首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prey intake by Atlantic salmon Salmo salar and brown trout Salmo trutta was measured across different riparian vegetation types: grassland, open canopy deciduous and closed canopy deciduous, in upland streams in County Mayo, Western Ireland. Fishes were collected by electrofishing while invertebrates were sampled from the benthos using a Surber sampler and drifting invertebrates collected in drift traps. Aquatic invertebrates dominated prey numbers in the diets of 0+ year Atlantic salmon and brown trout and 1+ year Atlantic salmon, whereas terrestrial invertebrates were of greater importance for diets of 1+ and 2+ year brown trout. Terrestrial prey biomass was generally greater than aquatic prey for 1+ and 2+ year brown trout across seasons and riparian types. Prey intake was greatest in spring and summer and least in autumn apart from 2+ year brown trout that sustained feeding into autumn. Total prey numbers captured tended to be greater for all age classes in streams with deciduous riparian canopy. Atlantic salmon consumed more aquatic prey and brown trout more terrestrial prey with an ontogenetic increase in prey species richness and diversity. Atlantic salmon and brown trout diets were most similar in summer. Terrestrial invertebrates provided an important energy subsidy particularly for brown trout. In grassland streams, each fish age class was strongly associated with aquatic, mainly benthic invertebrates. In streams with deciduous riparian canopy cover, diet composition partitioned between conspecifics with older brown trout associated with surface drifting terrestrial invertebrates and older Atlantic salmon associated with aquatic invertebrates with a high drift propensity in the water column and 0+ year fish feeding on benthic aquatic invertebrates. Deciduous riparian canopy cover may therefore facilitate vertical partitioning of feeding position within the water column between sympatric Atlantic salmon and brown trout. Implications for riparian management are discussed.  相似文献   

2.
Fitness and community consequences of avoiding multiple predators   总被引:6,自引:0,他引:6  
We investigated the fitness and community consequences of behavioural interactions with multiple predators in a four-trophic-level system. We conducted an experiment in oval flow-through artificial-stream tanks to examine the single and interactive sublethal effects of brook trout and stoneflies on the size at emergence of Baetis bicaudatus (Ephemeroptera: Baetidae), and the cascading trophic effects on algal biomass, the food resource of the mayflies. No predation was allowed in the experiment, so that all effects were mediated through predator modifications of prey behaviour. We reared trout stream Baetis larvae from just before egg development until emergence in tanks with four treatments: (1) water from a holding tank with two brook trout (trout odour), (2) no trout odour + eight stoneflies with glued mouthparts, (3) trout odour + stoneflies and (4) no trout odour or stoneflies. We ended the experiment after 3 weeks when ten male and ten female subimagos had emerged from each tank, measured the size of ten male and ten female mature nymphs (with black wing pads), and collected algal samples from rocks at six locations in each tank. To determine the mechanism responsible for sublethal and cascading effects on lower trophic levels we made day and night observations of mayfly behaviour for the first 6 days by counting mayflies drifting in the water column and visible on natural substrata in the artificial streams. Trout odour and stoneflies similarly reduced the size of male and female Baetis emerging from artificial streams, with non-additive effects of both predators. While smaller females are less fecund, a fitness cost of small male size has not been determined. The mechanism causing sublethal effects on Baetis differed between predators. While trout stream Baetis retained their nocturnal periodicity in all treatments, stoneflies increased drift dispersal of mayflies at night, and trout suppressed night-time feeding and drift of mayflies. Stoneflies had less effect on Baetis behaviour when fish odour was present. Thus, we attribute the non-additivity of effects of fish and stoneflies on mayfly growth to an interaction modification whereby trout odour reduced the impact of stoneflies on Baetis behaviour. Since stonefly activity was also reduced in the presence of fish odour, this modification may be attributed to the effect of fish odour on stonefly behaviour. Only stoneflies delayed Baetis emergence, suggesting that stoneflies had a greater sublethal effect on Baetis fitness than did trout. Delayed emergence may reduce Baetis fitness by increasing risks of predation and parasitism on larvae, and increasing competition for mates or oviposition sites among adults. Finally, algal biomass was higher in tanks with both predators than in the other three treatments. These data implicate a behavioural trophic cascade because predators were not allowed to consume prey. Therefore, differences in algal biomass were attributed to predator-induced changes in mayfly behaviour. Our study demonstrates the importance of considering multiple predators when measuring direct sublethal effects of predators on prey fitness and indirect effects on lower trophic levels. Identification of an interaction modification illustrates the value of obtaining detailed information on behavioural mechanisms as an aid to understanding the complex interactions occurring among components of ecological communities. Received: 20 March 1997 / Accepted: 29 September 1997  相似文献   

