首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 233 毫秒
1.
Preparative-scale fermentation of ginsenoside Rb1 (1) with Acremonium strictum AS 3.2058 gave three new compounds, 12β-hydroxydammar-3-one-20 (S)-O-β-d-glucopyranoside (7), 12β, 25-dihydroxydammar-(E)-20(22)-ene-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (8), and 12β, 20 (R), 25-trihydroxydammar-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (9), along with five known compounds, ginsenoside Rd (2), gypenoside XVII (3), ginsenoside Rg3 (4), ginsenoside F2 (5), and compound K (6). The structural elucidation of these metabolites was based primarily on one- and two-dimensional nuclear magnetic resonance and high-resolution electron spray ionization mass spectra analyses. Among these compounds, 26 are also the metabolites of ginsenoside Rb1 in mammals. This result demonstrated that microbial culture parallels mammalian metabolism; therefore, A. strictum might be a useful tool for generating mammalian metabolites of related analogs of ginsenosides for complete structural identification and for further use in pharmaceutical research in this series of compounds. In addition, the biotransformation kinetics was also investigated.  相似文献   

2.
Boerhaavia diffusa L. is used in the traditional medicine of several Asian countries. The isolation and identification of five new compounds, together with 11 known compounds, from the ethyl acetate extract of the aerial part of B. diffusa grown Vietnam is reported. The structure of the new compounds was established by 1D and 2D NMR spectroscopy, and high resolution ESI-MS analysis. New compounds are two rotenoids: 9,11-dihydroxy-6,10-dimethoxy[1]benzopyrano[3,4-b][1]benzopyran-12(6H)-one (boeravinone P, 3) and 3-[2-(β-d-glucopyranosyloxy)-3-hydroxyphenyl]-5-hydroxy-2-hydroxymethyl-7-methoxy-6-methyl-4H-1-benzopyran-4-one (boeravinone Q, 9), an atropisomeric mixture of two rotenoid glycosides (3′,5-dihydroxy-2-hydroxymethyl-7-methoxy-6-methylisoflavone 2′-O-β-d-glucopyranoside, 11), a sesquiterpene lactone (4,10-dihydroxy-8-methoxyguai-7(11)-en-8,12-olide, 5) and a new phenylpropanoid glycoside (boerhaavic acid, 15).  相似文献   

3.
The CHCl3-soluble fraction of the whole plant of Duranta repens showed anti-plasmodial activity against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum, with IC50 values of 8.5?±?0.9 and 10.2?±?1.5?μg/mL, respectively. From this fraction, two new flavonoid glycosides, 7-O-α-d-glucopyranosyl-3,4′-dihydroxy-3′-(4-hydroxy-3-methylbutyl)-5,6-dimethoxyflavone (1) and 7-O-α-d-glucopyranosyl(6′′′-p-hydroxcinnamoyl)-3,4′-dihydroxy-3′-(4-hydroxy-3-methylbutyl)-5,6-dimethoxyflavone (2), along with five known flavonoids, 3,7,4′-trihydroxy-3′-(4-hydroxy-3-methylbutyl)-5,6-dimethoxyflavone (3), 3,7-dihydroxy-3′-(4-hydroxy-3-methylbutyl)-5,6,4′-trimethoxyflavone (4), 5,7-dihydroxy-3′-(2-hydroxy-3-methyl-3-butenyl)-3,6,4′-trimethoxyflavone (5), 3,7-dihydroxy-3′-(2-hydroxy-3-methyl-3-buten-yl)-5,6,4′-trimethoxyflavone (6), and 7-O-α-d-glucopyranosyl-3,5-dihydroxy-3′-(4′′-acetoxy-3′′-methylbutyl)-6,4′-dimethoxyflavone (7), have been isolated as anti-plasmodial principles. Their structures were deduced by spectroscopic analysis including 1D and 2D NMR techniques. The compounds (1–7) showed potent anti-plasmodial activities against D6 and W2 strains of Plasmodium falciparum, with IC50 values in the range of 5.2–13.5?μM and 5.9–13.1?μM, respectively.  相似文献   

