首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Signal transduction pathways in eukaryotic cells integrate diverse extracellular signals, and regulate complex biological responses such as growth, differentiation and death. One group of proline-directed Ser/Thr protein kinases, the mitogen-activated protein kinases (MAPKs), plays a central role in these signalling pathways. Much attention has focused in recent years on three subfamilies of MAPKs, the extracellular signal regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs) and the p38 MAPKs. However, the ERK family is broader than the ERK1 and ERK2 proteins that have been the subject of most studies in this area. Here we overview the work on ERKs 3 to 8, emphasising where possible their biological activities as well as distinctive biochemical properties. It is clear from these studies that these additional ERKs show similarities to ERK1 and ERK2, but with some interesting differences that challenge the paradigm of the archetypical ERK1/2 MAPK pathway.  相似文献   

2.
3.
4.
The p38 mitogen-activated protein kinase (MAPK) cascade transduces multiple extracellular signals from cell surface to nucleus and is employed in cellular responses to cellular stresses and apoptotic regulation. The involvement of the p38 MAPK cascade in opioid- and opioid receptor-like receptor-1 (ORL1) receptor-mediated signal transduction was examined in NG108-15 neuroblastoma x glioma hybrid cells. Stimulation of endogenous delta-opioid receptor (DOR) or ORL1 resulted in activation of p38 MAPK. It also induced the activation of extracellular signal-regulated kinases (ERKs), another member of the MAPK family, with slower kinetics. Activation of p38 MAPK was abolished by selective antagonists of DOR or ORL1, pretreatment with pertussis toxin, or SB203580, a specific inhibitor of p38 MAPK. Inhibition of p38 MAPK had no significant effect on opioid-induced ERK activation, indicating that p38 MAPK activity was not required for ERK activation, though its stimulation preceded ERK activation. Inhibition of protein kinase A (PKA) strongly diminished p38 activation mediated by DOR or ORL1 but had no significant effect on ERK activation, and protein kinase C (PKC) inhibitors potentiated stimulation of p38 while inhibiting activation of ERKs. Taken together, our results provide the first evidence for coupling of DOR and ORL1 to the p38 MAPK cascade and clearly demonstrate that receptor-mediated activation of p38 MAPK both involves PKA and is negatively regulated by PKC.  相似文献   

5.
Cellular and genetic approaches were used to investigate the requirements for activation during spermatogenesis of the extracellular signal-regulated protein kinases (ERKs), more commonly known as the mitogen-activated protein kinases (MAPKs). The MAPKS and their activating kinases, the MEKs, are expressed in specific developmental patterns. The MAPKs and MEK2 are expressed in all premeiotic germ cells and spermatocytes, while MEK1 is not expressed abundantly in pachytene spermatocytes. Phosphorylated (active) variants of these kinases are diminished in pachytene spermatocytes. Treatment of pachytene spermatocytes with okadaic acid (OA), to induce transition from meiotic prophase to metaphase I (G2/MI), resulted in phosphorylation and enzymatic activation of ERK1/2. However, U0126, an inhibitor of the ERK-activating kinases, MEK1/2, did not inhibit OA-induced MAPK activation or chromosome condensation. Analysis of spermatocytes lacking MOS, a mitogen-activated protein kinase kinase kinase responsible for MEK and MAPK activation, revealed that MOS is not required for OA-induced activation of the MAPKs. OA-induced MAPK activation was inhibited by butyrolactone I, an inhibitor of cyclin-dependent kinases 1 and 2 (CDK1, CDK2); thus, these kinases may regulate MAPK activity. Additionally, spermatocytes lacking CDC25C condensed bivalent chromosomes and activated both MPF and MAPKs in response to OA treatment; therefore, there is a CDC25C-independent pathway for MPF and MAPK activation. These studies reveal that spermatocytes do not require either MOS or CDC25C for onset of the meiotic division phase or for activation of MPF and the MAPKs, thus implicating a novel pathway for activation of the ERK1/2 MAPKs in spermatocytes.  相似文献   

