首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The effect of an anticoagulant and cytoprotector blood serine proteinase--activated protein C (APC)--on survival of cultured hippocampal and cortical neurons under conditions of glutamate-induced excitotoxicity has been studied. Low concentrations of APC (0.01-10 nM) did not cause neuron death, but in the narrow range of low concentrations APC twofold and stronger decreased cell death caused by glutamate toxicity. High concentrations of APC (>50 nM) induced the death of hippocampal neurons similarly to the toxic action of glutamate. The neuroprotective effect of APC on the neurons was mediated by type 1 proteinase-activated receptor (PAR1), because the inactivation of the enzyme with phenylmethylsulfonyl fluoride or PAR1 blockade by a PAR1 peptide antagonist ((Tyr1)-TRAP-7) prevented the protective effect of APC. Moreover, APC inhibited the proapoptotic effect of 10 nM thrombin on the neurons. Geldanamycin, a specific inhibitor of heat shock protein Hsp90, completely abolished the antiapoptotic effect of 0.1 nM APC on glutamate-induced cytotoxicity in the hippocampal neurons. Thus, APC at low concentrations, activating PAR1, prevents the death of hippocampal and cortical neurons under conditions of glutamate excitotoxicity.  相似文献   

2.
The effect of thrombin on the rat hippocampal neurons death in model of neurotoxicity induced by hemoglobin or glutamate, was studied. Thrombin (10 nM) was shown to inhibit 100-mkM glutamate--or 10-mkM hemoglobin-induced apoptosis of the rat hippocampal neurons. With the aid of PAR1 (protease-activated receptor1) agonist peptide and PAR1 antagonist, the PAR1 was found to be necessary for protective action of thrombin in hippocampal neurons in models of neurotoxicity induced by hemoglobin or glutamate. Because the prolonged elevation [Ca2+] ib neurons is a critical part of neurodestructive processes in CNS, the effect of thrombin on Ca2+-homeostatis of neurons after its injury by the inducer of neuronal apoptosis: a synthetic agonist of the NMDA receptors N-methyl-D-aspartate (NMDA), was studied. We hypothesized that thrombin via receptors PAR may prove to be neuroprotective for the hippocampus. Thrombin was shown to stimulate via PAR1 a transient increase in [Ca2+] in neurons in a concentration-dependent manner. Thrombin (1 nM) decreased the [Ca2+] signal induced by activation of the NMDA-subtype of glutamate receptors. This thrombin effect may be one of the reasons of the protective action of thrombin in hippocampal neurons.  相似文献   

3.
4.
Effects of thrombin, factor Xa (FXa), and protease-activated receptor 1 and 2 agonist peptides (PAR1-AP and PAR2-AP) on survival and intracellular Ca2+ homeostasis in hippocampal neuron cultures treated with cytotoxic doses of glutamate were investigated. It is shown that at low concentrations (相似文献   

5.
Enteropeptidase (synonym:enterokinase, EC 3.4.21.9) is a heterodimeric serine protease of the intestinal brush border that activates trypsinogen by highly specific cleavage of the trypsinogen activation peptide following the sequence (Asp)(4)-Lys. The DNA sequence encoding the light chain (catalytic subunit) of human enteropeptidase (GenBank Accession No. U09860) was synthesized from 26 oligonucleotides by polymerase chain reaction and cloned into plasmid pET-32a downstream to the gene of fusion partner thioredoxin immediately after the DNA sequence encoding enteropeptidase recognition site. The fusion protein thioredoxin/human enteropeptidase light chain was expressed in Escherichia coli BL21(DE3) strain in both soluble and insoluble forms. The soluble recombinant fusion protein failed to undergo autocatalytic cleavage and activation; however, autocatalytic cleavage and activation of recombinant human enteropeptidase light chain (L-HEP) were achieved by solubilization and renaturation of the fusion protein from inclusion bodies and the active L-HEP was purified on agarose-linked soybean trypsin inhibitor. The purified L-HEP cleaved the synthetic peptide substrate Gly-Asp-Asp-Asp-Asp-Lys-beta-naphthylamide with kinetic parameters K(m)=0.16 mM and k(cat)=115 s(-1) and small ester Z-Lys-SBzl with K(m)=140 microM, k(cat)=133 s(-1). L-HEP associated with soybean trypsin inhibitor slowly and small ester Z-Lys-SBzl cleavage was inhibited with K(i)(*)=2.3 nM. L-HEP digested thioredoxin/human epidermal growth factor fusion protein five times faster than equal activity units of bovine recombinant light chain (EKMax, Invitrogen) at the same conditions.  相似文献   

