首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
鹅膏属(Amanita)部分物种为重要食用真菌,而另外部分物种则是剧毒的,在我国及其他许多国家,每年都有因误食剧毒鹅膏而导致中毒甚至死亡的事件发生。DNA条形码是用一段或几段短的DNA序列来对物种进行快速、准确鉴定的方法。本研究选取三个候选片段,即核糖体大亚基(nLSU)、内转录间隔区(ITS)和翻译延长因子1-α(tef1-α),使用真核生物通用引物,测试我国已知的7种剧毒鹅膏及2种易混的可食鹅膏,并将欧美分布的但与黄盖鹅膏(A.subjunquillea)亲缘关系密切的绿盖鹅膏(A.phalloides)纳入分析中。nLSU的PCR扩增和测序成功率均为100%,但种内和种间遗传变异偶有重叠。ITS的PCR扩增和测序成功率分别达到100%和85.7%,且具有高的种间变异和低的种内变异。tef1-α的PCR扩增和测序成功率分别达到85.7%和100%,种间和种内遗传分化均高于ITS和nLSU。三个片段的物种分辨率均较高,但与nLSU相比,ITS和tef1-α具有更为明显的barcode gap。鉴于ITS可能会成为真菌界的通用条码,故建议将ITS作为鹅膏属的核心条形码,tef1 α和nLSU作为该属的辅助条形码。  相似文献   

2.
我国云南食用牛肝菌的DNA条形码研究   总被引:2,自引:0,他引:2  
iFlora是结合传统分类学与DNA测序和信息技术,通过系列关键技术进行集成,构建便捷、准确识别物种和掌握相关数字化信息的新一代智能植物志。iFlora研发中首要和迫切的任务之一就是寻找适合于大多数植物和经济蘑菇的标准DNA条形码序列。为筛选适合大型经济蘑菇的DNA条形码,本研究以云南食用牛肝菌为例,选取野生食用菌市场上常见的、被当地人认为的4“种”牛肝菌为研究对象,利用核糖体大亚基(nrLSU)、翻译延长因子1-α(tefl-α)、RNA聚合酶II大亚基(rpbl)和RNA聚合酶II的第二个大亚基(rpb2)四个DNA序列,使用真核生物通用引物进行扩增、测序和测试。研究发现这4“种”样品实际上代表了12个独立的物种,进一步研究表明4个候选片段的扩增和测序成功率均为100%,且不存在种问和种内变异的重叠。4个片段的物种分辨率均较高,但与nrLSU相比,rpbl、tefl-α和rpb2具有更为明显的条形码间隔。鉴于rpbl比tefl-α和rpb2具有更高的种间变异和较低的种内变异,建议将rpbl作为牛肝菌属的核心条形码,tefl-α和rpb2可作为该属的辅助条形码。  相似文献   

3.
The genus Curcuma L. is commonly used as spices, medicines, dyes and ornamentals. Owing to its economic significance and lack of clear‐cut morphological differences between species, this genus is an ideal case for developing DNA barcodes. In this study, four chloroplast DNA regions (matK, rbcL, trnH‐psbA and trnL‐F) and one nuclear region (ITS2) were generated for 44 Curcuma species and five species from closely related genera, represented by 96 samples. PCR amplification success rate, intra‐ and inter‐specific genetic distance variation and the correct identification percentage were taken into account to assess candidate barcode regions. PCR and sequence success rate were high in matK (89.7%), rbcL (100%), trnH‐psbA (100%), trnL‐F (95.7%) and ITS2 (82.6%) regions. The results further showed that four candidate chloroplast barcoding regions (matK, rbcL, trnH‐psbA and trnL‐F) yield no barcode gaps, indicating that the genus Curcuma represents a challenging group for DNA barcoding. The ITS2 region presented large interspecific variation and provided the highest correct identification rates (46.7%) based on BLASTClust method among the five regions. However, the ITS2 only provided 7.9% based on NJ tree method. An increase in discriminatory power needs the development of more variable markers.  相似文献   