4.
为了解降龙草(Hemiboea subcapitata Clarke)的化学成分,从降龙草全草的乙醇提取物的石油醚和乙酸乙酯萃取部位分离得到了5个蒽醌类化合物。经波谱学分析鉴定为digiferruginol(1)、1,4-二羟基-2-羟甲基-9,10-蒽醌(2)、1,7-二羟基-2-羟甲基-9,10-蒽醌(3)、1-羟基-7-甲氧基-2-羟甲基-9,10-蒽醌(4)和1,4,7-三羟基-2-甲基-9,10-蒽醌(5)。其中化合物4和5为新化合物,其它3个化合物为首次从降龙草中分离得到。  相似文献   

5.
为了解油榄仁(Terminalia bellirica Roxb.)的化学成分,从油榄仁果实的乙酸乙酯提取物中分离得到11个化合物,通过波谱分析,分别鉴定为:表松脂酚(1)、(–)-芝麻素(2)、麻醉椒苦素(3)、二氢醉椒素(4)、异香兰素(5)、3,4-二羟基苯甲酸(6)、没食子酸(7)、没食子酸甲酯(8)、没食子酸乙酯(9)、3,4,8,9,10-五羟基二苯骈[b,d]吡喃-6-酮(10)、polystachyol(11),其中化合物1~6、10和11为首次从油榄仁果实中分离得到。  相似文献   

6.
Phytochemical investigation of the underground parts of Liriope graminifolia (Linn.) Baker resulted in the isolation of two new steroidal saponins lirigramosides A (1) and B (2) along with four known compounds. The structures were determined by extensive spectral analysis, including two-dimensional (2D) NMR spectroscopy and chemical methods, to be 3-O-{β-d-xylopyranosyl-(1→3)-α-l-arabinopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→4)]-β-d-glucopyranosyl-(25S)-spirost-5-ene-3β,17α-diol (1), 1-O-[α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl]-(25R)-ruscogenin (2), 1-O-β-d-xylopyranosyl-3-O-α-l-rhamnopyranosyl-(25S)-ruscogenin (3), 3-O-α-l-rhamnopyranosyl-1-O-sulfo-(25S)-ruscogenin (4), methylophiopogonanone B (5), and 5,7-dihydroxy-3-(4-methoxybenzyl)-6-methyl-chroman-4-one, (ophiopogonanone B, 6), respectively. Compound 1 has a new (25S)-spirost-5-ene-3β,17α-diol ((25S)-pennogenin) aglycone moiety. The isolated compounds were evaluated for their cytotoxic activities against Hela and SMMC-7721 cells.  相似文献   

7.
A new acetylated flavonol glycoside: patuletin 3-O-[5′″-O-feruloyl-β-D-apiofuransyl (1′″→2′′)-β-D-glucopyranoside] (2), together with a known patuletin 3-O-β-D-glucopyranoside (1) were isolated from the aerial part of Artiplex littoralis L. (Chenopodiacease). Their structures were elcidated by acid hydrolysis and spectroscopic methods including UV, 1H, 13C NMR and ESI-MS for both compounds, additionally 2D-NMR, HSQC, HMBC experiments were performed for 2.  相似文献   

