首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Microscopic imaging of fluorescent reporters for key meristem regulators in live tissues is emerging as a powerful technique,enabling researchers to observe dynamic spatial and temporal distribution of hormonal and developmental regulators in living cells.Aided by time-lapse microphotography,new types of imaging acquisition and analysis software,and computational modeling,we are gaining significant insights into shoot apical meristem(SAM) behavior and function.This review is focused on summarizing recent advances in the understanding of SAM organization,development,and behavior derived from live-imaging techniques.This includes the revelation of mechanical forces in microtubule-controlled anisotropic growth,the role of the CLV-WUS network in the specification of peripheral zone and central zone cells,the multiple feedback loops involving cytokinin in controlling WUS expression,auxin dynamics in determining the position of new primordia,and,finally,sequence of regulatory events leading to de novo assembly of shoots from callus in culture.Future studies toward formulating "digital SAM" that incorporates multi-dimensional data ranging from images of SAM morphogenesis to a genome-scale expression map of SAM will greatly enhance our ability to understand,predict,and manipulate SAM,containing the stem cells that give rise to all above ground parts of a plant.  相似文献   

2.
Spencer D  White RG  Wildman SG 《Protoplasma》2005,225(3-4):185-190
Summary. Confocal laser scanning microscopy was used to study the distribution of the smallest detectable autofluorescing, chlorophyll-bearing structures in fresh, 40 μm thick longitudinal sections of the shoot apex of four dicotyledonous plants (Arabidopsis thaliana, Nicotiana glauca, Lupinus alba, and Spinacia oleracea). In all species, the smallest chlorophyll-bearing particles were found in the outermost cell layers (L1 and L2) of the shoot apex. Their distribution between these layers differed in each species. The smallest such particles were about 0.5–1.0 μm in maximum dimension, approximating the size of a single granum in the developing leaf. Their size and abundance increased with increasing cell age and distance from the peak of the apex. Immediately beneath the L1 and L2 layers was a zone largely devoid of these particles. Below this nonfluorescing zone, in the region where the derivatives of the meristematic zone differentiate into cells of the central pith region, the size and abundance of the chlorophyll-bearing particles increased progressively with increasing distance from the nonfluorescing zone. The presence of these small autofluorescing particles in the L1 and L2 cell layers of the shoot apex places the development of photosystem II fluorescence at an earlier stage of leaf development than previously observed. The use of confocal laser scanning microscopy to study unfixed sections provides another useful metabolic marker for mapping patterns of differentiation and development in the cells of the shoot apex. Correspondence and reprints: CSIRO Plant Industry, GPO Box 1600, Canberra, A.C.T. 2601, Australia.  相似文献   

3.
4.
Lin T  Islam O  Heese K 《Cell research》2006,16(11):857-871
Stem cells intrigue. They have the ability to divide exponentially, recreate the stem cell compartment, as well as create differentiated cells to generate tissues. Therefore, they should be natural candidates to provide a renewable source of cells for transplantation applied in regenerative medicine. Stem cells have the capacity to generate specific tissues or even whole organs like the blood, heart, or bones. A subgroup of stem cells, the neural stem cells (NSCs), is characterized as a self-renewing population that generates neurons and glia of the developing brain. They can be isolated, genetically manipulated and differentiated in vitro and reintroduced into a developing, adult or a pathologically altered central nervous system. NSCs have been considered for use in cell replacement therapies in various neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Characterization of genes with tightly controlled expression patterns during differentiation represents an approach to understanding the regulation of stem cell commitment. The regulation of stem cell biology by the ATP-binding cassette (ABC) transporters has emerged as an important new field of investigation. As a major focus of stem cell research is in the manipulation of cells to enable differentiation into a targeted cell population; in this review, we discuss recent literatures on ABC transporters and stem cells, and propose an integrated view on the role of the ABC transporters, especially ABCA2, ABCA3, ABCB 1 and ABCG2, in NSCs' proliferation, differentiation and regulation, along with comparisons to that in hematopoietic and other stem cells.  相似文献   