3.
Brown trout and food web interactions in a Minnesota stream   总被引:1,自引:0,他引:1  
1. We examined indirect, community‐level interactions in a stream that contained non‐native brown trout (Salmo trutta Linnaeus), native brook trout (Salvelinus fontinalis Mitchill) and native slimy sculpin (Cottus cognatus Richardson). Our objectives were to examine benthic invertebrate composition and prey selection of fishes (measured by total invertebrate dry mass, dry mass of individual invertebrate taxa and relative proportion of invertebrate taxa in the benthos and diet) among treatments (no fish, juvenile brook trout alone, juvenile brown trout alone, sculpin with brook trout and sculpin with brown trout). 2. We assigned treatments to 1 m2 enclosures/exclosures placed in riffles in Valley Creek, Minnesota, and conducted six experimental trials. We used three designs of fish densities (addition of trout to a constant number of sculpin with unequal numbers of trout and sculpin; addition of trout to a constant number of sculpin with equal numbers of trout and sculpin; and replacement of half the sculpin with an equal number of trout) to investigate the relative strength of interspecific versus intraspecific interactions. 3. Presence of fish (all three species, alone or in combined‐species treatments) was not associated with changes in total dry mass of benthic invertebrates or shifts in relative abundance of benthic invertebrate taxa, regardless of fish density design. 4. Brook trout and sculpin diets did not change when each species was alone compared with treatments of both species together. Likewise, we did not find evidence for shifts in brown trout or sculpin diets when each species was alone or together. 5. We suggest that native brook trout and non‐native brown trout fill similar niches in Valley Creek. We did not find evidence that either species had an effect on stream communities, potentially due to high invertebrate productivity in Valley Creek.  相似文献   

4.
1. Modelling the effects of climate change on freshwater fishes requires robust field‐based estimates accounting for interactions among multiple factors. 2. We used data from an 8‐year individual‐based study of a wild brook trout (Salvelinus fontinalis) population to test the influence of water temperature on season‐specific growth in the context of variation in other environmental (i.e. season, stream flow) or biotic factors (local brook trout biomass density and fish age and size) in West Brook, a third‐order stream in western Massachusetts, U.S.A. 3. Changes in ambient temperature influenced individual growth rates. In general, higher temperatures were associated with higher growth rates in winter and spring and lower growth rates in summer and autumn. However, the effect of temperature on growth was strongly context‐dependent, differing in both magnitude and direction as a function of season, stream flow and fish biomass density. 4. We found that stream flow and temperature had strong and complex interactive effects on trout growth. At the coldest temperatures (in winter), high stream flows were associated with reduced trout growth rates. During spring and autumn and in typical summers (when water temperatures were close to growth optima), higher flows were associated with increased growth rates. In addition, the effect of flow at a given temperature (the flow‐temperature interaction) differed among seasons. 5. Trout density negatively affected growth rate and had strong interactions with temperature in two of four seasons (i.e. spring and summer) with greater negative effects at high temperatures. 6. Our study provided robust, integrative field‐based estimates of the effects of temperature on growth rates for a species which serves as a model organism for cold‐water adapted ectotherms facing the consequences of environmental change. Results of the study strongly suggest that failure to derive season‐specific estimates, or to explicitly consider interactions with flow regime and fish density, will seriously compromise our ability to predict the effects of climate change on stream fish growth rates. Further, the concordance we found between empirical observations and likely energetic mechanisms suggests that our general results should be relevant at broader spatial and temporal scales.  相似文献   