8.
Gerhäuser  C.  Alt  A.P.  Klimo  K.  Knauft  J.  Frank  N.  Becker  H. 《Phytochemistry Reviews》2002,1(3):369-377
Beer contains a variety of phenolic compounds. During the brewing process, some of these compounds are removed by polyvinylpolypyrrolidone (PVPP) to prevent haze formation. We have analyzed the phytochemical composition of a PVPP residue as well as of unstabilized beer and isolated a total of 51 compounds. Eight structures were identified as novel, i.e., 2-(4′-hydroxyphenyl)-3,5-dihydroxybenzoic acid (6), 2′-(4″-hydroxyphenyl)isoferulic acid ester (12), 1,2,5,7-tetrahydroxyanthraquinone (23) and 4,7-dihydroxy-5-(2′,4′,6′-trihydroxyphenyl)-indan-1,2-dione (24) from the PVPP residue, and catechin-7-O-β-(6″-O-nicotinoyl)-β-D-glucopyranoside (41), ent-epigallo-catechin-(4αto8, 2αtoOto7)catechin (44), ent-epigallocatechin (4αto6, 2αtoOto7)catechin (45) and 2,3-cis-3,4-trans-2-[2,3-trans-3,3′,4′,5,7-pentahydroxyflavan-8-yl]-4-(3,4-dihydroxyphenyl)3,5,7-trihydroxybenzopyran (46) from the unstabilized beer. Most of the compounds were tested for potential cancer chemopreventive activities in in vitro test systems detecting a modulation of carcinogen metabolism (inhibition of phase 1 cytochrome P450 1A (Cyp1A) activity, induction of NAD(P)H:quinone oxidoreductase (QR) activity) and anti-inflammatory mechanisms (inhibition of lipopolysaccharide (LPS)-mediated induction of inducible nitric oxide synthase (iNOS), inhibition of cyclooxygenase 1 (Cox-1) activity). 1,2,5,7-Tetrahydroxyanthraquinone (23) and xanthohumol (25), a prenylated chalcone derived from hop, were identified as the most potent compounds and were additionally tested for inhibition of chemically-induced preneoplastic lesions in an ex vivo mouse mammary gland organ culture model (MMOC). Importantly, both agents inhibited lesion formation with halfmaximal inhibitory concentrations (IC50) of 0.1 and 0.02 μM, respectively. Our results demonstrate that beer is an interesting source of potential cancer chemopreventive agents and should be further investigated with this respect. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
With pig liver esterase, 1,3-dibenzyl-4,5-cis-bis(alkyloxycarbonyl)-2-oxoimidazolidine (1) was asymmetrically hydrolyzed to (4S,5R)-1,3-dibenzyl-5-alkyloxycarbonyl-2-oxoimidazolidine-4-carboxylic acid (2). This acid 2 was reduced with lithium borohydride to (4S,5R)-1,3-dibenzyl-5-hydroxymethyl-2-oxoimidazolidine-4-carboxylic acid lactone (3), which is known to be converted to (+)-biotin (4). With the same esterase, diethyl 3,4-dimethoxyphenylmethyl-(methyl)malonate (5) was asymmetrically hydrolyzed to (R)-ethyl hydrogen 3,4-dimethoxy-phenylmethyl(methyl)malonate (6), which can be converted to (S)-α-methyl-3,4-dihydroxyphenyl-alanine(l-α-methyldopa) (9).  相似文献   

10.
Two new sulfur-containing phenolic compounds, 7-hydroxy-5-hydroxymethyl-2H-benzo[1,4]thiazin-3-one (1) and 2,5-dihydroxy-3-methanesulfinylbenzyl alcohol (2), along with two known compounds, 3-chloro-2,5-dihydroxybenzyl alcohol (3) and 2-hydroxy-6-methylbenzoic acid (4), were isolated from the mycelial solid culture of a soil-derived Ampelomyces fungus by antibacterial assay-guided fractionation. Their structures were elucidated on the basis of spectroscopic analysis. Compounds 13 showed structure and microbial dependent antibacterial activities.  相似文献   

11.
The metabolism of quinones formed in the enzymatic oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) (Ia) and its methyl ether Ib in ligninolytic cultures of Phanerochaete chrysosporium was studied. A metabolite of 2-hydroxymethyl-5-methoxy-2,5-cyclohexadiene-1,4-dione (IIa, formed from Ia by oxidation) was isolated and identified as cis-4-hydroxy-6-hydroxymethyl-3-methoxy-cyclohex-2-en-one (IVa), formally the reduced hydroquinone IIIa. The formation of IVa was also observed when both veratryl alcohol Ia or 2,5-dihydroxy-4-methoxybenzyl alcohol (IIIa), the hydroquinone of IIa, were used as substrates. Analogously, cis-4-hydroxy-3-methoxy-6-methoxymethyl-cyclohex-2-en-one (IVc) was isolated and identified as a metabolite from either 3,4-dimethoxybenzyl methyl ether (Ib) or from its oxidation product 5-methoxy-2-methoxymethyl-2,5-cyclohexadiene-1,4-dione (IIb) as well as from the corresponding hydroquinone 2,5-dihydroxy-4-methoxybenzyl methyl ether (IIIc). The physiological role of these unprecedented conversions is discussed. Correspondence to: H. E. Schoemaker  相似文献   