6.
In PC12 cells, epidermal growth factor (EGF) transiently stimulates the mitogen-activated protein (MAP) kinases, ERK1 and ERK2, and provokes cellular proliferation. In contrast, nerve growth factor (NGF) stimulation leads to the sustained activation of the MAPKs and subsequently to neuronal differentiation. It has been shown that both the magnitude and longevity of MAPK activation governs the nature of the cellular response. The activations of MAPKs are dependent upon two distinct small G-proteins, Ras and Rap1, that link the growth factor receptors to the MAPK cascade by activating c-Raf and B-Raf, respectively. We found that Ras was transiently stimulated upon both EGF and NGF treatment of PC12 cells. However, EGF transiently activated Rap1, whereas NGF stimulated prolonged Rap1 activation. The activation of the ERKs was due almost exclusively (>90%) to the action of B-Raf. The transient activation of the MAPKs by EGF was a consequence of the formation of a short lived complex assembling on the EGF receptor itself, composed of Crk, C3G, Rap1, and B-Raf. In contrast, NGF stimulation of the cells resulted in the phosphorylation of FRS2. FRS2 scaffolded the assembly of a stable complex of Crk, C3G, Rap1, and B-Raf resulting in the prolonged activation of the MAPKs. Together, these data provide a signaling link between growth factor receptors and MAPK activation and a mechanistic explanation of the differential MAPK kinetics exhibited by these growth factors.  相似文献   

7.
The mitogen activated protein (MAP) kinase module: (Raf -->MEK-->ERKs) is central to the control of cell growth, cell differentiation and cell survival. The fidelity of signalling and the spatio-temporal activation are key determinants in generating precise biological responses. The fidelity is ensured by scaffold proteins - protein kinase 'insulators' - and by specific docking sites. The duration and the intensity of the response are in part controlled by the compartmentalization of the signalling molecules. Growth factors promote rapid nuclear translocation and persistent activation of p42/p44 MAP kinases, respectively and ERK2/ERK1, during the entire G1 period with an extinction during the S-phase. These features are exquisitely controlled by the temporal induction of the MAP kinase phosphatases, MKP1-3. MKP1 and 2 induction is strictly controlled by the activation of the MAP kinase module providing evidence for an auto-regulatory mechanism. This negative regulatory loop is further enhanced by the capacity of p42/p44 MAPK to phosphorylate MKP1 and 2. This action reduces the degradation rate of MKPs through the ubiquitin-proteasomal system. Whereas the two upstream kinases of the module (Raf and MEK) remain cytoplasmic, ERKs (anchored to MEK in the cytoplasm of resting cells) rapidly translocate to the nucleus upon mitogenic stimulation. This latter process is rapid, reversible and controlled by the strict activation of the MAPK cascade. Following long-term MAPK stimulation, p42/p44 MAPKs progressively accumulate in the nucleus in an inactive form. Therefore we propose that the nucleus represents a site for ERK action, sequestration and signal termination. With the generation of knockdown mice for each of the ERK isoforms, we will illustrate that besides controlling cell proliferation the ERK cascade also controls cell differentiation and cell behaviour.  相似文献   

8.
Cellular growth control requires the coordination and integration of multiple signaling pathways which are likely to be activated concomitantly. Mitogenic signaling initiated by thyrotropin (TSH) in thyroid cells seems to require two distinct signaling pathways, a cyclic AMP (cAMP)-dependent signaling pathway and a Ras-dependent pathway. This is a paradox, since activated cAMP-dependent protein kinase disrupts Ras-dependent signaling induced by growth factors such as epidermal growth factor and platelet-derived growth factor. This inhibition may occur by preventing Raf-1 protein kinase from binding to Ras, an event thought to be necessary for the activation of Raf-1 and the subsequent activation of the mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinases (MEKs) and MAP kinase (MAPK)/ERKs. Here we report that serum-stimulated hyperphosphorylation of Raf-1 was inhibited by TSH treatment of Wistar rat thyroid cells, indicating that in this cell line, as in other cell types, increases in intracellular cAMP levels inhibit activation of downstream kinases targeted by Ras. Ras-stimulated expression of genes containing AP-1 promoter elements was similarly inhibited by TSH. On the other hand, stimulation of thyroid cells with TSH resulted in stimulation of DNA synthesis which was Ras dependent but both Raf-1 and MEK independent. We also show that Ras-stimulated DNA synthesis required the use of this kinase cascade in untreated quiescent cells but not in TSH-treated cells. These data suggest that in TSH-treated thyroid cells, Ras might be able to signal through effectors other than the well-studied cytoplasmic kinase cascade.  相似文献   