5.
Summary
  • 1 To investigate the carrying capacity and factors affecting growth of rainbow trout in Lake Rotoiti, we employed a bioenergetics model to assess the influence of stocking rates, timing of releases and prey abundance on growth and prey consumption. We hypothesised that stocking rates and prey abundance would affect growth and prey consumption by influencing per‐capita prey availability, and that the environmental conditions encountered by fish at the time of stocking would affect growth and consumption.
  • 2 Prey consumption of stocked rainbow trout was calculated with the Wisconsin bioenergetics model. We calculated growth trajectories of released trout based on data from stocked trout that were released in spring and autumn from 1993 to 2009 and then re‐captured by anglers. Diet, prey energy density, body mass lost during spawning and lake temperature were measured locally.
  • 3 Stocking timing had no effect on return rates to anglers or length or weight of caught fish. Although trout released in autumn were smaller than those released in spring, autumn‐released trout grew at a faster rate and had similar lengths and weights to spring cohorts after 2 years of growth in the lake. Modelled consumption parameters were negatively correlated with trout population size, suggesting that stocking rates (347–809 fish ha?1 year?1) caused density‐dependent effects on growth. Although common smelt (Retropinna retropinna) accounted for 85% of total prey consumption, no significant relationship was found between prey consumption by individual trout and adult smelt abundance, possibly because trout are targeting smaller smelt that our abundance estimate did not account for.
  • 4 Releasing trout in autumn appears to be advantageous for growth, possibly because (i) temperature is more suitable for growth in autumn–winter than in spring–summer and (ii) prey for small trout is abundant in autumn. Mild winter conditions appear to enhance overwinter survival and growth of rainbow trout in warm‐temperate lakes compared to higher latitudes. This implies that moderately productive warm‐temperate lake ecosystems are highly suitable for trout growth in winter, but less so in summer, when lake stratification and high nutrient levels may create conditions suitable for algal blooms and hypolimnetic deoxygenation. High growth rates of trout in warm‐temperate lakes can therefore be supported by timing releases to coincide with favourable winter conditions.
  相似文献   

6.
1. Manipulative experiments were carried out in four Hong Kong streams (two shaded, two unshaded) to investigate the impact of grazing by an algivorous fish, Pseudogastromyzon myersi, on benthic algal biomass and assemblage composition. Experiments were conducted and repeated during both the dry and wet seasons to determine whether spate‐induced disturbance modified any grazing effect. Treatments comprised fish exclusion and inclusion via closed and open cages, with a no‐cage treatment used as a control for the cage effect. Treatments were maintained for 4 weeks in each experimental run. 2. Grazing by P. myersi reduced benthic algal biomass and the organic matter content of periphyton in open cages and the no‐cage treatment relative to closed cages. The similarity between open‐cage and no‐cage treatments was evidence that the overall difference among treatments was caused by limiting fish access to closed cages and not merely an artifact of caging. Grazing effects were broadly similar in all streams, but there was a significant statistical interaction between treatments and seasons. 3. Analysis of dry‐season data matched the overall trend in inter‐treatment differences, confirming the effects of grazing by P. myersi on algal biomass and periphyton organic matter. Significant differences in algal assemblage composition between closed‐cage and no‐cage treatments during the dry season reflected reductions in the abundance of erect, stalked diatoms (Gomphonema) and filamentous cyanobacteria (Homeothrix). Removal of these vulnerable overstorey algae by P. myersi resulted in greater abundance of understorey diatoms (Achnanthes and Cocconeis) in the no‐cage treatment in all streams during the dry season. The composition of algal assemblages in open cages was intermediate between the other two treatments. 4. Although fish densities were greater in all streams during the wet season, spate‐induced disturbance obscured grazing effects and there were no significant differences among treatments attributable to fish grazing. Seasonal variation in impacts of P. myersi grazing provides support for the harsh‐benign hypothesis, and confirms that biotic factors are less important controls of stream algal biomass and assemblage structure during periods (i.e. the wet season in Hong Kong) when abiotic disturbances are frequent or intense.  相似文献   