5.
6.
7.
8.
A new kind of marattialean raches are reported from the coal balls in Coal Seam No.7 in the upper part of the Taiyuan Formation (early Early Permian) from Taiyuan, Shanxi, China and are assigned to the genus Stipitopteris Grand'Eury (Psaroniaceae). The present specimens are different from all six reported species of the genus, and are therefore proposed as a new species: Stipitopteris shanxiensis. The raches of the new species are generally dorsi-ventrally flattened. The main raches usually exhibit scales of different forms on their surface. Beneath the epidermis is a zone of parenchymatous cells, some of which contain tannin-like contents. Inside this is a zone of small sclerenchymatous cells. Inward are the ground tissue and vascular bundles. The vascular bundles are continuous and are in two circles: the outer circle assumes a transversely elliptical shape with the gap and pinna trace, and the inner circle assumes a shallow C.shape with inrolled ends. The ground tissue located at the inner side of the vascular bundle is composed of thicker-walled parenchymatous cells. The cells of the ground tissue are vertically elongated in longitudinal sections. Subordered raches are smaller and have simpler structures than the main raches. The parenchyma zone beneath the epidermis is thinner, usually one to two cells wide and the sclerenchyma zone is usually absent. The scales are poorly developed and there is only one C-shaped vascular bundle. The new species is comparable to the crosiers of Psaroniaceae of the Euramerican Flora in some aspects, for example, it has a dorsi-ventrally flattened rachis and scales on the surface of the rachis. However, the other features and the preservative conditions of the present specimens indicate that they are not crosiers, but fully developed or mature raches. The new species is the first well-studied anatomically-preserved rachis of Psaroniaceae from the Cathaysian Flora and bears significance not only in understanding the anatomy and taxonomy of Psaroniaceae in the Cathaysian Flora, but also in the relationship between the Euramerican Flora and the Cathaysian Flora.  相似文献   

9.
10.
正Inflorescences are flower-bearing shoots that originate from pools of stem cells in shoot apical meristems (SAM).Inflorescence architecture is determined by a process of meristem maturation,during which stem cell fate switches from a vegetative to a reproductive growth program.A major factor in plant reproductive success in nature and yield in agriculture is the number of branches and flowers on inflorescences (Kobayashi and Weigel,2007;  相似文献   

11.
Stomatal sensitivity to root signals induced by soil drying may vary between environments and plant species. This is likely to be a result of the interactions and modulations ámong root signals. As a stress signal, abscisic acid (ABA) plays a central role in root to shoot signaling, pH and hydraulic signals may interact with ABA signals and thus, jointly regulate stomatal responses to changed soil water status, pH itself can be modified by several factors, among which the chemical compositions in the xylem stream and the live cells surrounding the vessels play crucial roles. In addition to the xylem pH, more attention should be paid to the direct modulation of leaf apoplastic pH, because many chemical compositions might strongly modify the leaf apoplastic pH while having no significant effect on the xylem pH. The direct modulation of the ABA signal intensity may be more important for the regulation of stomatal responses to soil drying than the ABA signal per se. The ABA signal is also regulated by the ABA catabolism and the supply of precursors to the roots if a sustained root to shoot communication of soil drying operates at the whole plant level. More importantly, ABA catabolism could play crucial roles in the determination of the fate of the ABA signal and thereby control the stomatal behavior of the root-sourced ABA signal.  相似文献   

12.
In the Drosophila larval brain, type I and type Ⅱ neuroblasts(NBs) undergo a series of asymmetric divisions which give rise to distinct progeny lineages. The intermediate neural progenitors(INPs) exist only in type Ⅱ NB lineages. In this study, we reveal a novel function of Inscuteable(Insc) that acts to maintain type I NB lineage identity. In insc type I NB clones of mosaic analyses with a repressible cell marker(MARCM), the formation of extra Deadpan(Dpn)tNB-like and GMC-like cells is observed. The lack of Insc leads to the defective localization and segregation of Numb during asymmetric cell division. By the end of cytokinesis, this results in insufficient Numb in ganglion mother cells(GMCs). The formation of extra Deadpan(Dpn)tcells in insc clones is prevented by the attenuation of Notch activity. This suggests that Insc functions through the Numb/Notch signaling pathway. We also show that in the absence of Insc in type I NB lineages, the cellular identity of GMCs is altered where they adopt an INP-like cell fate as indicated by the initiation of Dpn expression accompanied by a transient presence of Earmuff(Erm).These INP-like cells have the capacity to divide multiple times. We conclude that Insc is necessary for the maintenance of type I NB lineage identity. Genetic manipulations to eliminate most type I NBs with overproliferating type Ⅱ NBs in the larval brain lead to altered circadian rhythms and defective phototaxis in adult flies. This indicates that the homeogenesis of NB lineages is important for the adult's brain function.  相似文献   

