首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemopreventive or anticancer agents induce cancer cells to apoptosis through the activation of adenosine AMP-activated protein kinase (AMPK), which plays a major role as energy sensors under ATP-deprived condition or ROS generation. In this study, we compared the effects of ascochlorin (ASC), from the fungus Ascochyta viciae, and its derivatives on AMPK activity. We also examined a regulatory mechanism for hypoxia-inducible factor-1α (HIF-1α) stabilization in response to 4-O-methylascochlorin (MAC). We found that AMPK activation was mainly involved with MAC, but not ASC and 4-O-carboxymethylascochlorin (AS-6), indicating that the substitution of 4-O-methyl group from 4-O-hydroxyl group of ASC is important in the activation of AMPK and the expression of HIF-1α. MAC-stabilized HIF-1α via AMPK activation triggered by lowering the intracellular ATP level, not by ROS generation, increases glucose uptake and the expression of vascular endothelial growth factor (VEGF) and glucose transporter 1 (GLUT-1), major target genes of HIF-1α. Moreover, MAC-induced AMPK activity suppressed survival factors, including mTOR and ERK1/2 or translational regulators, including p70S6K and 4E-BP1. Our data suggest that AMPK is a key determinant of MAC-induced HIF-1α expression in response to energy stress, further implying its involvement in MAC-induced apoptosis.  相似文献   

2.
3.
Preparative-scale fermentation of gallic acid (3,4,5-trihydroxybenzoic acid) (1) with Beauveria sulfurescens ATCC 7159 gave two new glucosidated compounds, 4-(3,4-dihydroxy-6-hydroxymethyl-5-methoxy-tetrahydro-pyran-2-yloxy)-3-hydroxy-5-methoxy-benzoic acid (4), 3-hydroxy-4,5-dimethoxy-benzoic acid 3,4-dihydroxy-6-hydroxymethyl-5-methoxy-tetrahydro-pyran-2-yl ester (7), along with four known compounds, 3-O-methylgallic acid (2), 4-O-methylgallic acid (3), 3,4-O-dimethylgallic acid (5), and 3,5-O-dimethylgallic acid (6). The new metabolite genistein 7-O-β-D-4″-O-methyl-glucopyranoside (8) was also obtained as a byproduct due to the use of soybean meal in the fermentation medium. The structural elucidation of the metabolites was based primarily on 1D-, 2D-NMR, and HRFABMS analyses. Among these compounds, 2, 3, and 5 are metabolites of gallic acid in mammals. This result demonstrated that microbial culture parallels mammalian metabolism; therefore, B. sulfurescens might be a useful tool for generating mammalian metabolites of related analogs of gallic acid (1) for complete structural identification and for further use in investigating pharmacological and toxicological properties in this series of compounds. In addition, a GRE (glucocorticoid response element)-mediated luciferase reporter gene assay was used to initially screen for the biological activity of the 6 compounds, 26 and 8, along with 1 and its chemical O-methylated derivatives 913. Among the 12 compounds tested, 1113 were found to be significant, but less active than the reference compounds of methylprednisolone and dexamethasone.  相似文献   

4.
5.
6.
7.
To investigate the substrate specificity and regio-selectivity of coumarin glycosyltransferases in transgenic hairy roots of Polygonum multiflorum, esculetin (1) and eight hydroxycoumarins (29) were employed as substrates. Nine corresponding glycosides (1018) involving four new compounds, 6-chloro-4-methylcoumarin 7-O-β-D-glucopyranoside (15), 6-chloro-4-phenylcoumarin 7-O-β-D-glucopyranoside (16), 8-hydroxy-4-methylcoumarin 7-O-β-D-glucopyranoside (17), and 8-allyl-4-methylcoumarin 7-O-β-D-glucopyranoside (18), were biosynthesized by the hairy roots.  相似文献   

8.
9.
10.
Three new triterpenoid saponins, elucidated as 3-O-β-d-glucopyranosyloleanolic acid 28-O-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranoside (parkioside A, 1), 3-O-[β-d-apifuranosyl-(1→3)-β-d-glucopyranosyl]oleanolic acid 28-O-[β-d-apifuranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-[α-l-rhamnopyranosyl-(1→3)]-α-l-rhamnopyranosyl-(1→2)β-d-xylopyranoside (parkioside B, 2) and 3-O-β-d-glucuronopyranosyl-16α-hydroxyprotobassic acid 28-O-α-l-rhamnopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranoside (parkioside C, 3), were isolated from the n-BuOH extract of the root bark of Butyrospermum parkii, along with the known 3-O-β-d-glucopyranosyloleanolic acid (androseptoside A). The structures of the isolated compounds were established on the basis of chemical and spectroscopic methods, mainly 1D and 2D NMR data and mass spectrometry. The new compounds were tested for both radical scavenging and cytotoxic activities. Compound 2 showed cytotoxic activity against A375 and T98G cell lines, with IC50 values of 2.74 and 2.93 μM, respectively. Furthermore, it showed an antioxidant activity comparable to that of Trolox or butylated hydroxytoluene (BHT), used as controls, against 2,2-diphenyl-1-picryl hydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), oxygen and nitric oxide radicals.  相似文献   

