the levels of diversity observed in previous whitefish phylogeographic studies. This study thus provides new insights into the historical demographic and selective processes that shaped the divergence associated with ecological speciation in European whitefish.  相似文献   

10.
Comparative studies of sympatric species that integrate both phylogeographical and population genetic approaches provide insight into how demographic events and life history traits shape adaptive potential and drive species persistence. Such studies are rare for species‐rich and strongly structured environments, especially those of the southern hemisphere. For two sympatric, perennial shrubs of the south‐west Western Australian semi‐arid zone, Grevillea globosa and Mirbelia sp. Bursarioides, we assessed historical and contemporary genetic diversity and structure, demographic processes and ratios of pollen to seed dispersal. Phylogeographical structure was not detected and haplotype networks were star‐like. Number of haplotypes, nucleotide diversity, haplotype diversity, and allelic diversity were statistically significantly lower for G. globosa than for M. sp. Bursarioides. Levels of haplotype divergence and more contemporary genetic divergence and expected heterozygosity were lower for G. globosa than for M. sp. Bursarioides, but differences were not statistically significant. Both species exhibited signals of isolation by distance and low pollen to seed dispersal ratios (5.26:1 and 6.88:1). Grevillea globosa displayed signals of historical and contemporary demographic expansion. Results imply an important role for aspects of seed ecology that impact population demography, as well as direct dispersal and a significant contribution of seed dispersal to genetic connectivity in a semi‐arid landscape.  相似文献   

11.
Of 12 potential reproductive isolating barriers between closely related Z‐ and E‐pheromone strains of the European corn borer moth (Ostrinia nubilalis), seven significantly reduced gene flow but none were complete, suggesting that speciation in this lineage is a gradual process in which multiple barriers of intermediate strength accumulate. Estimation of the cumulative effect of all barriers resulted in nearly complete isolation (>99%), but geographic variation in seasonal isolation allowed as much as ~10% gene flow. With the strongest barriers arising from mate‐selection behavior or ecologically relevant traits, sexual and natural selection are the most likely evolutionary processes driving population divergence. A recent multilocus genealogical study corroborates the roles of selection and gene flow ( Dopman et al. 2005 ), because introgression is supported at all loci besides Tpi, a sex‐linked gene. Tpi reveals strains as exclusive groups, possesses signatures of selection, and is tightly linked to a QTL that contributes to seasonal isolation. With more than 98% of total cumulative isolation consisting of prezygotic barriers, Z and E strains of ECB join a growing list of taxa in which species boundaries are primarily maintained by the prevention of hybridization, possibly because premating barriers evolve during early stages of population divergence.  相似文献   

12.
Understanding the remarkably high species diversity and levels of endemism found among Madagascar’s flora and fauna has been the focus of many studies. One hypothesis that has received much attention proposes that Quaternary climate fluctuations spurred diversification. While spatial patterns of distribution and phylogenetic relationships can provide support for biogeographic predictions, temporal estimates of divergence are required to determine the fit of these geospatial patterns to climatic or biogeographic mechanisms. We use multilocus DNA sequence data to test whether divergence times among Malagasy iguanid lizards of the subfamily Oplurinae are compatible with a hypotheses of Pliocene–Pleistocene diversification. We estimate the oplurine species tree and associated divergence times under a relaxed‐clock model. In addition, we examine the phylogeographic structure and population divergence times within two sister species of Oplurus primarily distributed in the north‐west and south‐west of Madagascar (Oplurus cuvieri and Oplurus cyclurus, respectively). We find that divergence events among oplurine lineages occurred in the Oligocene and Miocene and are thus far older and incompatible with the hypothesis that recent climate fluctuations are related to current species diversity. However, the timing of intraspecific divergences and spatial patterns of population genetic structure within O. cuvieri and O. cyclurus suggest a role for both intrinsic barriers and recent climate fluctuations at population‐level divergences. Integrating information across spatial and temporal scales allows us to identify and better understand the mechanisms generating patterns diversity.  相似文献   