6.
Acetylcholinesterase (AChE) inhibitor donepezil is widely used for the treatment of Alzheimer’s disease (AD). The mechanisms of therapeutic effects of the drug are not well understood. The ability of donepezil to reverse a known pathogenic effect of β-amyloid peptide (Abeta), namely, the impairment of hippocampal long-term potentiation (LTP), was not studied yet. The goal of the present study was to study the influence of donepezil in 0.1–10 μM concentrations on control and Abeta-impaired hippocampal LTP. Possible involvement of N-methyl-d-aspartate receptors (NMDARs) into mechanisms of donepezil action was also studied. LTP of population spike (PS) was studied in the CA1 region of rat hippocampal slices. Change of LTP by donepezil treatment had a bell-shaped dose–response curve. The drug in concentrations of 0.1 and 1 μM did not change LTP while in concentration of 0.5 μM significantly increased it, and in concentration of 5 and 10 μM suppressed LTP partially or completely. Abeta (200 nM) markedly suppressed LTP. Addition of 0.1, 0.5 or 1 μM donepezil to Abeta solution caused a restoration of LTP. N-methyl-d-aspartate (NMDA) currents were studied in acutely isolated pyramidal neurons from CA1 region of rat hippocampus. Neither Abeta, nor 0.5 μM donepezil were found to change NMDA currents, while 10 μM donepezil rapidly and reversibly depressed it. Results suggest that donepezil augments control and impaired by Abeta hippocampal LTP in NMDAR-independent manner. In general, our findings extend the understanding of mechanisms of therapeutic action of donepezil, especially at an early stage of AD, and maybe taken into account while considering the possibility of donepezil overdose.  相似文献   

7.
Enteropeptidase is a key enzyme in the digestion system of higher animals. It initiates enzymatic cascade cleaving trypsinogen activation peptide after a unique sequence DDDDK. Recently, we have found specific activity of human enteropeptidase catalytic subunit (L-HEP) being significantly higher than that of its bovine ortholog (L-BEP). Moreover, we have discovered that L-HEP hydrolyzed several nonspecific peptidic substrates. In this work, we aimed to further characterize species-specific enteropeptidase activities and to reveal their structural basis. First, we compared hydrolysis of peptides and proteins lacking DDDDK sequence by L-HEP and L-BEP. In each case human enzyme was more efficient, with the highest hydrolysis rate observed for substrates with a large hydrophobic residue in P2-position. Computer modeling suggested enzyme exosite residues 96 (Arg in L-HEP, Lys in L-BEP) and 219 (Lys in L-HEP, Gln in L-BEP) to be responsible for these differences in enteropeptidase catalytic activity. Indeed, human-to-bovine mutations Arg96Lys, Lys219Gln shifted catalytic properties of L-HEP toward those of L-BEP. This effect was amplified in case of the double mutation Arg96Lys/Lys219Gln, but still did not cover the full difference in catalytic activities of human and bovine enzymes. To find a missing link, we studied monopeptide benzyl-arginine-β-naphthylamide hydrolysis. L-HEP catalyzed it with an order lower K m than L-BEP, suggesting the monopeptide-binding S1 site input into catalytic distinction between two enteropeptidase species. Together, our findings suggest structural basis of the unique catalytic properties of human enteropeptidase and instigate further studies of its tentative physiological and pathological roles.  相似文献   