11.
12.
A novel heme-containing ascorbate oxidase isolated from oyster mushroom, Pleurotus ostreatus, catalyzes oxidation of ascorbic acid (Kim et al., 1996). In this report, we describe the identification of intracellular substrates of the enzyme in the mushroom. Six compounds, which can serve as substrate of the heme-containing ascorbate oxidase, were identified as L-ascorbic acid, D-erythroascorbic acid, 5-O-(α-D-glucopyranosyl)-D-erythroascorbic acid, 5-O-(α-D-xylopyranosyl)-D-erythroascorbic acid, 5-methyl-5-O-(α-D-gluco-pyranosyl)-D-erythroascorbic acid, and 5-methyl-5-O-(α-D-xylopyranosyl)-D-erythroascorbic acid. All of the compounds were oxidized at a significant rate by the heme-containing ascorbate oxidase. Oxidation of the compounds produced equimolar amounts of hydrogen peroxide per mole of substrate.  相似文献   

13.
Four (14) new and seven known limonoids were isolated from the EtOH extract of the fruits of Melia toosendan. The structures of the new compounds were established on the basis of spectroscopic methods to be 12-O-methyl-1-O-deacetylnimbolinin B (1), 12-O-methy-1-O-tigloyl-1-O-deacetylnimbolinin B (2), 12-O-ethylnimbolinin B (3), and 1-O-cinnamoyl-1-O-debenzoylohchinal (4). Additionally, two new tirucallane-type triterpenoids, named meliasenins S (5) and T (6), were obtained from the same fractions during purification of the limonoids.  相似文献   

14.
Mycophenolic acid (MPA, 1), an inhibitor of IMP-dehydrogenase (IMPDH) and a latent PPARγ agonist, is used as an effective immunosuppressant for clinical transplantation and recently entered clinical trials in advanced multiple myeloma patients. On the other hand, suberoylanilide hydroxamic acid (SAHA), a non-specific histone deacetylase (HDAC) inhibitor, has been approved for treating cutaneous T-cell lymphoma. MPA seemed to bear a cap, a linker, and a weak metal-binding site as a latent inhibitor of HDAC. Therefore, the hydroxamic acid derivatives of mycophenolic acid having an effective metal-binding site, mycophenolic hydroxamic acid (MPHA, 2), 7-O-acetyl mycophenolic acid (7-O-Ac MPHA, 3), and 7-O-lauroyl mycophenolic hydroxamic acid (7-O-L MPHA, 4) were designed and synthesized. All these compounds inhibited histone deacetylase with IC50 values of 1, 0.9 and 0.5 μM, and cell proliferation at concentrations of 2, 1.5 and 1 μM, respectively.  相似文献   

15.
Abstract

2′-Deoxy-5′-0-(4,4′-dimethoxytrityl)-5-methyl-N 4-(1-pyrenylmethyl)-α-cytidine (5) was prepared by reaction of 1-pyrenylmethylamine with an appropriate protected 4-(l,2,4-triazolyl)-α-thymidine derivative 3 which was synthesized from 5-O-DMT protected α-thymidine 1. Aminolysis of 3 afforded 3′-O-acetyl-2′-deoxy-5′-O-(4,4′-dimethoxytrityl)-5-methyl-α-cytidine (8). Benzoylation of 8 and removal of acetyl afforded N 4-benzoyl-2-deoxy-5–0-(4,4′-dimethoxytrityl)-5-methyl-α-cytidine (10). The amidites of compounds 5and 10 were prepared and used in α-oligonucleotide synthesis. DNA three-way junction (TWJ) is stabilized when an α-ODN is used for targeting the dangling flanks of the stem in a DNA hairpin. Further stabilization of the TWJ is observed when 5 is inserted into the α-ODN at the junction region.