13.
Aim East Africa is one of the most biologically diverse regions, especially in terms of endemism and species richness. Hypotheses put forward to explain this high diversity invoke a role for forest refugia through: (1) accumulation of new species due to radiation within refugial habitats, or (2) retention of older palaeoendemic species in stable refugia. We tested these alternative hypotheses using data for a diverse genus of East African forest chameleons, Kinyongia. Location East Africa. Methods We constructed a dated phylogeny for Kinyongia using one nuclear and two mitochondrial markers. We identified areas of high phylogenetic diversity (PD) and evolutionary diversity (ED), and mapped ancestral areas to ascertain whether lineage diversification could best be explained by vicariance or dispersal. Results Vicariance best explains the present biogeographic patterns, with divergence between three major Kinyongia clades (Albertine Rift, southern Eastern Arc, northern Eastern Arc) in the early Miocene/Oligocene (> 20 Ma). Lineage diversification within these clades pre‐dates the Pliocene (> 6 Ma). These dates are much older than the Plio‐Pleistocene climatic shifts associated with cladogenesis in other East African taxa (e.g. birds), and instead point to a scenario whereby palaeoendemics are retained in refugia, rather than more recent radiations within refugia. Estimates of PD show that diversity was highest in the Uluguru, Nguru and East Usambara Mountains and several lineages (from Mount Kenya, South Pare and the Uluguru Mountains) stand out as being evolutionarily distinct as a result of isolation in forest refugia. PD was lower than expected by chance, suggesting that the phylogenetic signal is influenced by an unusually low number of extant lineages with long branch lengths, which is probably due to the retention of palaeoendemic lineages. Main conclusions The biogeographic patterns associated with Kinyongia are the result of long evolutionary histories in isolation. The phylogeny is dominated by ancient lineages whose origins date back to the early Miocene/Oligocene as a result of continental wide forest fragmentation and contraction due to long term climatic changes in Africa. The maintenance of palaeoendemic lineages in refugia has contributed substantially to the remarkably high biodiversity of East Africa.  相似文献   

14.
Inferring past demography is a central question in evolutionary and conservation biology. It is, however, sometimes challenging to infer the processes that shaped the current patterns of genetic variation in endangered species. Population substructuring can occur as a result of survival in several isolated refugia and subsequent recolonization processes or via genetic drift following a population decline. The kea (Nestor notabilis) is an endemic parrot widely distributed in the mountains of the South Island of New Zealand that has gone through a major human‐induced population decline during the 1860s–1970s. The aims of this study were to understand the glacial and postglacial history of kea and to determine whether the recent population decline played a role in the shaping of the current genetic variation. We examined the distribution of genetic variation, differentiation and admixture in kea using 17 microsatellites and the mitochondrial control region. Mitochondrial data showed a shallow phylogeny and a genetic distinction between the North and South of the range consistent with the three genetic clusters identified with microsatellite data. Both marker types indicated an increase in genetic isolation by geographic distance. Approximate Bayesian Computation supported a scenario of postglacial divergence from a single ancestral glacial refugium, suggesting that the contemporary genetic structure has resulted from recolonization processes rather than from a recent population decline. The recent evolutionary origin of this genetic structure suggests that each genetic cluster does not need to be considered as independent conservation units.  相似文献   

15.
Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes.  相似文献   

16.
Exact location and number of glacial refugia still remain unclear for many European cold‐blooded terrestrial vertebrates. We performed a fine‐scaled multilocus phylogeographic analysis of two Bombina species combining mitochondrial variation of 950 toads from 385 sites and nuclear genes (Rag‐1, Ncx‐1) from a subset of samples to reconstruct their colonization and contemporary variation patterns. We identified the lowlands northwest of the Black Sea and the Carpathians to be important refugial areas for B. bombina and B. variegata, respectively. This result emphasizes the importance of Central European refugia for ectothermic terrestrial species, far north of the Mediterranean areas regarded as exclusive glacial refugia for the animals. Additional refugia for B. variegata have been located in the southern Apennines and Balkans. In contrast, no evidence for the importance of other east European plains as refugial regions has been found. The distribution of mtDNA and Ncx‐1 variation suggests the presence of local refugia near the Black Sea for B. bombina; however, coalescent simulations did not allow to distinguish whether one or two refugia were present in the region. Strong genetic drift apparently accompanied postglacial expansions reducing diversity in the colonization areas. Extended sampling, coupled with the multilocus isolation with migration analysis, revealed a limited and geographically restricted gene flow from the Balkan to Carpathian populations of B. variegata. However, despite proximity of inferred B. bombina and B. variegata refugia, gene exchange between them was not detected.  相似文献   

17.
Past climate changes often have influenced the present distribution and intraspecific genetic diversity of organisms. The objective of this study was to investigate the phylogeography and historical demography of populations of Acromyrmex striatus (Roger, 1863), a leaf-cutting ant species restricted to the open plains of South America. Additionally, we modeled the distribution of this species to predict its contemporary and historic habitat. From the partial sequences of the mitochondrial gene cytochrome oxidase I of 128 A. striatus workers from 38 locations we estimated genetic diversity and inferred historical demography, divergence time, and population structure. The potential distribution areas of A. striatus for current and quaternary weather conditions were modeled using the maximum entropy algorithm. We identified a total of 58 haplotypes, divided into five main haplogroups. The analysis of molecular variance (AMOVA) revealed that the largest proportion of genetic variation is found among the groups of populations. Paleodistribution models suggest that the potential habitat of A. striatus may have decreased during the Last Interglacial Period (LIG) and expanded during the Last Maximum Glacial (LGM). Overall, the past potential distribution recovered by the model comprises the current potential distribution of the species. The general structuring pattern observed was consistent with isolation by distance, suggesting a balance between gene flow and drift. Analysis of historical demography showed that populations of A. striatus had remained constant throughout its evolutionary history. Although fluctuations in the area of their potential historic habitat occurred during quaternary climate changes, populations of A. striatus are strongly structured geographically. However, explicit barriers to gene flow have not been identified. These findings closely match those in Mycetophylax simplex, another ant species that in some areas occurs in sympatry with A. striatus. Ecophysiological traits of this species and isolation by distance may together have shaped the phylogeographic pattern.  相似文献   