4.
木霉属补充DNA条形码筛选   总被引:2,自引:0,他引:2  
朱兆香  曾昭清  庄文颖 《菌物学报》2014,33(6):1253-1262
木霉属真菌是一类重要的生物资源,在工农业、环境保护等方面具有较高经济价值,对其进行快速、准确的物种鉴定兼具理论意义和应用前景。以木霉属35个概念清晰的种为材料,选择ITS、rpb2和 tef1作为候选基因序列,利用TaxonGap对231个序列片段进行分析,将种内与种间序列差异以及序列获取难易程度作为评价指标,筛选该属的补充条形码片段。结果表明,rpb2具有适宜的种内与种间序列差异,其最小的种间差异(2.48%),大于最大种内差异(1.8%),种内、种间遗传距离存在明显的间隔区,并且该基因序列具有较高的PCR扩增与测序成功率(94.4%);ITS和tef1基因序列的种内与种间序列差异之间存在交叉重叠。因此建议rpb2作为木霉属的补充DNA条形码序列。  相似文献   

5.
《Phytomedicine》2014,21(13):1767-1773
We tested 4 markers, namely nuclear internal transcribed spacer 2 (ITS2), psbA-trnH, matK, and rbcL, to evaluate these candidate DNA barcodes for distinguishing Bupleuri radix (Chaihu) from its adulterants. 51 plant samples of Bupleurum representing 19 species were collected from different areas in China. Amplification and sequencing were attempted for all the 4 candidate barcode regions, whose validity was assessed in terms of the success rate of PCR amplification and sequencing, differential intra- and inter-specific divergences, DNA barcoding gap and the ability to discriminate species. The results showed that ITS2 had the best performance in identifying Bupleurum with an identification efficiency of 73.68%, which, after combining with psbA-trnH, increased to 83.33%. We further evaluated the efficiency of ITS2 for discriminating the species of Bupleurum using a large database from GenBank, which archived data of 223 samples from 74 species, and ITS2 successfully discriminated 64.13% of the samples at the species level. In conclusion, the ITS2 can serve as a potentially useful barcode for Bupleurum species, with psbA-trnH as a supplementary locus.  相似文献   

6.
Selection of a DNA barcode for Nectriaceae from fungal whole-genomes   总被引:1,自引:0,他引:1  
A DNA barcode is a short segment of sequence that is able to distinguish species. A barcode must ideally contain enough variation to distinguish every individual species and be easily obtained. Fungi of Nectriaceae are economically important and show high species diversity. To establish a standard DNA barcode for this group of fungi, the genomes of Neurospora crassa and 30 other filamentous fungi were compared. The expect value was treated as a criterion to recognize homologous sequences. Four candidate markers, Hsp90, AAC, CDC48, and EF3, were tested for their feasibility as barcodes in the identification of 34 well-established species belonging to 13 genera of Nectriaceae. Two hundred and fifteen sequences were analyzed. Intra- and inter-specific variations and the success rate of PCR amplification and sequencing were considered as important criteria for estimation of the candidate markers. Ultimately, the partial EF3 gene met the requirements for a good DNA barcode: No overlap was found between the intra- and inter-specific pairwise distances. The smallest inter-specific distance of EF3 gene was 3.19%, while the largest intra-specific distance was 1.79%. In addition, there was a high success rate in PCR and sequencing for this gene (96.3%). CDC48 showed sufficiently high sequence variation among species, but the PCR and sequencing success rate was 84% using a single pair of primers. Although the Hsp90 and AAC genes had higher PCR and sequencing success rates (96.3% and 97.5%, respectively), overlapping occurred between the intra- and inter-specific variations, which could lead to misidentification. Therefore, we propose the EF3 gene as a possible DNA barcode for the nectriaceous fungi.  相似文献   