8.
Chukmesundan (CMSD), composed of the following 8 medicinal herbs including Panex ginseng C.A. MEYER, Atractylodes macrocephala KOID, Poria cocos WOLF, Pinellia ternata BREIT, Brassica alba BOISS, Aconitum carmichaeli DEBX, Cynanchum atratum BGE and Cuscuta chinensis LAM. CMSD is being used in Korea for the treatment of various symptoms accompanying hypertension and cerebrovascular disorders. This study was carried out to examine the effects of CMSD on cultured primary neuron cell, cell cytotoxicity and lipid peroxidation in Aβ-treated cells. Cell death was enhanced by addition of Aβ. Pretreatment of CMSD attenuated in cell killing induced by Aβ. The protective effect of the CMSD water extracts on Aβ-induced neuronal death was also observed by lactate dehydrogenase assay using cultured astrocyte cells. Aβ-induced cell death was protected by the water extract of CMSD in a dose-dependent manner, and 25–50 μg/ml was the most effective concentration. CMSD has been also shown to protect primary cultured neurons from N-methyl-d-aspartate receptor-mediated glutamate toxicity. It was in vivo evidenced that CMSD protects neurons against ischemia-induced cell death. Moreover, oral administration of CMSD into mice prevented ischemia-induced learning disability and rescued hippocampal CA1 neurons from lethal ischemic damage. The neuroprotective action of exogenous CMSD was also confirmed by counting synapses in the hippocampal CA1 region. The presence of CMSD in neuron cultures rescued the neurons from nitrogen oxide (NO)-induced death. From these, it was suggested that CMSD may exert its neuroprotective effect by reducing the NO-mediated formation of free radicals or antagonizing their toxicity.  相似文献   

9.
The synthetic gene encoding human enteropeptidase light chain (L-HEP) was cloned into plasmid pET-32a downstream from the gene of fusion partner thioredoxin immediately after the DNA sequence encoding the enteropeptidase recognition site. The fusion protein thioredoxin (Trx)/L-HEP was expressed in Escherichia coli BL21(DE3). Autocatalytic cleavage of the fusion protein and activation of recombinant L-HEP were achieved by solubilization of inclusion bodies and refolding of Trx/L-HEP fusion protein. The kinetic parameters of human and bovine enteropeptidases in the presence of different concentrations of Ca2+ and Na+ for cleavage of the specific substrate GD4K-na and nonspecific substrates such as small ester Z-Lys-SBzl and chromogenic substrates Z-Ala-X-Arg-pNA have been comparatively analyzed. It is demonstrated that positively charged ions increased the Michaelis constant (Km) for cleavage of specific substrate GD4K-na, while the catalytic constant (k(cat)) remained practically unchanged. L-HEP demonstrated secondary specificity to the chromogenic substrate Z-Ala-Phe-Arg-pNA with k(cat)/Km 260 mM(-1) x sec(-1). Enzymatic activity of L-HEP was suppressed by inhibitors of trypsin-like and cysteine (E-64), but not metallo-, amino-, or chymotrypsin-like proteinases. L-HEP was active over a broad range of pH (6-9) with optimum activity at pH 7.5, and it demonstrated high stability to different denaturing agents.  相似文献   

10.
Enteropeptidase is a key enzyme in the digestion system of higher animals. It initiates enzymatic cascade cleaving trypsinogen activation peptide after a unique sequence DDDDK. Recently, we have found specific activity of human enteropeptidase catalytic subunit (L-HEP) being significantly higher than that of its bovine ortholog (L-BEP). Moreover, we have discovered that L-HEP hydrolyzed several nonspecific peptidic substrates. In this work, we aimed to further characterize species-specific enteropeptidase activities and to reveal their structural basis. First, we compared hydrolysis of peptides and proteins lacking DDDDK sequence by L-HEP and L-BEP. In each case human enzyme was more efficient, with the highest hydrolysis rate observed for substrates with a large hydrophobic residue in P2-position. Computer modeling suggested enzyme exosite residues 96 (Arg in L-HEP, Lys in L-BEP) and 219 (Lys in L-HEP, Gln in L-BEP) to be responsible for these differences in enteropeptidase catalytic activity. Indeed, human-to-bovine mutations Arg96Lys, Lys219Gln shifted catalytic properties of L-HEP toward those of L-BEP. This effect was amplified in case of the double mutation Arg96Lys/Lys219Gln, but still did not cover the full difference in catalytic activities of human and bovine enzymes. To find a missing link, we studied monopeptide benzyl-arginine-β-naphthylamide hydrolysis. L-HEP catalyzed it with an order lower K (m) than L-BEP, suggesting the monopeptide-binding S1 site input into catalytic distinction between two enteropeptidase species. Together, our findings suggest structural basis of the unique catalytic properties of human enteropeptidase and instigate further studies of its tentative physiological and pathological roles.  相似文献   