  相似文献   

16.
为了研究领春木(Euptelea pleiospermum Hook.f.et Thoms)的化学成分,利用各种柱色谱及高压液相色谱等方法进行分离和纯化,根据理化性质和光谱数据分析鉴定了9个化合物。他们分别为:白桦脂酸(1);齐墩果酸(2);N-反式对羟基肉桂酰基-对羟基苯乙胺(3);N-反式阿魏酰酪胺(4);N-顺式阿魏酰酪胺(5);丁香脂素(6);N-顺式阿魏酰-3-甲氧基酪胺(7);N-反式阿魏酰-3-甲氧基酪胺(8);3-羟基-30-去甲基-20-酮基-28-羽扇豆酸(9)。所有化合物均为首次从领春木中分离得到。  相似文献   

17.
Regioselective acylation of four polyhydroxylated natural compounds, deacetyl asperulosidic acid (1), asperulosidic acid (2), puerarin (3) and resveratrol (4) by Candida antarctica Lipase B in the presence of various acyl donors (vinyl acetate, vinyl decanoate or vinyl cinnamoate) was studied. Compounds 1, 2 and 4 were regioselectively acetylated with vinyl acetate to afford products, 3′-O-acetyl-10-O-deacetylasperulosidic acid (1a), 3′,6′-O-diacetyl-10-O-deacetylasperulosidic acid (1b), 3′-O-acetylasperulosidic acid (2a), 3′,6′-O-diacetylasperulosidic acid (2b), 4′-O-acetylresveratrol (4a), respectively, with yields of 22 to 50%, while reactions with vinyl decanoate and vinyl cinnamoate were slow with lower yields. Compound 3 was readily acylated with all three acyl donors and quantitatively converted to products 6″-O-acetylpuerarin (3a), 6″-O-decanoylpuerarin (3b), 6″-O-cinnamoylpuerarin (3c), respectively. The structures of these acylated products were determined by spectroscopic methods (MS and NMR).  相似文献   

18.
Hypoxia inducible factor (HIF-1α) is a master regulator of tissue adaptive responses to hypoxia whose stability is controlled by an iron containing prolyl hydroxylase domain (PHD) protein. A catalytic redox cycle in the PHD's iron center that results in the formation of a ferryl (Fe(+4)) intermediate has been reported to be responsible for the hydroxylation and subsequent degradation of HIF-1α under normoxia. We show that induction of HIF-1α in rat kidneys can be achieved by iron reduction by the hydroxypyridin-4 one (CP94), an iron chelator administered intraperitoneally in rats. The extent of HIF protein stabilization as well as the expression of HIF target genes, including erythropoietin (EPO), in kidney tissues was comparable to those induced by known inhibitors of the PHD enzyme, such as desferrioxamine (DFO) and cobalt chloride (CoCl(2)). In human kidney cells and in vitro PHD activity assay, we were able to show that the HIF-1α protein can be stabilized by addition of CP94. This appears to inactivate PHD; and thus prevents the hydroxylation of HIF-1α. In conclusion, we have identified the inhibition of iron-binding pocket of PHD as an underlying mechanism of HIF induction in vivo and in vitro by a bidentate hydroxypyridinone.  相似文献   

19.
Phytochemical investigation of the underground parts of Liriope graminifolia (Linn.) Baker resulted in the isolation of two new steroidal saponins lirigramosides A (1) and B (2) along with four known compounds. The structures were determined by extensive spectral analysis, including two-dimensional (2D) NMR spectroscopy and chemical methods, to be 3-O-{β-d-xylopyranosyl-(1→3)-α-l-arabinopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→4)]-β-d-glucopyranosyl-(25S)-spirost-5-ene-3β,17α-diol (1), 1-O-[α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl]-(25R)-ruscogenin (2), 1-O-β-d-xylopyranosyl-3-O-α-l-rhamnopyranosyl-(25S)-ruscogenin (3), 3-O-α-l-rhamnopyranosyl-1-O-sulfo-(25S)-ruscogenin (4), methylophiopogonanone B (5), and 5,7-dihydroxy-3-(4-methoxybenzyl)-6-methyl-chroman-4-one, (ophiopogonanone B, 6), respectively. Compound 1 has a new (25S)-spirost-5-ene-3β,17α-diol ((25S)-pennogenin) aglycone moiety. The isolated compounds were evaluated for their cytotoxic activities against Hela and SMMC-7721 cells.  相似文献   

20.
An attempt was made to isolate the hypotensive substances from a hot water extract of kinkan. Eight flavonoid glycosides were isolated by repeated chromatography and by gel filtration after extracting with n-butanol and treating with lead subacetate. Their structures were established to be 6,8-di-C-glucosylapigenin (1), 3,6-di-C-glucosylacacetin (2), 2″-O-α-l-rhamnosyl-4′-O-methyl-vitexin (3), 2″-O-α-l-rhamnosyl-4′-O-methylisovitexin (4), 2″-O-α-l-rhamnosylvitexin (5), 2″-O-α-l-rhamnosylorientin (6), 2″-O-α-l-rhamnosyl-4′-O-methylorientin (7) and ponicilin (8) by UV. MS, 1-NMR and 13C-NMR spectroscopy, and by sugar analysis. Each component was intravenously injected in SHR-SP (0.5 ~ 1.0 mg/100 g of body weight), 1, 2, 5 and 6 were found to lower the rat blood pressure.

Among these compounds, 2, 3, 4, 6 and 7 were new flavone glycosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号