首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Ca2+ applied in high concentrations (50 and 300 µM) was addressed on the generation of reactive oxygen species in isolated mitochondria from guinea-pig brain. The experiments were performed in the presence of ADP, a very effective inhibitor of mitochondrial permeability transition. Moderate increase in H2O2 release from mitochondria was induced by Ca2+ applied in 50 µM, but not in 300 µM concentration as measured with Amplex red fluorescent assay starting with a delay of 100-150 sec after exposure to Ca2+. Parallel measurements of membrane potential (ΔΨm) by safranine fluorescence showed a transient depolarization by Ca2+ followed by the recovery of ΔΨm to a value, which was more negative than that observed before addition of Ca2+ indicating a relative hyperpolarization. NAD(P)H fluorescence was also increased by Ca2+ given in 50 µM concentration. In mitochondria having high ΔΨm in the presence of oligomycin or ATP, the basal rate of release of H2O2 was significantly higher than that observed in a medium containing ADP and Ca2+ no longer increased but rather decreased the rate of H2O2 release. With 300 µM Ca2+ only a loss but no tendency of a recovery of ΔΨm was detected and H2O2 release was unchanged. It is suggested that in the presence of nucleotides the effect of Ca2+ on mitochondrial ROS release is related to changes in ΔΨm; in depolarized mitochondria, in the presence of ADP, moderate increase in H2O2 release is induced by calcium, but only in ≤ 100 µM concentration, when after a transient Ca2+-induced depolarization mitochondria became more polarized. In highly polarized mitochondria, in the presence of ATP or oligomycin, where no hyperpolarization follows the Ca2+-induced depolarization, Ca2+ fails to stimulate mitochondrial ROS generation. These effects of calcium (≤ 300 µM) are unrelated to mitochondrial permeability transition.  相似文献   

2.
Intracellular Ca2 + levels are tightly regulated in the neuronal system. The loss of Ca2 + homeostasis is associated with many neurological diseases and neuropsychiatric disorders such as Parkinson's, Alzheimer's, and schizophrenia. We investigated the mechanisms involved in intracellular Ca2 + signaling in PC-12 cells. The stimulation of NGF-differentiated PC-12 cells with 3 μM ATP caused an early Ca2 + release followed by a delayed Ca2 + release. The delayed Ca2 + release was dependent on prior ATP priming and on dopamine secretion by PC-12 cells. Delayed Ca2 + release was abolished in the presence of spiperone, suggesting that it is due to the activation of D2 dopamine receptors (D2R) by dopamine secreted by PC-12 cells. This was shown to be independent of PKA activation but dependent on PLC activity. An endocytosis step was required for inducing the delayed Ca2 + release. Given the importance of calcyon in clathrin-mediated endocytosis, we verified the role of this protein in the delayed Ca2 + release phenomenon. siRNA targeting of calcyon blocked the delayed Ca2 + release, decreased ATP-evoked IP3R-mediated Ca2 + release, and impaired subsequent Ca2 + oscillations. Our results suggested that calcyon is involved in an unknown mechanism that causes a delayed IP3R-mediated Ca2 + release in PC-12 cells. In schizophrenia, Ca2 + dysregulation may depend on the upregulation of calcyon, which maintains elevated Ca2 + levels as well as dopamine signaling.  相似文献   

3.
《Phytomedicine》2013,21(14):1272-1279
This study aimed to investigate the effect of magnolol (5,5′-diallyl-2,2′-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca2+ currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3–100 μM). In the presence of Bay K8644 (100 nM), magnolol (10–100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-l-arginine methyl ester (l-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3–100 μM) inhibited the L-type Ca2+ currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca2+ channel activity.  相似文献   