11.
The effects of a novel anti-hypertensive drug, mibefradil, on voltage-dependent currents in isolated thalamic and hippocampal neurons, as well as on synaptic transmission in the hippocampus have been studied. Mibefradil exerted a potent inhibitory action on low-threshold calcium currents in thalamic neurons (IC50=160 nM). In higher concentrations (1–20 μM), this drug blocked not only low-threshold calcium current but also voltage-dependent sodium and delayed potassium currents in pyramidal hippocampal neurons. The amplitude of population action potentials in hippocampal slices decreased by 55% in the presence of 20μM mibefradil. All of the effects of mibefradil were almost completely reversible. In our experiments, the sensitivity of low-threshold calcium channels in thalamic neurons to mibefradil was higher than that observed on other objects. The ability of mibefradil to block not only calcium currents but also other types of voltage-dependent ion conductances in hippocampal neurons may be considered an essential factor that determines the specificity of the pharmacological profile of this drug.  相似文献   

12.
The neurotoxicity of the amyloid-β peptide (Aβ) appears to be, at least in part, related to pathological activation of glutamate receptors by Aβ aggregates. However, the downstream signaling pathways leading to neurodegeneration are still incompletely understood. Hyperactivation of nitric oxide synthase (NOS) and increased nitric oxide (NO) production have been implicated in excitotoxic neuronal damage caused by overactivation of glutamate receptors, and it has been suggested that increased NO levels might also play a role in neurotoxicity in Alzheimer’s disease. We have examined the effect of blockade of NO production on the neurotoxicity instigated by Aβ42 and by elevated concentrations of glutamate in chick embryo retinal neurons in culture. Results showed that l-nitroarginine methyl ester, a potent inhibitor of all NOS isoforms, had no protective effect against neuronal death induced by either Aβ42 (20 μM) or glutamate (1 mM). Surprisingly, at short incubation times both Aβ and glutamate decreased NO production in retinal neuronal cultures in the absence of neuronal death. Thus, excitotoxic insults induced by Aβ and glutamate cause inhibition rather than activation of NO synthase in retinal neurons, suggesting that cell death induced by Aβ or glutamate is not related to increased NO production. On the other hand, considering the role of NO in long term potentiation and synaptic plasticity, the decrease in NO levels instigated by Aβ and glutamate suggests a possible mechanism leading to synaptic failure in AD.  相似文献   

13.
Enteropeptidase (EC 3.4.21.9) plays a key role in mammalian digestion as the enzyme that physiologically activates trypsinogen by highly specific cleavage of the trypsinogen activation peptide following the recognition sequence D4K. The high specificity of enteropeptidase makes it a powerful tool in modern biotechnology. Here we describe the application of phage display technology to express active human enteropeptidase catalytic subunits (L-HEP) on M13 filamentous bacteriophage. The L-HEP/C122S gene was cloned in the g3p-based phagemid vector pHEN2m upstream of the sequence encoding the phage g3p protein and downstream of the signal peptide-encoding sequence. Heterogeneous catalysis of the synthetic peptide substrate (GDDDDK-β-naphthylamide) cleavage by phage-bound L-HEP was shown to have kinetic parameters similar to those of soluble enzyme, with the respective Km values of 19 μM and 20 μM and kcat of 115 and 92 s−1. Fusion proteins containing a D4K cleavage site were cleaved with phage-bound L-HEP/C122S as well as by soluble L-HEP/C122S, and proteolysis was inhibited by soybean trypsin inhibitor. Rapid large-scale phage production, one-step purification of phage-bound L-HEP, and easy removal of enzyme activity from reaction samples by PEG precipitation make our approach suitable for the efficient removal of various tag sequences fused to the target proteins. The functional phage display technology developed in this study can be instrumental in constructing libraries of mutants to analyze the effect of structural changes on the activity and specificity of the enzyme or generate its desired variants for biotechnological applications.  相似文献   