7.
DNA barcodes could be a useful tool for plant conservation. Of particular importance is the ability to identify unknown plant material, such as from customs seizures of illegally collected specimens. Mexican cacti are an example of a threatened group, under pressure because of wild collection for the xeriscaping trade and private collectors. Mexican cacti also provide a taxonomically and geographically coherent group with which to test DNA barcodes. Here, we sample the matK barcode for 528 species of Cactaceae including approximately 75% of Mexican species and test the utility of the matK region for species-level identification. We find that the matK DNA barcode can be used to identify uniquely 77% of species sampled, and 79-87% of species of particular conservation importance. However, this is far below the desired rate of 95% and there are significant issues for PCR amplification because of the variability of primer sites. Additionally, we test the nuclear ITS regions for the cactus subfamily Opuntioideae and for the genus Ariocarpus (subfamily Cactoideae). We observed higher rates of variation for ITS (86% unique for Opuntioideae sampled) but a much lower PCR success, encountering significant intra-individual polymorphism in Ariocarpus precluding the use of this marker in this taxon. We conclude that the matK region should provide useful information as a DNA barcode for Cactaceae if the problems with primers can be addressed, but matK alone is not sufficiently variable to achieve species-level identification. Additional complementary regions should be investigated as ITS is shown to be unsuitable.  相似文献   

8.
锦葵科植物DNA条形码通用序列的筛选   总被引:1,自引:0,他引:1  
王柯  陈科力  刘震  陈士林 《植物学报》2011,46(3):276-284
对锦葵科植物样品的ITS、ITS2、rbcL、matK和psbA-trnH序列进行PCR扩增和测序, 比较各序列的扩增效率、测序成功率、种内和种间变异的差异以及barcoding gap图, 使用BLAST1和Nearest Distance方法评价不同序列的鉴定能力, 进而从这些候选序列中筛选出较适合锦葵科植物鉴别的DNA条形码序列。结果表明, ITS序列在采集的锦葵科植物11个种26个样品中的扩增成功率较高, 其种内、种间变异差异和barcoding gap较ITS2、psbA-trnH及rbcL序列具有更明显的优势, 且纳入60个属316个种共1 228个样品的网上数据后, 其鉴定成功率可达89.9%。psbA-trnH序列的扩增和测序成功率最高, 其鉴定成功率为63.2%, 并能鉴别一些ITS序列无法鉴别的种。实验结果表明, ITS和psbA-trnH是较适合鉴别锦葵科植物的DNA条形码序列组合。  相似文献   

9.
Four DNA barcoding loci,chloroplast loci rbcL,matK,trnH-psbA,and nuclear locus internal transcribed spacer (ITS),were tested for the accurate discrimination of the Chinese species of Gaultheria by using intraspecific and interspecific pairwise P-distance,Wilcoxon signed rank test,and tree-based analyses.This study included 186 individuals from 89 populations representing 30 species.For all individuals,single locus markers showed high levels of sequencing universality but were ineffective for species resolvability.Polymerase chain reaction amplification and sequencing were successful for all four loci.Both ITS and matK showed significantly higher levels of interspecific species delimitation than rbcL and trnH-psbA.A combination ofmatK and ITS was the most efficient DNA barcode among all studied regions,however,they do not represent an appropriate candidate barcode for Chinese Gaultheria,by which only 11 out of 30 species can be separated.Loci rbcL,matK,and trnH-psbA,which were recently proposed as universal plant barcodes,have a very poor capacity for species separation for Chinese Gaultheria.DNA barcodes may be reliable tools to identify the evolutionary units of this group,so further studies are needed to develop more efficient DNA barcodes for Gaultheria and other genera with complicated evolutionary histories.  相似文献   

10.
利用植物DNA条形码候选序列mat K、psb A-trn H、psb K-psb I和rbc L对蜘蛛抱蛋属(Aspidistra)植物的19种104批样品进行扩增和测序,并采用相似性搜索算法(BLAST)对各序列的鉴定效率进行评价,得出蜘蛛抱蛋属物种鉴定的最佳序列。结果显示,psb K-psb I的物种鉴定成功率为88.7%,在单一序列中成功率最高。通过多序列组合鉴定效率的比较,发现组合序列的鉴定成功率明显高于单一序列,其中mat K+(psb K-psb I)组合的鉴定成功率高达100%,基于该序列组合构建蜘蛛抱蛋属植物的系统发育树,结果显示同一物种的样品聚集度较好,多表现为单系。研究结果表明mat K+(psb K-psb I)序列组合可作为蜘蛛抱蛋植物种鉴定的最佳条形码序列。  相似文献   