4.
Mitochondrial Ca2+ activates many processes, from mitochondrial metabolism to opening of the permeability transition pore (PTP) and apoptosis. However, there is considerable controversy regarding the free mitochondrial [Ca2+] ([Ca2+]M) levels that can be attained during cell activation or even in mitochondrial preparations. Studies using fluorescent dyes (rhod-2 or similar), have reported that phosphate precipitation precludes [Ca2+]M from increasing above 2–3 μM. Instead, using low-Ca2+-affinity aequorin probes, we have measured [Ca2+]M values more than two orders of magnitude higher. We confirm here these values by making a direct in situ calibration of mitochondrial aequorin, and we show that a prolonged increase in [Ca2+]M to levels of 0.5–1 mM was actually observed at any phosphate concentration (0–10 mM) during continuous perfusion of 3.5–100 μM Ca2+-buffers. In spite of this high and maintained (>10 min) [Ca2+]M, mitochondria retained functionality and the [Ca2+]M drop induced by a protonophore was fully reversible. In addition, this high [Ca2+]M did not induce PTP opening unless additional activators (phenyl arsine oxide, PAO) were present. PAO induced a rapid, concentration-dependent and irreversible drop in [Ca2+]M. In conclusion [Ca2+]M levels of 0.5–1 mM can be reached and maintained for prolonged periods (>10 min) in phosphate-containing medium, and massive opening of PTP requires additional pore activators.  相似文献   

5.
AimsThis study investigates the actions of KMUP-1 on RhoA/Rho-kinase (ROCK)-dependent Ca2+ sensitization and the K+-channel in chronic pulmonary arterial hypertension (PAH) rats.Main methodsSprague–Dawley rats were divided into control, monocrotaline (MCT), and MCT + KMUP-1 groups. PAH was induced by a single intraperitoneal injection (i.p.) of MCT (60 mg/kg). KMUP-1 (5 mg/kg, i.p.) was administered once daily for 21 days to prevent MCT-induced PAH. All rats were sacrificed on day 22.Key findingsMCT-induced increased right ventricular systolic pressure (RVSP) and right ventricular hypertrophy were prevented by KMUP-1. In myograph experiments, KCl (80 mM), phenylephrine (10 µM) and K+ channel inhibitors (TEA, 10 mM; paxilline, 10 µM; 4-AP, 5 mM) induced weak PA contractions in MCT-treated rats compared to controls, but the PA reactivity was restored in MCT + KMUP-1-treated rats. By contrast, in β-escin- or α-toxin-permeabilized PAs, CaCl2-induced (1.25 mM, pCa 5.1) contractions were stronger in MCT-treated rats, and this action was suppressed in MCT + KMUP-1-treated rats. PA relaxation in response to the ROCK inhibitor Y27632 (0.1 μM) was much higher in MCT-treated rats than in control rats. In Western blot analysis, the expression of Ca2+-activated K+ (BKCa) and voltage-gated K+ channels (Kv2.1 and Kv1.5), and ROCK II proteins was elevated in MCT-treated rats and suppressed in MCT + KMUP-1-treated rats. We suggest that MCT-treated rats upregulate K+-channel proteins to adapt to chronic PAH.SignificanceKMUP-1 protects against PAH and restores PA vessel tone in MCT-treated rats, attributed to alteration of Ca2+ sensitivity and K+-channel function.  相似文献   

6.
The goal of this study was to evaluate the potential involvement of melatonin in the activation of the nuclear factor erythroid 2-related factor 2 and antioxidant-responsive element (Nrf2–ARE) signaling pathway and the modulation of antioxidant enzyme activity in an experimental model of traumatic brain injury (TBI). In experiment 1, ICR mice were divided into four groups: sham group, TBI group, TBI + vehicle group, and TBI + melatonin group (n = 38 per group). Melatonin (10 mg/kg) was administered via an intraperitoneal (ip) injection at 0, 1, 2, 3, and 4 h post-TBI. In experiment 2, Nrf2 wild-type (Nrf2+/+ group) and Nrf2-knockout (Nrf2−/− group) mice received a TBI insult followed by melatonin administration (10 mg/kg, ip) at the corresponding time points (n = 35 per group). The administration of melatonin after TBI significantly ameliorated the effects of the brain injury, such as oxidative stress, brain edema, and cortical neuronal degeneration. Melatonin markedly promoted the translocation of Nrf2 protein from the cytoplasm to the nucleus; increased the expression of Nrf2–ARE pathway-related downstream factors, including heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1; and prevented the decline of antioxidant enzyme activities, including superoxide dismutase and glutathione peroxidase. Furthermore, knockout of Nrf2 partly reversed the neuroprotection of melatonin after TBI. In conclusion, melatonin administration may increase the activity of antioxidant enzymes and attenuate brain injury in a TBI model, potentially via mediation of the Nrf2–ARE pathway.  相似文献   