14.
In this work we investigated the effects of retinoic acid (RA) in Sertoli cells. Sertoli cells isolated from 15-day-old Wistar rats were previously cultured for 48 h and then treated with RA for 24 h. RA at high doses (1–10 μM) increased TBARS levels and induced a decrease in cell viability. At low doses (0.1–100 nM) RA did not increase TBARS level. RA also did not increase cell death at these doses. In order to investigate changes in antioxidant defenses we measured the CAT, SOD and GPx activities in Sertoli cells treated with RA. Compared to control, RA increased around 200% SOD activity in all doses tested (0.1–100 nM); GPx activity was increased 407.49, 208.98 and 243.88% (0.1, 1 and 10 nM, respectively); CAT activity was increased 127% with RA 1 nM. To clarify if RA induces ROS production per se, we performed experiments in vitro using 2-deoxyribose as specific substrate of oxidative degradation by OH radical as well as TRAP assay. RA at 10 μM increased 2-deoxyribose degradation, suggesting that some of the RA-induced effects are mediated via OH formation. Furthermore, the total reactive antioxidant potential (TRAP) of the RA was determined. At low concentrations RA has induced no redox activity. Conversely, higher concentration of RA (1–10 μM) increased chemiluminescence. The chemiluminescence produced was directly proportional to radical generation. We provide, for the first time, evidence for a free radical generation by RA. Our results demonstrated that RA plays an important role in Sertoli cells and these effects appear to be mediated by ROS.  相似文献   

15.
Summary Enteropeptidase (enterokinase EC 3.4.21.9), catalyzing trypsinogen activation, exhibits unique properties for high efficiency hydrolysis of the polypeptide chain after the N-terminal tetraaspartyl-lysyl sequence. This makes it a convenient tool for the processing of fusion proteins containing this sequence. We found the enteropeptidase-catalysing degradation of some bioactive peptides: cattle hemoglobin beta-chain fragments Hb (2–8) (LTAEEKA) and Hb (1–9) (MLTAEEKAA), human angiotensin II (DRVYIHPF) (AT). Model peptides with truncated linker WDDRG and WDDKG also were shown to be susceptible to enteropeptidase action. Kinetic parameters of enteropeptidase hydrolysis for these substrates were determined.K m values for all substrates with truncated linker (≈10−3 M) are an order of magnitude higher than corresponding values for typical enteropeptidase artificial peptide or fusion protein substrates with full enteropeptidase linker-DDDDK-(K m ≈10−4 M).k cat values for AT, Hb (2–8), WDDRG and WDDKG are ≈30–40 min−1. But one additional amino acid residue at both N-and C-terminus of Hb (2–8) results in a drastic increase of hydrolysis efficiency:k cat value for Hb (1–9) is 1510 min−1. Recent study demonstrates the possibility of undesirable cleavage of target peptides or proteins containing the above-mentioned truncated linker sequences; further, the ability of enteropeptidase to hydrolyse specifically several biologically active peptidesin vitro along with its unique natural substrate trypsinogen was demonstrated.  相似文献   

16.
Activated protein C (APC) is an anticoagulant and anti-inflammatory factor that acts via endothelial protein C receptor (EPCR). Interestingly, APC also exhibits neuroprotective activities. In the present study, we demonstrate for the first time expression of EPCR, the receptor for APC, in rat cortical and hippocampal neurons. Moreover, exposing the neurons to glutamate excitotoxicity we studied the functional consequence of the expression of EPCR. By cytotoxicity assay we showed that EPCR was necessary for the APC-mediated protective effect in both neuronal cell types in culture. The effect of APC was abrogated in the presence of blocking EPCR antibodies. Analysis of neuronal death by cell labelling with dyes which allow distinguishing living and dead cells confirmed that the anti-apoptotic effect of APC was dependent on both EPCR and protease-activated receptor-1. Thus, we suggest that binding of APC to EPCR on neurons and subsequent activation of protease-activated receptor-1 by the complex of APC-EPCR promotes survival mechanisms after exposure of neurons to damaging factors.  相似文献   