18.
Molecular studies have demonstrated a deep lineage split between the two gorilla species, as well as divisions within these taxa; estimates place this divergence in the mid-Pleistocene, with gene flow continuing until approximately 80,000 years ago. Here, we present analyses of skeletal data indicating the presence of substantial recent gene flow among gorillas at all taxonomic levels: between populations, subspecies, and species. Complementary analyses of DNA sequence variation suggest that low-level migration occurred primarily in a westerly-to-easterly direction. In western gorillas, the locations of hybrid phenotypes map closely to expectations based on population refugia and riverine barrier hypotheses, supporting the presence of significant vicariance-driven structuring and occasional admixture within this taxon. In eastern lowland gorillas, the high frequency of hybrid phenotypes is surprising, suggesting that this region represents a zone of introgression between eastern gorillas and migrants from the west, and underscoring the conservation priority of this critically endangered group. These results highlight the complex nature of evolutionary divergence in this genus, indicate that historical gene flow has played a major role in structuring gorilla diversity, and demonstrate that our understanding of the evolutionary processes responsible for shaping biodiversity can benefit immensely from consideration of morphological and molecular data in conjunction.  相似文献   

19.
The landscape of the Pilbara region of Western Australia has been relatively unchanged for 100 million years. The ancient river systems of this region might be expected to be sources of isolation and divergence for aquatic species. Hence, the occurrence of widespread groundwater taxa in this landscape offers the opportunity to examine associations between genetic diversity and drainage patterns. Pilbarus and Chydaekata are two widespread genera of subterranean amphipods endemic to the Pilbara, each occupying multiple tributaries. We used molecular data to examine the roles of drainage patterns in structuring genetic diversity. Gene flow within a tributary may be facilitated by the occasional occurrence of these amphipods in springs, which results in their downstream dispersal during episodic flooding. However, tributary boundaries may form hydrological barriers to gene flow, resulting in localised isolation of populations and divergence. Samples of both genera, collected throughout three river basins, were examined for sequence divergence in the cytochrome c oxidase I mitochondrial gene. There was no evidence of contemporary gene flow among populations of either genus, and each tributary contained highly divergent lineages, which were not associated with similar morphological differentiation. This suggests cryptic speciation has occurred, and similar phylogenetic signals in both taxa imply similar evolutionary histories. Surface populations may have been driven into subterranean refugia by the cessation of flow in the rivers, associated with Tertiary climate change, while morphological evolution may have been constrained by stabilising selection. The lack of congruence between molecular diversity and morphology raises important practical issues for conservation.  相似文献   

20.
Understanding the factors that contribute to the generation of reproductively isolated forms is a fundamental goal of evolutionary biology. Cryptic species are an especially interesting challenge to study in this context since they lack obvious morphological differentiation that provides clues to adaptive divergence that may drive reproductive isolation. Geographical isolation in refugial areas during glacial cycling is known to be important for generating genetically divergent populations, but its role in the origination of new species is still not fully understood and likely to be situation dependent. We combine analysis of 35,434 single‐nucleotide polymorphisms (SNPs) with environmental niche modeling (ENM) to investigate genomic and ecological divergence in three cryptic species formerly classified as the field vole (Microtus agrestis). The SNPs demonstrate high genomic divergence (pairwise FST values of 0.45–0.72) and little evidence of gene flow among the three field vole cryptic species, and we argue that genetic drift may have been a particularly important mechanism for divergence in the group. The ENM reveals three areas as potential glacial refugia for the cryptic species and differing climatic niches, although with spatial overlap between species pairs. This evidence underscores the role that glacial cycling has in promoting genetic differentiation and reproductive isolation by subdivision into disjunct distributions at glacial maxima in areas relatively close to ice sheets. Future investigation of the intrinsic barriers to gene flow between the field vole cryptic species is required to fully assess the mechanisms that contribute to reproductive isolation. In addition, the Portuguese field vole (M. rozianus) shows a high inbreeding coefficient and a restricted climatic niche, and warrants investigation into its conservation status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号