11.
DNA barcoding is a technique to identify species by using standardized DNA sequences. In this study, a total of 105 samples, representing 30 Parnassia species, were collected to test the effectiveness of four proposed DNA barcodes (rbcL, matK, trnH-psbA and ITS) for species identification. Our results demonstrated that all four candidate DNA markers have a maximum level of primer universality and sequencing success. As a single DNA marker, the ITS region provided the highest species resolution with 86.7%, followed by trnH-psbA with 73.3%. The combination of the core barcode regions, matK+rbcL, gave the lowest species identification success (63.3%) among any combination of multiple markers and was found unsuitable as DNA barcode for Parnassia. The combination of ITS+trnH-psbA achieved the highest species discrimination with 90.0% resolution (27 of 30 sampled species), equal to the four-marker combination and higher than any two or three marker combination including rbcL or matK. Therefore, matK and rbcL should not be used as DNA barcodes for the species identification of Parnassia. Based on the overall performance, the combination of ITS+trnH-psbA is proposed as the most suitable DNA barcode for identifying Parnassia species. DNA barcoding is a useful technique and provides a reliable and effective mean for the discrimination of Parnassia species, and in combination with morphology-based taxonomy, will be a robust approach for tackling taxonomically complex groups. In the light of our findings, we found among the three species not identified a possible cryptic speciation event in Parnassia.  相似文献   

12.
DNA barcoding is a rapidly developing frontier technology that is gaining worldwide attention.Here,seven regions (psbA-trnH,matK,ycf5,rpoC1,rbcL,ITS2,and ITS) with potential for use as DNA barcodes were tested for their ability to identify 300 samples of 192 species from 72 genera of the family Rutaceae.To evaluate each barcode’s utility for species authentication,PCR amplification efficiency,genetic divergence,and barcoding gaps were assessed.We found that the ITS2 region exhibited the highest inter-specific divergence,and that this was significantly higher than the intra-specific variation in the "DNA barcoding gap" assessment and Wilcoxon two-sample tests.The ITS2 locus had the highest identification efficiency among all tested regions.In a previous study,we found that ITS2 was able to discriminate a wide range of plant taxa,and here we confirmed that ITS2 was also able to discriminate a number of closely related species.Therefore,we propose that ITS2 is a promising candidate barcode for plant species identification.  相似文献   

13.
In plants, matK and rbcL have been selected as core barcodes by the Consortium for the Barcode of Life (CBOL) Plant Working Group (PWG), and ITS/ITS2 and psbA‐trnH were suggested as supplementary loci. Yet, research on DNA barcoding of non‐flowering seed plants has been less extensive, and the evaluation of DNA barcodes in this division has been limited thus far. Here, we evaluated seven markers (psbA‐trnH, matK, rbcL, rpoB, rpoC1, ITS and ITS2) from non‐flowering seed plants. The usefulness of each region was assessed using four criteria: the success rate of PCR amplification, the differential intra‐ and inter‐specific divergences, the DNA barcoding gap and the ability to discriminate species. Among the seven loci tested, ITS2 produced the best results in the barcoding of non‐flowering seed plants. In addition, we compared the abilities of the five most‐recommended markers (psbA‐trnH, matK, rbcL, ITS and ITS2) to identify additional species using a large database of gymnosperms from GenBank. ITS2 remained effective for species identification in a wide range of non‐flowering seed plants: for the 1531 samples from 608 species of 80 diverse genera, ITS2 correctly authenticated 66% of them at the species level. In conclusion, the ITS2 region can serve as a useful barcode to discriminate non‐flowering seed plants, and this study will contribute valuable information for the barcoding of plant species.  相似文献   

14.
对锦葵科植物样品的ITS、ITS2、rbcL、matK和psbA-trnH序列进行PCR扩增和测序,比较各序列的扩增效率、测序成功率、种内和种间变异的差异以及barcoding gap图,使用BLAST1和Nearest Distance方法评价不同序列的鉴定能力,进而从这些候选序列中筛选出较适合锦葵科植物鉴别的DNA条形码序列。结果表明,ITS序列在采集的锦葵科植物11个种26个样品中的扩增成功率较高,其种内、种间变异差异和barcoding gap较ITS2、psbA-trnH及rbcL序列具有更明显的优势,且纳入60个属316个种共1228个样品的网上数据后,其鉴定成功率可达89.9%。psbA-trnH序列的扩增和测序成功率最高,其鉴定成功率为63.2%,并能鉴别一些ITS序列无法鉴别的种。实验结果表明,ITS和psbA-trnH是较适合鉴别锦葵科植物的DNA条形码序列组合。  相似文献   