13.
Double fertilization is a key process of sexual reproduction in higher plants. The role of calcium in the activation of female sex cells through fertilization has recently received a great deal of attention. The establishment of a Ca^2+-imaging technique for living, single, female sex cells is a difficult but necessary prerequisite for evaluating the role of Ca^2+ in the transduction of external stimuli, including the fusion with the sperm cell, to internal cellular processes. The present study describes the use of Fluo-3 for reporting the Ca^2+ signal in isolated, single, female sex cells, egg cells and central cells, of tobacco plants. A suitable loading protocol was optimized by loading the cells at pH 5.6 with 2 μM Fluo-3 for 30 min at 30 ℃. Under these conditions, several key factors related to in vitro fertilization were also investigated in order to test their possible effects on the [Ca^2+]cyt of the female sex cells. The results indicated that the bovine serum albumin-fusion system was superior to the polyethlene glycol-fusion system for detecting calcium fluctuations in female sex cells during fertilization. The central cell was fertilized with the sperm cell in bovine serum albumin; however, no evident calcium dynamic was detected, implying that a transient calcium rise might be a specific signal for egg cell fertilization.  相似文献   

14.
Neurogenesis takes place in the adult mammalian brain in three areas:Subgranular zone of the dentate gyrus(DG);subventricular zone of the lateral ventricle;olfactory bulb.Different molecular markers can be used to characterizethe cells involved in adult neurogenesis.It has been recently suggested that a population of bone marrow(BM)progenitor cells may migrate to the brain and differentiate into neuronal lineage.To explore this hypothesis,we injected recombinant SV40-derived vectors into the BM and followed the potential migration of the transduced cells.Long-term BM-directed gene transfer using recombinant SV40-derived vectors leads to expression of the genes delivered to the BM firstly in circulating cells,then after several months in mature neurons and microglial cells,and thus without central nervous system(CNS)lesion.Most of transgene-expressing cells expressed NeuN,a marker of mature neurons.Thus,BM-derived cells may function as progenitors of CNS cells in adult animals.The mechanism by which the cells from the BM come to be neurons remains to be determined.Although the observed gradual increase in transgene-expressing neurons over 16mo suggests that the pathway involved differentiation of BM-resident cells into neurons,cell fusion as the principal route cannot be totally ruled out.Additional studies using similar viral vectors showed that BM-derived progenitor cells migrating in the CNS express markers of neuronal precursors or immature neurons.Transgene-positive cells were found in the subgranular zone of the DG of the hippocampus 16 mo after intramarrow injection of the vector.In addition to cells expressing markers of mature neurons,transgene-positive cells were also positive for nestin and doublecortin,molecules expressed by developing neuronal cells.These cells were actively proliferating,as shown by short term BrdU incorporation studies.Inducing seizures by using kainic acid increased the number of BM progenitor cells transduced by SV40vectors migrating to the hippocampus,and these cells were seen at earlier time points in the DG.We show that the cell membrane chemokine receptor,CCR5,and its ligands,enhance CNS inflammation and seizure activity in a model of neuronal excitotoxicity.SV40-based gene delivery of RNAi targeting CCR5 to the BM results in downregulating CCR5 in circulating cells,suggesting that CCR5 plays an important role in regulating traffic of BM-derived cells into the CNS,both in the basal state and in response to injury.Furthermore,reduction in CCR5 expression incirculating cells provides profound neuroprotection from excitotoxic neuronal injury,reduces neuroinflammation,and increases neuronal regeneration following this type of insult.These results suggest that BM-derived,transgeneexpressing,cells can migrate to the brain and that they become neurons,at least in part,by differentiating into neuron precursors and subsequently developing into mature neurons.  相似文献   