7.
  1. Temperate headwater streams traditionally have been considered heterotrophic and brown food web dominated with little primary production. Recent work, however, suggests algae on leaves in these streams may play a greater role than previously thought through interactions with microbial decomposers like fungi. Algae also may be important for macroinvertebrates colonizing leaves in streams. Algae are a more nutritious food resource for shredders than fungi and bacteria and provide a food resource for non-shredder macroinvertebrates.
  2. In a field experiment, we manipulated light in three low-nutrient and three high-nutrient streams using leaf bags filled with red maple leaves in winter and spring. After four weeks we measured algal and fungal biomass, leaf stoichiometry, and macroinvertebrate abundance and biomass associated with the leaf bags. We also identified the macroinvertebrate community and examined differences in functional feeding guilds and taxa under ambient- and shaded-light treatments and low- and high-nutrient concentrations in relation to measured leaf characteristics.
  3. Algal biomass on leaves was greatest in high-nutrient streams and ambient-light treatments in both seasons. Fungal biomass on leaves was greatest in high-nutrient streams and showed a moderate marginally significant positive correlation with algae during the winter. Leaf C:N was negatively correlated to algae in winter and fungi in both seasons, while leaf N:P and C:P were negatively correlated to fungi in winter and algae in spring. Interactions between fungi and algae on leaves and the nutritional importance of each for macroinvertebrates likely change across seasons, potentially impacting macroinvertebrate community composition.
  4. Macroinvertebrate diversity did not differ, but biomass was significantly greater in shaded-light treatments during spring. Abundance was highest in the high-nutrient ambient-light conditions in both seasons, corresponding to greatest algal biomass. Functional feeding guild biomass and abundance were related to different leaf characteristics by season and guild. Higher algal biomass was an important factor for colonization of certain macroinvertebrates (e.g., Ephemerella (Ephemeroptera: Ephemerellidae) and Stenonema (Ephemeroptera: Heptageniidae)), while others were more abundant under shaded treatments with lower algal biomass (e.g., Tipula (Diptera: Tipulidae)), indicating taxa-specific responses.
  5. Leaf-associated algae may be an important factor mediating macroinvertebrate communities associated with leaves in temperate headwater streams. Our results demonstrate that green and brown food webs intersect within leaf packs, and they cannot be easily disentangled. We therefore should consider both autochthonous and allochthonous resources within headwater streams when examining their communities or developing water management strategies.
  相似文献   

8.
Ward DM  Nislow KH  Folt CL 《Oecologia》2008,156(3):515-522
The effect of predators on prey populations depends on how predator-caused mortality changes with prey population density. Predators can enforce density-dependent prey mortality and contribute to population stability, but only if they have a positive numerical or behavioral response to increased prey density. Otherwise, predator saturation can result in inversely density-dependent mortality, destabilizing prey populations and increasing extinction risk. Juvenile salmon and trout provide some of the clearest empirical examples of density-dependent mortality in animal populations. However, although juvenile salmon are very vulnerable to predators, the demographic effects of predators on juvenile salmon are unknown. We tested the interactive effects of predators and population density on the mortality of juvenile Atlantic salmon (Salmo salar) using controlled releases of salmon in natural streams. We introduced newly hatched juvenile salmon at three population density treatments in six study streams, half of which contained slimy sculpin (Cottus cognatus), a common generalist predator (18 release sites in total, repeated over two summers). Sculpin reversed the direction of density dependence for juvenile salmon mortality. Salmon mortality was density dependent in streams with no sculpin, but inversely density dependent in streams where sculpin were abundant. Such predator-mediated inverse density dependence is especially problematic for prey populations suppressed by other factors, thereby presenting a fundamental challenge to persistence of rare populations and restoration of extirpated populations.  相似文献   