15.
Species of Podophyllum, Dysosma, Sinopodophyllum, and Diphylleia, genera from Podophylloideae of Berberidaceae, have long been used in traditional herbal medicine in East Asia and/or North America. Accurate identification of the species of these four genera is crucial to their medicinal uses. In this study, we tested the utility of nine barcodes (matK, rbcL, atpH-atpI, rpl32-trnLUAG, rps18-clpp, trnL-trnF, trnL-ndhJ, trnS-trnfM, and internal transcribed spacer (ITS)) to discriminate different species of Podophylloideae. Thirty-six individuals representing 12 species of Podophylloideae were collected from different locations in China, Japan, and North America. We assessed the feasibility of amplification and sequencing of all markers, examined the levels of the barcoding gap based on DNA sequence divergence between ranges of intra- and interspecific variation using pairwise distances, and further evaluated successful identifications using each barcode by similarity-based and tree-based methods. Results showed that nine barcodes, except rps18-clpp, have a high level of primer universality and sequencing success. As a single barcode, ITS has the most variable sites, greater intra- and interspecific divergences, and the highest species discrimination rate (83%), followed by matKwhich has moderate variation and also high species discrimination rates. However, these species can also be discriminated by ITS alone, except Dysosma versipellis (Hance) M. Cheng ex T. S. Ying and D. pleiantha (Hance) Woodson. The combination of ITS + matK did not improve species resolution over ITS alone. Thus, we propose that ITS may be used as a sole region for identification of most species in Podophylloideae. The failure of ITS to distinguish D. versipellis and D. pleiantha is likely attributed to incomplete lineage sorting due to recent divergence of the two species.  相似文献   

16.
Zhang AB  Feng J  Ward RD  Wan P  Gao Q  Wu J  Zhao WZ 《PloS one》2012,7(2):e30986
Species identification via DNA barcodes is contributing greatly to current bioinventory efforts. The initial, and widely accepted, proposal was to use the protein-coding cytochrome c oxidase subunit I (COI) region as the standard barcode for animals, but recently non-coding internal transcribed spacer (ITS) genes have been proposed as candidate barcodes for both animals and plants. However, achieving a robust alignment for non-coding regions can be problematic. Here we propose two new methods (DV-RBF and FJ-RBF) to address this issue for species assignment by both coding and non-coding sequences that take advantage of the power of machine learning and bioinformatics. We demonstrate the value of the new methods with four empirical datasets, two representing typical protein-coding COI barcode datasets (neotropical bats and marine fish) and two representing non-coding ITS barcodes (rust fungi and brown algae). Using two random sub-sampling approaches, we demonstrate that the new methods significantly outperformed existing Neighbor-joining (NJ) and Maximum likelihood (ML) methods for both coding and non-coding barcodes when there was complete species coverage in the reference dataset. The new methods also out-performed NJ and ML methods for non-coding sequences in circumstances of potentially incomplete species coverage, although then the NJ and ML methods performed slightly better than the new methods for protein-coding barcodes. A 100% success rate of species identification was achieved with the two new methods for 4,122 bat queries and 5,134 fish queries using COI barcodes, with 95% confidence intervals (CI) of 99.75-100%. The new methods also obtained a 96.29% success rate (95%CI: 91.62-98.40%) for 484 rust fungi queries and a 98.50% success rate (95%CI: 96.60-99.37%) for 1094 brown algae queries, both using ITS barcodes.  相似文献   