15.
16.
Dear Editor,Over a half-century ago,Dr.Leonard Hayflick described the phenotype of a finite lifespan for human fibroblasts being passaged in in vitro cell culture(Hayflick et al.,1961),a phenomenon today known as replicative cellular senescence.Cellular senescence has been defined as a state in which cells lose their potential to divide and are permanently arrested in either the G1,or arguably the G2 stage of the cell cycle(Mao et al.,2012).In addition to replicative cellular senescenee—which is induced by large amounts of DNA damage at telomeres due to loss of the specialized T-loop structure—xogenous sublethal stresses such as ionizing radiati on,genotoxic chemicals or hyper-activated on cogenes may also trigger a similar form of senescence,stress induced premature cellular senescenee(SIPS).  相似文献   

17.
Erythropoietin(EPO) is the major regulator of mamalian erythropoisis,which stimulates the growth and differentiation of hematopoietic cells through interaction with its receptor(EPO-R),Here we use HEL cells (a human erythro-leukemia cell line) as a model to elucidate the pathway of signal transduction in the EPO-induced HEL cells.Our data show that the EPOR (EPO receptor) on the surface of HEL cells interacts with the Janus tyrosine protein kinase(Jak2) to transduce intracellular signals through phosphorylation of cytoplasmic proteins in EPO-treated HEL cells.Both STAT1 and STAT5 in this cell line are tyrosine-phosphorylated and translocated to nucleus following the dinding of EPO to HEL cells.Furthermore,the dinding of both STAT1 and STAT5 proteins to specific DNA elements(SIE and PIE elements) is revealed in an EPO-dependent manner,Our data demonstrate that the pathway of signal transduction following the binding of EPO to HEL cells is similar to immature eryhroid cell from the spleen of mice infected with anemia strain of Friend virus.  相似文献   

18.
In animal cells, Golgi apparatus is located near the microtubule organizing center (MTOC) and its position is determined partly by 58K protein. By sodium dodecyl-sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immuno-blotting methods, a 58K-like protein has been found in pollen grains and pollen tubes of Lilium davidii. Its molecular weight is very similar to that of the 58K protein of animal cells. By immunofluorescence labeling, under a confocal laser scanning microscope (CLSM), the animal 58K antibody revealed a punctate staining in pollen grains and pollen tubes, which is consistent with the distribution of Golgi apparatus in plant cells. In addition, immuno-gold labeling and transmission electron microscopy showed that the 58K-like protein bound mainly to the membrane of vesicles-like structure near Golgi apparatus. This is the first demonstration of the 58K-like protein in plant cells.  相似文献   

19.
Genome replication of reovirus occurs in cytoplasmic inclusion bodies called viral factories or viroplasms. The viral nonstructural protein uNS, encoded by genome segment M3, is not a component of mature virions, but is expressed to high levels in infected cells and is concentrated in the infected cell factory matrix. Recent studies have demonstrated that uNS plays a central role in forming the matrix of these structures, as well as in recruiting other components to them for putative roles in genome replication and particle assembly.  相似文献   

20.
##正## A new bionic approach is presented to find the optimal topologies of a structure with tension-only or compression-onlymaterial based on bone remodelling theory.By traditional methods,the computational cost of topology optimization of thestructure is high due to material nonlinearity.To improve the efficiency of optimization,the reference-interval with material-replacement method is presented.In the method,firstly,the optimization process of a structure is considered as bone remodellingprocess under the same loading conditions.A reference interval of Strain Energy Density (SED),corresponding to thedead zone or lazy zone in bone mechanics,is adopted to control the update of the design variables.Secondly,a material-replacement scheme is used to simplify the Finite Element Analysis (FEA) of structure in optimization.In the operation ofmaterial-replacement,the original tension-only or compression-only material in design domain is replaced with a new isotropicmaterial and the Effective Strain Energy Density (ESED) of each element can be obtained.Finally,the update of design variablesis determined by comparing the local ESED and the current reference interval of SED,e.g.,the increment of a relativedensity is nonzero if the local ESED is out of the current reference interval.Numerical results validate the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号