9.
Diatoms are important primary producers in shallow water environments. Few studies have assessed the importance of biological interactions in structuring these communities. In the present study, benthic diatom community structure in relation to manipulated food webs was assessed using in situ mesocosms, whereby predator‐free environments and environments comprising two different fish species were assessed. Zooplankton abundance, settled algal biomass and the diatom community were monitored over a 12‐day period across each of the three trophic scenarios. Differences among treatments over time were observed in zooplankton abundances, particularly copepods. Similarly, the benthic diatom community structure changed significantly over time across the three trophic treatments. However, no differences in total algal biomass were found among treatments. This was likely the result of non‐diatom phytoplankton contributions. We propose that the benthic diatom community structure within the mesocosms was influenced by trophic cascades and potentially through direct consumption by the fish. The study highlights that not only are organisms at the base of the food web affected by predators at the top of the food web, but that predator identity is potentially an important consideration for predator–prey interaction outcomes with consequences for multiple trophic levels.  相似文献   

10.
  1. Drying intermittent stream networks often have permanent water refuges that are important for recolonisation. These habitats may be hotspots for interactions between fishes and invertebrates as they become isolated, but densities and diversity of fishes in these refuges can be highly variable across time and space.
  2. Insect emergence from streams provides energy and nutrient subsidies to riparian habitats. The magnitude of such subsidies may be influenced by in-stream predators such as fishes.
  3. We examined whether benthic macroinvertebrate communities, emerging adult insects, and algal biomass in permanent grassland stream pools differed among sites with naturally varying densities of fishes. We also manipulated fish densities in a mesocosm experiment to address how fishes might affect colonisation during recovery from hydrologic disturbance.
  4. Fish biomass had a negative impact on invertebrate abundance, but not biomass or taxa richness, in natural pools. Total fish biomass was not correlated with total insect emergence in natural pools, but orangethroat darter (Etheostoma spectabile) biomass was inversely correlated with emerging Chironomidae biomass and individual midge body size. The interaction in our models between predatory fish biomass and date suggested that fishes may also delay insect emergence from natural pools, altering the timing of aquatic–terrestrial subsidies.
  5. There was an increase over time in algal biomass (chlorophyll-a) in mesocosms, but this did not differ among fish density treatments. Regardless, fish presence in mesocosms reduced the abundance of colonising insects and total invertebrate biomass. Mesocosm invertebrate communities in treatments without fishes were characterised by more Chironomidae, Culicidae, and Corduliidae.
  6. Results suggest that fishes influence invertebrates in habitats that represent important refuges during hydrologic disturbance, hot spots for subsidy exports to riparian food webs, and source areas for colonists during recovery from hydrologic disturbance. Fish effects in these systems include decreasing invertebrate abundance, shifting community structure, and altering patterns of invertebrate emergence and colonisation.
  相似文献   

11.
1. We tested the hypothesis that indirect food web interactions between some common, invertivorous fishes and their prey would positively affect growth of an algivorous fish species. Specifically, we predicted that orangethroat darter (Etheostoma spectabile) would increase periphyton biomass via a top‐down pathway, indirectly enhancing growth of the algivorous central stoneroller minnow (Campostoma anomalum). Moreover, we predicted that sand shiner (Notropis stramineus) would increase periphyton biomass via a bottom‐up pathway and indirectly enhance growth of the stoneroller minnow. 2. In an 83‐day experiment in large, outdoor, stream mesocosms, we stocked two fish species per mesocosm (stoneroller and either darter or shiner), estimated the effects of the invertivorous and grazing fishes on periphyton biomass and estimated growth of the algivorous fish. 3. The darter consumed grazing invertebrates, indirectly increasing periphyton biomass. The shiner consumed terrestrial insects as predicted, but it did not affect periphyton biomass. 4. In support of our hypothesis, the darter indirectly enhanced stoneroller growth. As predicted, stonerollers consumed the increased periphyton in streams with darters, resulting in greater growth, condition and gut fullness compared to streams without darters. No indirect interaction was observed between stonerollers and shiners. 5. Our study suggests that some invertivorous fish species can positively affect growth of algivorous fishes through indirect food web interactions. Thus, in stream communities, it is possible that the loss of a single, invertivorous fish taxon could have negative consequences on algivorous fish populations via the removal of positive indirect food web interactions.  相似文献   