12.
海南石斛化学成分研究   总被引:1,自引:0,他引:1  
为了解海南石斛(Dendrobium hainanense Rolfe)的化学成分,采用色谱技术从海南石斛茎叶中分离得到14个化合物,经波谱分析分别鉴定为:2,6-二甲氧基对苯醌(1)、(+)-dehydrovomifoliol(2)、blumenol A(3)、2,7-二羟基-3,4-二甲氧基-9,10-二氢菲(4)、2,7-二羟基-3,4-二甲氧基菲(5)、3,7-二羟基-2,4-二甲氧基菲(6)、3-羟基-2,4,7-三甲氧基-9,10-二氢菲(7)、3-羟基-2,4,7-三甲氧基菲(8)、3,4,7-三羟基-2-甲氧基菲(9)、3,7-二羟基-2,4-二甲氧基-9,10-二氢菲(10)、(+)-lyoniresinol(11)、丁香脂素(12)、denchrysan A(13)和nobilone(14)。这些化合物均为首次从海南石斛中分离得到。活性测试结果表明化合物4~6、8~9、11和14对乙酰胆碱酯酶有抑制活性。  相似文献   

13.
为了解人工诱导海南龙血树(Dracaena cambodiana)所产血竭的化学成分,从其乙醇提取物中分离得到10个化合物,经波谱分析分别鉴定为socotrin-4?-ol(1)、homoisosocotrin-4?-ol(2)、(E)-3-(3,4-dihydroxybenzylidene)-7-hydroxy-chroman-4-one(3)、5-hydroxy-7-methoxy-3-(4?-hydroxybenzyl)-4-chromanone (4)、3-去氧苏木查耳酮(5)、苏木查耳酮(6)、7,4?-二羟基黄酮(7)、7,4?-二羟基-8-甲基黄酮(8)、丁香树脂醇(9)和邻苯二甲酸二(2-乙基己基)酯(10)。化合物1~10均为首次从人工诱导海南龙血树所产血竭中分离得到,其中化合物8为新天然产物,化合物3~6为首次从血竭中分离得到。化合物7和8对耐甲氧西林金黄色葡萄球菌具有生长抑制作用。  相似文献   

14.
为了解柯拉斯那(Aquilaria crassna)的化学成分,从其所产沉香中分离得到10个化合物,经波谱分析分别鉴定为:6,8-羟基-2-(2-苯乙基)色酮(1),6,8-二羟基-2-[2-(4-甲氧基苯)乙基]色酮(2),rel-(1a R,2R,3R,7b S)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-5-(2-phenylethyl)-7H-oxireno[f][1]benzopyran-7-one(3),rel-(1a R,2R,3R,7b S)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-[2-(4-methoxyphenyl)-ethyl]-7H-oxireno[f][1]benzopyran-7-one(4),rel-(1a R,2R,3R,7b S)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-5-[2-(3-hydroxy-4-methoxyphenyl)-ethyl]-7H-oxireno[f][1]benzopyran-7-one(5),oxidoagarochromone B(6),oxidoagarochromone C(7),(5S,6R,7S,8R)-2-[2-(3′-hydroxy-4′-methoxyphenyl)ethyl]-5,6,7,8-tetrahydroxy-5,6,7,8-tetrahydrochromone(8),6,7-cis-dihydroxy-2-(2-phenylethyl)-5,6,7,8-tetrahydrochromone(9),N-trans-feruloyltyramine(10)。化合物3~5和8~10为首次从柯拉斯那沉香中分离得到。化合物1,3,6,7,9和10对乙酰胆碱酯酶具有一定的抑制活性,化合物4对人慢性髓原白血病细胞株K-562和人胃癌细胞株SGC-7901均具有较小的抑制作用,化合物1和3对人肝癌细胞株BEL-7402也有抑制活性。  相似文献   

15.
为了解华石斛(Dendrobium sinense)的化学成分,采用多种柱色谱技术从其全草乙醇提取液中分离纯化了10个化合物,经波谱分析分别鉴定为:鼓槌石斛素(1)、2′,4′-二羟基查尔酮(2)、2,5,7-三羟基-4-甲氧基-9,10-二氢菲(3)、4,7-二羟基-2,3-二甲氧基-9,10-二氢菲(4)、2,5-二羟基-3,4-二甲氧基-9,10-二氢菲(5)、2,7-二羟基-3,4,6-三甲氧基-9,10-二氢菲(6)、(E)松柏醛(7)、反式对羟基肉桂酸酯(8)、对羟基苯丙酸甲酯(9)和十二元内环酯(10)。所有化合物均为首次从华石斛中分离得到,其中化合物2、6、7和10对乙酰胆碱酯酶具有一定的抑制活性。  相似文献   