7.
Chen L  Meng Q  Yu X  Li C  Zhang C  Cui C  Luo D 《Cellular signalling》2012,24(8):1565-1572
Arachidonic acid (AA), an endogenous lipid signal molecule released from membrane upon cell activation, modulates intracellular Ca2 + ([Ca2 +]i) signaling positively and negatively. However, the mechanisms underlying the biphasic effects of AA are rather obscure. Using probes for measurements of [Ca2 +]i and fluidity of plasma membrane (PM)/endoplasmic reticulum (ER), immunostaining, immunoblotting and shRNA interference approaches, we found that AA at low concentration, 3 μM, reduced the PM fluidity by activating PKCα and PKCβII translocation to PM and also the ER fluidity directly. In accordance, 3 μM AA did not impact the basal [Ca2 +]i but significantly suppressed the thapsigargin-induced Ca2 + release and Ca2 + influx. Inhibition of PKC with Gö6983 or knockdown of PKCα or PKCβ using shRNA significantly attenuated the inhibitory effects of 3 μM AA on PM fluidity and agonist-induced Ca2 + signal. However, AA at high concentration, 30 μM, caused robust release and entry of Ca2 + accompanied by a facilitated PM fluidity but decreased ER fluidity and dramatic PKCβI and PKCβII redistribution in the ER. Compared with ursodeoxycholate acid, a membrane stabilizing agent that only inhibited the 30 μM AA-induced Ca2 + influx by 45%, Gd3 + at concentration of 10 μM could completely abolish both release and entry of Ca2 + induced by AA, suggesting that the potentiated PM fluidity is not the only reason for AA eliciting Ca2 + signal. Therefore, the study herein demonstrates that a lowered PM fluidity by PKC activation and a direct ER stabilization contribute significantly for AA downregulation of [Ca2 +]i response, while Gd3 +-sensitive ‘pores’ in PM/ER play an important role in AA-induced Ca2 + signal in HEK293 cells.  相似文献   

8.
In the present study, the isolated cricket (Gryllus bimaculatus) lateral oviduct exhibited spontaneous rhythmic contractions (SRCs) with a frequency of 0.29 ± 0.009 Hz (n = 43) and an amplitude of 14.6 ± 1.25 mg (n = 29). SRCs completely disappeared following removal of extracellular Ca2+ using a solution containing 5 mM EGTA. Application of the non-specific Ca2+ channel blockers Co2+, Ni2+, and Cd2+ also decreased both the frequency and amplitude of SRCs in dose-dependent manners, suggesting that Ca2+ entry through plasma membrane Ca2+ channels is essential for the generation of SRCs. Application of ryanodine (30 μM), which depletes intracellular Ca2+ by locking ryanodine receptor (RyR)-Ca2+ channels in an open state, gradually reduced the frequency and amplitude of SRCs. A RyR antagonist, tetracaine, reduced both the frequency and amplitude of SRCs, whereas a RyR activator, caffeine, increased the frequency of SRCs with a subsequent increase in basal tonus, indicating that RyRs are essential for generating SRCs. To further investigate the involvement of phospholipase C (PLC) and inositol 1,4,5-trisphosphate receptors (IP3Rs) in SRCs, we examined the effect of a PLC inhibitor, U73122, and an IP3R antagonist, 2-aminoethoxydiphenyl borate (2-APB), on SRCs. Separately, U73122 (10 μM) and 2-APB (30–50 μM) both significantly reduced the amplitude of SRCs with little effect on their frequency, further indicating that the PLC/IP3R signaling pathway is fundamental to the modulation of the amplitude of SRCs. A hypotonic-induced increase in the frequency and amplitude of SRCs and a hypertonic-induced decrease in the frequency and amplitude of SRCs indicated that mechanical stretch of the lateral oviduct is involved in the generation of SRCs. The sarcoplasmic reticulum Ca2+-pump ATPase inhibitors thapsigargin and cyclopiazonic acid impaired or suppressed the relaxation phase of SRCs. Taken together, the present results indicate that Ca2+ influx through plasma membrane Ca2+ channels and Ca2+ release from RyRs play an essential role in pacing SRCs and that Ca2+ release from IP3Rs may play a role in modulating the amplitude of SRCs, probably via activation of PLC.  相似文献   