12.
Cascading effects of predators can affect ecosystem properties by changing plant biomass, distribution and assemblage composition. Using data from field surveys and whole‐stream experiments we tested the hypothesis that predatory trout change assemblage composition of benthic algae in high‐elevation streams mediated by grazer behavior. Field surveys revealed that the taxonomic composition of algal assemblages differed significantly between streams that contained trout and those that were fishless; but comparisons of palatable versus unpalatable algal taxa between fish and fishless streams were equivocal because of high natural variability. Therefore, we tested for a behavioral (non‐consumptive) trophic cascade experimentally by adding brook trout chemical cues to six naturally fishless streams for 25 days and compared responses of grazers and algae to six reference streams without fish cues added. Algal response variables included rates of change in the abundance of three physiognomic categories, from most palatable (attached erect and prostrate diatoms) to least palatable (non‐diatoms), as determined from food selectivity analyses of the most common grazers (mayflies and caddisflies). Fish cues did not affect the mean densities or changes in densities of total grazers or any individual grazer species. However, in streams where fish cues were added, rates of accrual of attached erect diatoms, which was the preferred algal type for the grazer most vulnerable to trout predation (Baetis), were higher and their densities increased significantly faster with increasing densities of this grazer species than in reference streams. Results of his experiment support the hypothesis that predator induced suppression of grazer foraging behavior, rather than cascading effects of top predators on grazer density, may contribute to variation in the composition of algal assemblages among streams by allowing proliferation of most palatable algal species.  相似文献   

13.
Synopsis Data on spatial variation of sculpin density, growth and fecundity support the hypothesis that populations of stream fish are structured by changes in risk of predation and prey availability along a gradient in stream size. Cottus bairdi in warm streams and C. cognatus in cold streams exhibit similar patterns. Sculpins in large streams have faster individual growth rates and higher fecundities than those in small streams, but occur at lower density. The patterns appear to be persistent and suggest that predation reduces sculpin density in larger streams. Competitive release, variations in prey productivity, and local factors probably contribute to the variation in sculpin growth.  相似文献   

14.
1. Morphometric and biochemical endpoints were used to assess growth and energetics in young‐of‐the‐year (YOY) northern pike (Esox lucius), YOY burbot (Lota lota) and slimy sculpin (Cottus cognatus) collected upstream and downstream of a uranium mining operation in northern Saskatchewan, Canada. 2. Water sampled at sites downstream of uranium mining and milling effluent discharge was higher in certain trace metals (arsenic, molybdenum), ions (conductivity, hardness, ammonia and sulphate) and total dissolved solids compared with ecologically similar reference sites. 3. Overwinter survival potential was estimated by determining total body lipids and total body triglycerides in fishes collected in late autumn and early spring. Two‐factor anova indicated no site or season differences in total body lipids or triglycerides in YOY northern pike. In spring, burbot collected from the exposure site were higher in total body lipids and triglycerides compared with the previous autumn and compared with fish collected from the reference site. Slimy sculpin from both exposure and reference sites had lower total body lipid and triglyceride content in spring compared with the previous autumn. In addition, sculpin from the exposure site had lower total body lipids and triglycerides in spring compared with fish collected from the reference site. 4. Biochemical estimates of fish growth (muscle RNA/DNA ratio and muscle protein concentration) exhibited clear seasonal differences, with consistent decreases in this endpoint for all fish species in spring relative to the previous autumn at both exposure and reference sites. 5. Results for total body lipids and triglycerides were inconclusive and inconsistent between species and exposure scenarios. However, all species exhibited a similar seasonal decrease in muscle protein and to a lesser extent, muscle RNA/DNA ratio.  相似文献   