16.
为了解南美蟛蜞菊[Wedelia trilobata (L.) Hitchc.]的化学成分, 从其全株中分离得到9 个酚酸类化合物。经光谱分析, 分别鉴定为6-乙酰基-7-羟基-2,3-二甲基色原酮 (1)、七叶内酯 (2)、丁香醛 (3)、5-羟甲基糠醛 (4)、对羟基苯甲酸 (5)、水杨酸 (6)、反式对羟基桂皮酸 (7)、咖啡酸甲酯 (8) 和反式咖啡酸 (9)。化合物1~8 为首次从该植物中分离得到。  相似文献   

17.
Gao L  Zhang L  Li N  Liu JY  Cai PL  Yang SL 《Carbohydrate research》2011,346(18):2881-2885
Phytochemical investigation of the methanol extract from the whole plants of Patrinia scabiosaefolia Fisch. resulted in the isolation of four new triterpenoid saponins (14) along with six known compounds (510). On the basis of spectroscopic and chemical methods, the structures of the new compounds were established as 3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl-12β,30-dihydroxy-olean-28,13β-olide (1), 3-O-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl-12β,30-dihydroxy-olean-28,13β-olide (2), 3-O-β-d-xylopyranosyl-(1→2)-β-d-glucopyranosyl-12β, 30-dihydroxy-olean-28,13β-olide (3), and 3-O-β-d-glucopyranosyl-(1→4)-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl-oleanolic acid 28-O-β-d-glucopyranoside (4), respectively. Compounds 1–3 possess a novel 12β,30-dihydroxy-olean-28,13β-lactone aglycone and a 12β-hydroxy substituent that is rarely found in this kind of triterpenoid saponin.  相似文献   

18.
核桃青皮是一种传统的中药材,含有大量的酚类化合物,具有镇痛、消炎、抑菌、抗肿瘤等功效。为了从核桃青皮中分离得到更多的酚类成分,以利于更好地阐明其作用机理,该研究采用大孔树脂Diaion HP-20SS、凝胶Sephadex LH-20,HPLC等方法对核桃青皮80%的乙醇提取物进行分离纯化。结果表明:共分离了10个单体化合物,它们的结构经质谱(MS)、一维核磁共振谱(~1H NMR和~(13)C NMR)、二维核磁共振谱(HSQC,HMBC)数据的分析及文献数据的比较确定为没食子酸(1),没食子酸甲酯(2),对羟基苯甲酸(3),3,4-二羟基苯甲酸甲酯(4),6-O-咖啡酸-D-葡萄糖(5),6-O-没食子酸-葡萄糖苷(6),4,8-二羟基-1-四氢萘醌(7),5,8-二羟基-4-甲氧基-1-四氢萘酮(8),5,8-二羟基-1-四氢萘酮(9),4-羟基-1-四氢萘酮(10)。其中,化合物5,化合物6为属内首次分离到。该研究结果为进一步深入研究核桃青皮的化学成分和药理作用提供了一定参考。  相似文献   

19.
One new β-hydroxychalcone, 4-acetoxy-5,2′,4′,6′,β-pentahydroxy-3-methoxychalcone (1), one new flavanone, 7,3′-dihydroxy-5,4′-dimethoxyflavanone (2) and seven known compounds, 2R, 3R-trans-aromadendrin (3), naringenin-7-O-methylether (4), myricetin (5), quercetin-3-O-rutinoside (6), ursolic acid (7), gallic acid (8) and d-glucose (9) were isolated from the methanolic fruit extract of Cornus mas L. (=Cornus mascula L.), Cornaceae. The structures of the new compounds were elucidated on the basis of extensive spectroscopic methods, including 2D NMR experiments and of known compounds by comparison of physical and spectral data with literature.  相似文献   

20.
Four (14) new and seven known limonoids were isolated from the EtOH extract of the fruits of Melia toosendan. The structures of the new compounds were established on the basis of spectroscopic methods to be 12-O-methyl-1-O-deacetylnimbolinin B (1), 12-O-methy-1-O-tigloyl-1-O-deacetylnimbolinin B (2), 12-O-ethylnimbolinin B (3), and 1-O-cinnamoyl-1-O-debenzoylohchinal (4). Additionally, two new tirucallane-type triterpenoids, named meliasenins S (5) and T (6), were obtained from the same fractions during purification of the limonoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号