9.
AimsThis study was designed to investigate the effects of sodium ferulate (SF) on rat isolated thoracic aortas and the possible mechanisms.Main methodsIsometric tension was recorded in response to drugs in organ bath. Cytosolic free Ca2+ concentration ([Ca2+]i) was measured using Fluo-3 in cultured rat aortic smooth muscle cells (RASMC).Key findingsSF (0.1–30 mM) relaxed the isolated aortic rings precontracted with phenylephrine (PE) and high-K+ in a concentration-dependent manner with respective pD2 of 2.7 ± 0.02 and 2.6 ± 0.06. Mechanical removal of endothelium did not significantly modify the SF-induced relaxation. In Ca2+-free solution, SF noticeably inhibited extracellular Ca2+-induced contraction in high-K+ and PE pre-challenged rings, and suppressed the transient contraction induced by PE and caffeine. The vasorelaxant effect of SF was unaffected by various K+ channel blockers such as tetraethylammonium, glibenclamide, 4-aminopyridine, and barium chloride. In addition, SF concentration-dependently reduced the contraction induced by phorbol-12-myristate-13-acetate, an activator of protein kinase C (PKC), in the absence of extracellular Ca2+, with the pD2 of 2.9 ± 0.03. In RASMC, SF had no effect on PE- or KCl-induced [Ca2+]i increase either in the presence or in the absence of external Ca2+.SignificanceThese results indicate that SF acts directly as a non-selective relaxant to vascular smooth muscle. The direct inhibition of the common pathway after [Ca2+]i increase may account for the SF-induced relaxation in Ca2+-dependent contraction, while the blockage of the PKC-mediated contractile mechanism is likely responsible for the SF-induced relaxation in Ca2+-independent contraction.  相似文献   

10.
Gq/11-coupled muscarinic acetylcholine receptors (mAChRs) belonging to M1, M3 and M5 subtypes have been shown to activate the metabolic sensor AMP-activated protein kinase (AMPK) through Ca2 +/calmodulin-dependent protein kinase kinase-β (CaMKKβ)-mediated phosphorylation at Thr172. However, the source of Ca2 + required for this response has not been yet elucidated. Here, we investigated the involvement of store-operated Ca2 + entry (SOCE) in AMPK activation by pharmacologically defined M3 mAChRs in human SH-SY5Y neuroblastoma cells. In Ca2 +-free medium the cholinergic agonist carbachol (CCh) caused a transient increase of phospho-Thr172 AMPK that rapidly ceased within 2 min. Conversely, in the presence of extracellular Ca2 + CCh-induced AMPK phosphorylation lasted for at least 180 min. The SOCE modulator 2-aminoethoxydiphephenyl borate (2-APB), at a concentration (50 μM) that suppressed CCh-induced intracellular Ca2 + ([Ca2 +]i) plateau, inhibited CCh-induced AMPK phosphorylation. CCh triggered the activation of the endoplasmic reticulum Ca2 + sensor stromal interaction molecule (STIM) 1, as indicated by redistribution of STIM1 immunofluorescence into puncta, and promoted the association of STIM1 with the SOCE channel component Orai1. Cell depletion of STIM1 by siRNA treatment reduced both CCh-induced [Ca2 +]i plateau and AMPK activation. M3 mAChRs increased glucose uptake and this response required extracellular Ca2 + and was inhibited by 2-APB, STIM1 knockdown, CaMKKβ and AMPK inhibitors, and adenovirus infection with dominant negative AMPK. Thus, the study provides evidence that SOCE is required for sustained activation of AMPK and stimulation of downstream glucose uptake by M3 mAChRs and suggests that SOCE is a critical process connecting M3 mAChRs to the control of neuronal energy metabolism.  相似文献   

11.
12.
We demonstrate that F281, a synthetic agonist of the sigma-2 receptor (s2R), induces a non transient increase in intracellular [Ca2+] ([Ca2+]i) and cell death in SK-N-SH cells. Sigma receptors are classified into two subtypes, with different molecular weight and tissue distribution. While the sigma-1 receptor has been cloned, the s2r is less characterized and its physiological ligand and role need further investigation. In tumour cell lines, synthetic agonists of the s2R trigger apoptosis and modulate [Ca2+]i. In particular, CB-64D induces a Ca2+ response while PB28 supresses Ca2+ signalling. We have recently synthesized F281, by replacing the 5-methoxytetraline moiety of PB28 with a carbazole nucleus. Although this bioisosteric substitution should not affect the ligand affinity at the receptor, F281 (after 24 h incubation) was more cytotoxic than PB28 (EC50 values 65.4 nM and 8.13 μM, respectively) in SK-N-SH cells. We used the fluorescent probes fura-2, rhod-2 and JC-1. F281 mobilizes Ca2+ from mitochondria and from the endoplasmic reticulum, by opening its inositol 1,4,5-trisphosphate receptor; Ca2+-entry through the channels activated by store depletion was also observed. After the increase in [Ca2+]i and within 10 min, we observed a sudden drop in metabolic activity and intracellular [ATP] leading to cell death.  相似文献   