17.
N-Methyl-D-aspartate receptors (NMDARs) are essential mediators of synaptic plasticity under normal physiological conditions. During brain ischemia, these receptors are excessively activated due to glutamate overflow and mediate excitotoxic cell death. Although organotypical hippocampal slice cultures are widely used to study brain ischemia in vitro by induction of oxygen and glucose deprivation (OGD), there is scant data regarding expression and functionality of NMDARs in such slice cultures. Here, we have evaluated the contribution of NMDARs in mediating excitotoxic cell death after exposure to NMDA or OGD in organotypical hippocampal slice cultures after 14 days in vitro (DIV14). We found that all NMDAR subunits were expressed at DIV14. The NMDARs were functional and contributed to cell death, as evidenced by use of the NMDAR antagonist MK-801 (dizocilpine). Excitotoxic cell death induced by NMDA could be fully antagonized by 10 μM MK-801, a dose that offered only partial protection against OGD-induced cell death. Very high concentrations of MK-801 (50–100 μM) were required to counteract cell death at long delays (48–72 h) after OGD. The relative high dose of MK-801 needed for long-term protection after OGD could not be attributed to down-regulation of NMDARs at the gene expression level. Our data indicate that NMDAR signaling is just one of several mechanisms underlying ischemic cell death and that prospective cytoprotective therapies must be directed to multiple targets.  相似文献   

18.
19.
The neonicotinoid insecticide imidacloprid is an agonist on insect nicotinic acetylcholine receptors (nAChRs). We utilised fura-2-based calcium imaging to investigate the actions of imidacloprid on cultured GFP-tagged cholinergic neurons from the third instar larvae of the genetic model organism Drosophila melanogaster. We demonstrate dose-dependent increases in intracellular calcium ([Ca2+]i) in cholinergic neurons upon application of imidacloprid (10 nM–100 μM) that are blocked by nAChR antagonists mecamylamine (10 μM) and α-bungarotoxin (α-BTX, 1 μM). When compared to other (untagged) neurons, cholinergic neurons respond to lower concentrations of imidacloprid (10–100 nM) and exhibit larger amplitude responses to higher (1–100 μM) concentrations of imidacloprid. Although imidacloprid acts via nAChRs, increases in [Ca2+]i also involve voltage-gated calcium channels (VGCCs) in both groups of neurons. Thus, we demonstrate that cholinergic neurons express nAChRs that are highly sensitive to imidacloprid, and demonstrate a role for VGCCs in amplifying imidacloprid-induced increases in [Ca2+]i.  相似文献   

20.
Jakobsen B  Tasker A  Zimmer J 《Amino acids》2002,23(1-3):37-44
Summary.  The neurotoxicity of domoic acid was studied in 2–3 week old rat hippocampal slice cultures, derived from 7 day old rat pups. Domoic acid 0.1–100 μM was added to the culture medium for 48 hrs, alone or together with the glutamate receptor antagonists NS-102 (5-Nitro-6,7,8,9-tetrahydrobenzo[G]indole-2,3-dione-3-oxime), NBQX (2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline) or MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine hydrogen maleate), followed by transfer of the cultures to normal medium for additional 48 hrs. Neuronal degeneration in the fascia dentata (FD), CA3 and CA1 hippocampal subfields was monitored and EC50 values estimated by densitometric measurements of the cellular uptake of propidium iodide (PI). The CA1 region was most sensitive to domoic acid, with an EC50 value of 6 μM domoic acid, estimated from the PI-uptake at 72 hrs. Protective effects of 10 μM NBQX against 3 and 10 μM domoic acid were observed for both dentate granule cells and CA1 and CA3c pyramidal cells. NS102 and MK 801 only displayed protective effects when combined with NBQX. MK801 significantly increased the combined neuroprotective effect of NBQX and NS102 against 10 μM domoic acid in both CA1 and FD, but not in CA3. We conclude, that domoic acid neurotoxicity in CA3 and in hippocampal slice cultures in general primarily involves AMPA/kainate receptors. At high concentrations (10 μM domic acid) NMDA receptors are, however, also involved in the toxicity in CA1 and FD. Received June 29, 2001 Accepted August 6, 2001 Published online June 3, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号