15.
16.
A manipulative field experiment and theoretical analyses of a simple competition model were used to show how exploitative competition between a caddisfly (Glossosoma sp.) and three mayfly grazers (Ameletus sp., Baetisthermicus and Cinygmula sp.) was mediated by a predatory fish, freshwater sculpin (Cottus nozawae). The field experiment followed a two‐factorial design, with Glossosoma densities (natural vs reduced) and sculpin presence (present vs absent) as treatments. Diet analysis revealed that all four prey species were eaten under the natural condition and the sculpin preferred mayfly grazers to Glossosoma. Our experiment showed that although mayfly densities in the presence of either sculpin or Glossosoma were lower than in the no‐sculpin plus reduced‐Glossosoma treatment, no difference in mayfly densities was found between the following three treatments: sculpin plus natural‐Glossosoma, no‐sculpin plus natural‐Glossosoma, and sculpin plus reduced‐Glossosoma. These results indicated that fish predator produced no effects additive to the competitive operation on the mayfly density, and also that competitive operation of Glossosoma on the mayfly densities produced no additional effects to fish predators. In addition, although the competitive effect of the mayflies on Glossosoma could not be manipulated in isolation, the density of Glossosoma in the presence of sculpin was greater than that in the absence of sculpin in the natural‐Glossosoma treatment. Thus, the densities of these competing grazers either stayed the same or increased in the presence of the fish predator relative to predator‐free treatments. A theoretical model, developed to explain the experimental results here, predicted that the densities of the two competing prey under predation pressure could be simultaneously greater than those under predator absent conditions when the behaviorally‐mediated effects of the predator were strongly operative. Although we were unable to distinguish experimentally the two different effects of predator on the prey competition, the behaviorally‐ and density‐mediated effects, the reality of the behaviorally‐mediated effects in the experiment was discussed.  相似文献   

17.
Agricultural land use results in multiple stressors affecting stream ecosystems. Flow reduction due to water abstraction, elevated levels of nutrients and chemical contaminants are common agricultural stressors worldwide. Concurrently, stream ecosystems are also increasingly affected by climate change. Interactions among multiple co‐occurring stressors result in biological responses that cannot be predicted from single‐stressor effects (i.e. synergisms and antagonisms). At the ecosystem level, multiple‐stressor effects can be further modified by biotic interactions (e.g. trophic interactions). We conducted a field experiment using 128 flow‐through stream mesocosms to examine the individual and combined effects of water abstraction, nutrient enrichment and elevated levels of the nitrification inhibitor dicyandiamide (DCD) on survival, condition and gut content of juvenile brown trout and on benthic abundance of their invertebrate prey. Flow velocity reduction decreased fish survival (?12% compared to controls) and condition (?8% compared to initial condition), whereas effects of nutrient and DCD additions and interactions among these stressors were not significant. Negative effects of flow velocity reduction on fish survival and condition were consistent with effects on fish gut content (?25% compared to controls) and abundance of dominant invertebrate prey (?30% compared to controls), suggesting a negative metabolic balance driving fish mortality and condition decline, which was confirmed by structural equation modelling. Fish mortality under reduced flow velocity increased as maximal daily water temperatures approached the upper limit of their tolerance range, reflecting synergistic interactions between these stressors. Our study highlights the importance of indirect stressor effects such as those transferred through trophic interactions, which need to be considered when assessing and managing fish populations and stream food webs in multiple‐stressor situations. However, in real streams, compensatory mechanisms and behavioural responses, as well as seasonal and spatial variation, may alter the intensity of stressor effects and the sensitivity of trout populations.  相似文献   