13.
Local Ca2+ spark releases are essential to the Ca2+ cycling process. Thus, they play an important role in ventricular and atrial cell contraction, as well as in sinoatrial cell automaticity. Characterizing their properties in healthy cells from different regions in the heart can reveal the basic biophysical differences among these regions. We designed a semi-automatic Matlab Graphical User Interface (called Sparkalyzer) to characterize parameters of Ca2+ spark release from any major cardiac tissue, as recorded in line-scan mode with a confocal laser-scanning microscope. We validated the algorithm on experimental images from rabbit sinoatrial, atrial, and ventricular cells loaded with Fluo-4 AM. The program characterizes general image parameters of Ca2+ transients and sparks: spark duration, which indicates for how long the spark provides Ca2+ to the closed intracellular mechanisms (typical value: 25 ± 1, 23 ± 1, 26 ± 1 ms for sinoatrial, atrial, and ventricular cells, respectively); spark amplitude, which indicates the amount of Ca2+ released by a single spark (1.6 ± 0.1, 1.6 ± 0.2, 1.4 ± 0.1 F/F0 for sinoatrial, atrial, and ventricular cells, respectively); spark length, which is the length of the Ca2+ wavelets fired out of a row of ryanodine receptors (5 ± 0.1, 5 ± 0.2, 3.4 ± 0.3 μm for sinoatrial, atrial, or ventricular cells, respectively) and number of sparks (0.14 ± 0.02, 0.025 ± 0.01, 0.02 ± 0.01 for 1 μm in 1 s for sinoatrial, atrial, and ventricular cells, respectively). This method is reliable for Ca2+ spark analysis of sinoatrial, atrial, or ventricular cells. Moreover, by examining the average value of Ca2+ spark characteristics and their scattering around the mean, atrial, ventricular and sinoatrial cells can be differentiated.  相似文献   

14.
Intracellular Ca2+ overload has been considered a common pathological precursor of pancreatic injury. In this study, the effects of melatonin on Ca2+ mobilization induced by cholecystokinin octapeptide (CCK-8) in freshly isolated mouse pancreatic acinar cells have been examined. Changes in intracellular free Ca2+ concentration were followed by single cell fluorimetry. For this purpose, cells were loaded with the Ca2+-sensitive fluorescent dye fura-2-acetoxymethyl ester. In order to evaluate the contribution of Ca2+ transport at the plasma membrane, at the endoplasmic reticulum (ER) or at the mitochondria, cells were incubated with CCK-8 alone or in combination with LaCl3, thapsigargin (Tps), or FCCP to, respectively, uncouple Ca2+ transport at these localizations. The experiments were performed in the absence or in the presence of melatonin in combination with the stimuli mentioned. Our results show that the total Ca2+ mobilization evoked by CCK-8 was attenuated by a 30 % in the presence of 100 µM melatonin compared with the responses induced by CCK-8 alone. Upon inhibition of Ca2+ transport into the ER by Tps, Ca2+ mobilization was also reduced in the presence of melatonin. In the presence of LaCl3 plus melatonin, the total Ca2+ mobilization induced by CCK-8 was significantly decreased, compared with the response obtained without melatonin but in the presence of LaCl3. No major differences were found when the cells were incubated with CCK-8 or Tps alone or in combination with LaCl3 plus melatonin and FCCP, compared with the responses obtained in the absence of FCCP. The initial Ca2+ release from intracellular stores evoked by CCK-8 or Tps was not significantly reduced in the presence of melatonin. The effect of melatonin could be explained on the basis of a stimulated Ca2+ transport out of the cell through the plasma membrane and by a stimulation of Ca2+ reuptake into the ER. Accumulation of Ca2+ into mitochondria might not be a major mechanism stimulated by melatonin. We conclude that melatonin alleviates intracellular Ca2+ accumulation, a situation potentially leading to cell damage in the exocrine pancreas.  相似文献   