17.
The potential application of DNA barcodes of plastid (matK, trnH-psbA, petD, and rbcL) and nuclear (internal transcribed spacer (ITS) of rDNA) DNA regions was investigated for 25 Hedyotis taxa. The ITS showed the best species discrimination by resolving 23 of the species as exclusive lineages with no shared alleles between any of the 24 distinct species (H. Assimilis and H. Mellii are not supported as distinct species based on our molecular and morphological data). Conversely, rbcL performed the worst and only resolved 10 of the species as exclusive lineages, and 10 species with shared alleles. Using ITS has the advantage of high PCR amplification success and it provides good intra- and interspecific variation distribution patterns. The most powerful plastid markers were petD and trnH-psbA, but we could amplify and sequence trnH-psbA for only 83% of the accessions sampled. Combination of ITS and petD performed extremely well, with all 24 of the distinct species resolved as exclusive lineages and no shared alleles between any of the distinct species. We therefore recommend ITS, or a combination of ITS and petD, as the standard DNA barcode in Hedyotis, but acknowledge that there are no shared alleles between distinct species for marK and rbcL combined.  相似文献   

18.
One application ofDNA barcoding is species identification based on sequences of a short and standardized DNA region.In plants,various DNA regions,alone or in combination,have been proposed and investigated,but consensus on a universal plant barcode remains elusive.In this study,we tested the utility of four candidate barcoding regions (rbcL,matK,trnH-psbA,and internal transcribed spacer (ITS)) as DNA barcodes for discriminating species in a large and hemiparasitic genus Pedicularis (Orobanchaceae).Amplification and sequencing was successful using single primer pairs for rbcL,trnH-psbA,and ITS,whereas two primer pairs were required for matK.Patterns of sequence divergence commonly showed a “barcoding gap”,that is,a bimodal frequency distribution of pairwise distances representing genetic diversity within and between species,respectively Considering primer universality,ease of amplification and sequencing,and performance in discriminating species,we found the most effective single-region barcode for Pedicularis to be ITS,and the most effective two-region barcode to be rbcL +ITS.Both discriminated at least 78% of the 88 species and correctly identified at least 89% of the sequences in our sample,and were effective in placing unidentified samples in known species groups.Our results suggest that DNA barcoding has the potential to aid taxonomic research in Pedicularis,a species-rich cosmopolitan clade much in need of revision,as well as ecological studies in its center of diversity,the Hengduan Mountains region of China.  相似文献   

19.
The potential application of DNA barcodes of plastid (matK, trnH–psbA, petD, and rbcL) and nuclear (internal transcribed spacer (ITS) of rDNA) DNA regions was investigated for 25 Hedyotis taxa. The ITS showed the best species discrimination by resolving 23 of the species as exclusive lineages with no shared alleles between any of the 24 distinct species (H. assimilis and H. mellii are not supported as distinct species based on our molecular and morphological data). Conversely, rbcL performed the worst and only resolved 10 of the species as exclusive lineages, and 10 species with shared alleles. Using ITS has the advantage of high PCR amplification success and it provides good intra- and interspecific variation distribution patterns. The most powerful plastid markers were petD and trnH–psbA, but we could amplify and sequence trnH–psbA for only 83% of the accessions sampled. Combination of ITS and petD performed extremely well, with all 24 of the distinct species resolved as exclusive lineages and no shared alleles between any of the distinct species. We therefore recommend ITS, or a combination of ITS and petD, as the standard DNA barcode in Hedyotis, but acknowledge that there are no shared alleles between distinct species for matK and rbcL combined.  相似文献   

20.
Large-scale DNA barcoding projects are now moving toward activation while the creation of a comprehensive barcode library for eukaryotes will ultimately require the acquisition of some 100 million barcodes. To satisfy this need, analytical facilities must adopt protocols that can support the rapid, cost-effective assembly of barcodes. In this paper we discuss the prospects for establishing high volume DNA barcoding facilities by evaluating key steps in the analytical chain from specimens to barcodes. Alliances with members of the taxonomic community represent the most effective strategy for provisioning the analytical chain with specimens. The optimal protocols for DNA extraction and subsequent PCR amplification of the barcode region depend strongly on their condition, but production targets of 100K barcode records per year are now feasible for facilities working with compliant specimens. The analysis of museum collections is currently challenging, but PCR cocktails that combine polymerases with repair enzyme(s) promise future success. Barcode analysis is already a cost-effective option for species identification in some situations and this will increasingly be the case as reference libraries are assembled and analytical protocols are simplified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号