18.
Experiments in laboratory stream channels compared the behaviour of Deleatidium mayfly nymphs in the absence of fish with that in the presence of either native common river galaxias (Galaxias vulgaris Stokell) or introduced brown trout (Salmo trutta L.). Galaxias present similar predation risks to prey during day and night but are more active at night. Whereas, trout present a higher predation risk during the day. Deleatidium maintained a fixed nocturnal drift periodicity that is characteristic of streams containing visually feeding fish regardless of the nature of the predation regime presented in the laboratory. However, the number on the substratum surface, and therefore able to graze algae, was lower when fish were present than when they were absent. The number was lower during the day in the presence of trout, when they present the highest predation risk, and lower during the night compared to the day in trials with galaxias when galaxias activity disturbs Deleatidium from the substratum. Increases in the probability of Deleatidium leaving a patch, reductions in the proportion of mayflies on high quality patches and reductions in the distance travelled from refuge also reflected variations in the predation regime. Similar differences in positioning were observed under the same predation regimes in in situ channels in the Shag River and these were associated with differences in algal biomass. Algal ash-free dry mass (AFDM) and chlorophyll a (chl a) were higher on the tops of cobbles when fish were present. Fish also affected the biomass and the distribution of algae on cobbles as AFDM and chl a were higher on the sides of cobbles from channels with trout compared to those with galaxias. Changes in grazing behaviour, caused by predator avoidance, are likely to have been responsible for differences in algal biomass because no significant differences were detected between treatments in the biomass of Deleatidium or of total invertebrates.  相似文献   

19.
Changes in abiotic and biotic factors between seasons in subarctic lake systems are often profound, potentially affecting the community structure and population dynamics of parasites over the annual cycle. However, few winter studies exist and interactions between fish hosts and their parasites are typically confined to snapshot studies restricted to the summer season whereas host‐parasite dynamics during the ice‐covered period rarely have been explored. The present study addresses seasonal patterns in the infections of intestinal parasites and their association with the diet of sympatric living Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) in Lake Takvatn, a subarctic lake in northern Norway. In total, 354 Arctic charr and 203 brown trout were sampled from the littoral habitat between June 2017 and May 2018. Six trophically transmitted intestinal parasite taxa were identified and quantified, and their seasonal variations were contrasted with dietary information from both stomachs and intestines of the fish. The winter period proved to be an important transmission window for parasites, with increased prevalence and intensity of amphipod‐transmitted parasites in Arctic charr and parasites transmitted through fish prey in brown trout. In Arctic charr, seasonal patterns in parasite infections resulted mainly from temporal changes in diet toward amphipods, whereas host body size and the utilization of fish prey were the main drivers in brown trout. The overall dynamics in the community structure of parasites chiefly mirrored the seasonal dietary shifts of their fish hosts.  相似文献   

20.
1. We characterised aquatic and terrestrial invertebrate drift in six south‐western North Carolina streams and their implications for trout production. Streams of this region typically have low standing stock and production of trout because of low benthic productivity. However, little is known about the contribution of terrestrial invertebrates entering drift, the factors that affect these inputs (including season, diel period and riparian cover type), or the energetic contribution of drift to trout. 2. Eight sites were sampled in streams with four riparian cover types. Drift samples were collected at sunrise, midday and sunset; and in spring, early summer, late summer and autumn. The importance of drift for trout production was assessed using literature estimates of annual benthic production in the southern Appalachians, ecotrophic coefficients and food conversion efficiencies. 3. Abundance and biomass of terrestrial invertebrate inputs and drifting aquatic larvae were typically highest in spring and early summer. Aquatic larval abundances were greater than terrestrial invertebrates during these seasons and terrestrial invertebrate biomass was greater than aquatic larval biomass in the autumn. Drift rates of aquatic larval abundance and biomass were greatest at sunset. Inputs of terrestrial invertebrate biomass were greater than aquatic larvae at midday. Terrestrial invertebrate abundances were highest in streams with open canopies and streams adjacent to pasture with limited forest canopy. 4. We estimate the combination of benthic invertebrate production and terrestrial invertebrate inputs can support 3.3–18.2 g (wet weight) m−2 year−1 of trout, which is generally lower than values considered productive [10.0–30.0 g (wet weight) m−2 year−1]. 5. Our results indicate terrestrial invertebrates can be an important energy source for trout in these streams, but trout production is still low. Any management activities that attempt to increase trout production should assess trout food resources and ensure their availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号