15.
《Cell calcium》2010,47(5-6):347-355
TPEN (N,N,N′,N′-tetrakis(2-pyridylmethyl)-ethylenediamine) is a membrane-permeable heavy-metal ion chelator with a dissociation constant for Ca2+ comparable to the Ca2+ concentration ([Ca2+]) within the intracellular Ca2+ stores. It has been used as modulator of intracellular heavy metals and of free intraluminal [Ca2+], without influencing the cytosolic [Ca2+] that falls in the nanomolar range. In our previous studies, we gave evidence that TPEN modifies the Ca2+ homeostasis of striated muscle independent of this buffering ability. Here we describe the direct interaction of TPEN with the ryanodine receptor (RyR) Ca2+ release channel and the sarcoplasmic reticulum (SR) Ca2+ pump (SERCA). In lipid bilayers, at negative potentials and low [Ca2+], TPEN increased the open probability of RyR, while at positive potentials it inhibited channel activity. On permeabilized skeletal muscle fibers of the frog, but not of the rat, 50 μM TPEN increased the number of spontaneous Ca2+ sparks and induced propagating events with a velocity of 273 ± 7 μm/s. Determining the hydrolytic activity of the SR revealed that TPEN inhibits the SERCA pump, with an IC50 = 692 ± 62 μM and a Hill coefficient of 0.88 ± 0.10. These findings provide experimental evidence that TPEN directly modifies both the release of Ca2+ from and its reuptake into the SR.  相似文献   

16.
The limited choice and poor performance of red-emitting calcium (Ca2+) indicators have hampered microfluorometric measurements of the intracellular free Ca2+ concentration in cells expressing yellow- or green-fluorescent protein constructs. A long-wavelength Ca2+ indicator would also permit a better discrimination against cellular autofluorescence than the commonly used fluorescein-based probes. Here, we report an improved synthesis and characterization of Calcium Ruby, a red-emitting probe consisting of an extended rhodamine chromophore (578/602 nm peak excitation/emission) conjugated to BAPTA and having an additional NH2 linker arm. The low-affinity variant (KD,Ca ~30 μM) with a chloride in meta position that was specifically designed for the detection of large and rapid Ca2+ transients. While Calcium Ruby is a mitochondrial Ca2+probe, its conjugation, via the NH2 tail, to a 10,000 MW dextran abolishes the sub-cellular compartmentalization and generates a cytosolic Ca2+ probe with an affinity matched to microdomain Ca2+ signals. As an example, we show depolarization-evoked Ca2+ signals triggering the exocytosis of individual chromaffin granules. Calcium Ruby should be of use in a wide range of applications involving dual- or triple labeling schemes or targeted sub-cellular Ca2+ measurements.  相似文献   

17.
《Cell calcium》2011,49(6):352-357
The purpose of this study was to invent an extracellular inhibitor selective for the plasma membrane Ca2+ pump(s) (PMCA) isoform 1. PMCA extrude Ca2+ from cells during signalling and homeostasis. PMCA isoforms are encoded by 4 genes (PMCA1–4). Pig coronary artery endothelium and smooth muscle express the genes PMCA1 and 4. We showed that the endothelial cells contained mostly PMCA1 protein while smooth muscle cells had mostly PMCA4. A random peptide phage display library was screened for binding to synthetic extracellular domain 1 of PMCA1. The selected phage population was screened further by affinity chromatography using PMCA from rabbit duodenal mucosa which expressed mostly PMCA1. The peptide displayed by the selected phage was termed caloxin 1b3. Caloxin 1b3 inhibited PMCA Ca2+–Mg2+-ATPase in the rabbit duodenal mucosa (PMCA1) with a greater affinity (inhibition constant = 17 ± 2 μM) than the PMCA in the human erythrocyte ghosts (PMCA4, inhibition constant = 45 ± 4 μM). The affinity of caloxin 1b3 was also higher for PMCA1 than for PMCA2 and 3 indicating its selectivity for PMCA1. Consistent with an inhibition of PMCA1, caloxin 1b3 addition to the medium increased cytosolic Ca2+ concentration in endothelial cells. Caloxin 1b3 is the first known PMCA1 selective inhibitor. We anticipate caloxin 1b3 to aid in understanding PMCA physiology in endothelium and other tissues.  相似文献   

18.
Elevation of glucose induces transient inhibition of insulin release by lowering cytoplasmic Ca2+ ([Ca2+]i) below baseline in pancreatic β-cells. The period of [Ca2+]i decrease (phase 0) coincides with increased glucagon release and is therefore the starting point for antisynchronous pulses of insulin and glucagon. We now examine if activation of adrenergic α2A and muscarinic M3 receptors affects the initial [Ca2+]i response to increase of glucose from 3 to 20 mM in β-cells situated in mouse islets. In the absence of receptor stimulation the elevation of glucose lowered [Ca2+]i during 90–120 s followed by rise due to opening of voltage-dependent Ca2+ channels. The period of [Ca2+]i decrease was prolonged by activation of the α2A adrenergic receptors (1 μM epinephrine or 100 nM clonidine) and shortened by stimulation of the muscarinic M3 receptors (0.1 μM acetylcholine). The latter effect was mimicked by the Na/K pump inhibitor ouabain (10–100 μM). The results indicate that prolonged initial decrease (phase 0) is followed by slow [Ca2+]i rise and shorter decrease followed by fast rise. It is concluded that the period of initial decrease of [Ca2+]i regulates the subsequent β-cell response to glucose.  相似文献   

19.
Forisomes are chemomechanically active P-protein aggregates found in the phloem of legumes. They can convert chemical energy into mechanical work when induced by divalent metal ions or changes in pH, which control the folding state of individual forisome proteins. We investigated the changing geometric parameters of individual forisomes and the strength and dynamics of the forces generated during this process. Three different divalent ions were tested (Ca2+, Sr2+ and Ba2+) and were shown to induce similar changes to the normalized length and diameter. In the concentration range from 0.1 to 4 M, K+ and Cl? ions had no influence on the contraction behaviour of the forisomes induced by 10 mM Ca2+. In the absence of dissolved oxygen, these changes were independent of the radius of the metal ion, water uptake and the strength of binding between the selected metal ions and those protein molecules responsible for forisome conformational transformation. In the absence of any load, bound Ca2+, Sr2+ and Ba2+ ions showed apparent and averaged dissociation constants of 14, 62 and 1070 µM, respectively. Various forisomes generated bending on a quartz glass fibre with a diameter of 9 µm. The fibre bending was measured microscopically also by correlation between the digital patterns of a predefined window of observation before and after bending. Similar bending forces of approximately 90 nN were measured for a single forisome sequentially exposed to 10 mM Ca2+, Sr2+ and Ba2+. In the absence of dissolved oxygen, the same conditions resulted in averaged bending forces of (93 ± 40) nN, (58 ± 20) nN, and (91 ± 20) nN after contacting different forisomes with 10 mM Ca2+, 10 mM Sr2+, and 10 mM Ba2+ respectively, demonstrating that the force generated was independent on ion concentrations above a certain threshold value.  相似文献   

20.
A-Kinase Anchoring Proteins (AKAPs) direct the flow of cellular information by positioning multiprotein signaling complexes into proximity with effector proteins. However, certain AKAPs are not stationary but can undergo spatiotemporal redistribution in response to stimuli. Gravin, a 300 kD AKAP that intersects with a diverse signaling array, is localized to the plasma membrane but has been shown to translocate to the cytosol following the elevation of intracellular calcium ([Ca2 +]i). Despite the potential for gravin redistribution to impact multiple signaling pathways, the dynamics of this event remain poorly understood. In this study, quantitative microscopy of cells expressing gravin–EGFP revealed that Ca2 + elevation caused the complete translocation of gravin from the cell cortex to the cytosol in as little as 60 s of treatment with ionomycin or thapsigargin. In addition, receptor mediated signaling was also shown to cause gravin redistribution following ATP treatment, and this event required both [Ca2 +]i elevation and PKC activation. To understand the mechanism for Ca2 + mediated gravin dynamics, deletion of calmodulin-binding domains revealed that a fourth putative calmodulin binding domain called CB4 (a.a. 670–694) is critical for targeting gravin to the cell cortex despite its location downstream of gravin's membrane-targeting domains, which include an N-terminal myristoylation site and three polybasic domains. Finally, confocal microscopy of cells co-transfected with gravin–EYFP and PKA RII–ECFP revealed that gravin redistribution mediated by ionomycin, thapsigargin, and ATP each triggered the gravin-dependent loss of PKA localized at the cell cortex. Our results support the hypothesis that gravin redistribution regulates cross-talk between PKA-dependent signaling and receptor-mediated events involving Ca2 + and PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号