9.
All eukaryotes express mitogen-activated protein kinases (MAPKs) that govern diverse cellular processes including proliferation, differentiation, and survival. Even though these proteins are highly conserved throughout nature, MAPKs from closely related species often possess distinct signature sequences, making them well suited as drug discovery targets. Based on the central amino acid in the TXY dual phosphorylation loop, mammalian MAPKs are classified as extracellular signal-regulated kinases (ERKs), c-Jun amino-terminal kinases (JNKs), or p38 stress-response MAPKs. The presence of MAPKs in nonmetazoan eukaryotes suggests significant evolutionary conservation of these important signalling pathways. We recently cloned a novel stress-response MAPK gene (tgMAPK1) from Toxoplasma gondii, an obligate intracellular human parasite that can cause life-threatening infections in immunocompromised patients, and we now present data on a second T. gondii MAPK gene (tgMAPK2) that we cloned. We show that tgMAPK1 and tgMAPK2 are members of two distinct and previously unknown protozoan MAPK subfamilies that we have named pzMAPKl/pzMAPK3 and pzMAPK2. Our phylogenetic analysis of a collection of protozoan and metazoan MAPK genes in relation to ERK8-like genes demonstrates that an ERK8-like family, which includes the pzMAPK2 subfamily, is represented across a large variety of eukaryotic kingdoms and is evolutionarily very distant from other MAPK families.  相似文献   

10.
Since differentiation therapy is one of the promising strategies for treatment of leukemia, universal efforts have been focused on finding new differentiating agents. In that respect, it was recently shown that guanosine 5'-triphosphate (GTP) induced the differentiation of K562 cells, suggesting its possible efficiency in treatment of chronic myelogenous leukemia (CML). However, further investigations are required to verify this possibility. Here, the effects of GTP on activation of mitogen-activated protein kinases (MAPKs) and caspases in K562 cells were examined. Exposure of K562 cells to 100muM GTP markedly inhibited growth (4-70%) and increased percent glycophorin A positive cells after 1-6 days. GTP-induced terminal erythroid differentiation of K562 cells was accompanied with activation of three key caspases, i.e., caspase-3, -6 and -9. More detailed studies revealed that mitochondrial pathway is activated along with down-regulation of Bcl-xL and releasing of cytochrome c into cytosol. Among MAPKs, ERK1/2and p38 were modulated after GTP treatment. Western blot analyses showed that sustained phosphorylation of p38 MAPK was accompanied by a decrease in ERK1/2 activation. These modulatory effects of GTP were observed at early exposure times before the onset of differentiation (3h), and followed for 24-96h. Interestingly, inhibition of p38 MAPK pathway by SB202190 impeded GTP-mediated caspases activation and differentiation in K562 cells, suggesting that p38 MAPK may act upstream of caspases in our system. These results point to a pivotal role for p38 MAPK pathway during GTP-mediated erythroid differentiation of K562 cells and will hopefully have important impact on pharmaceutical evaluation of GTP for CML treatment in differentiation therapy approaches.  相似文献   

11.
巨噬细胞免疫调变信号:Raf—1,MAPKp44,MAPKp42和p38MAPK的研究   总被引:1,自引:0,他引:1  
为了了解巨噬细胞免疫调变机理,我们应用LPS和PMA处理小鼠抑制性巨噬细胞,观察到Ras下游信号分子AF-1,分裂原激活蛋白激酶MAPKp44,MAPKp42和p38MAPK均被活化,发现forskolin能增强p38MAPK的活性,进一步提示PKC和PAK途径增强了p38MAPK的磷酸化效应,为我们了解LPS如何激活p38MAPK信号通路提供了一个新的机会/  相似文献   

12.
13.
Ceramide, ceramide-1-phosphate (C1P) sphingosine (SPH) and sphingosine-1-phosphate (S1P) effects on proliferation and extracellular-signal regulated kinases, ERKs (also known as MAPKs), activation were investigated in human and rat osteoblastic cells. MAPK activation was sphingolipid-specific in cells from both species. In human osteoblastic cells, S1P and C1P markedly stimulated ERK2 phosphorylation with a slight increase in phosphorylation of ERK1. SPH nor ceramide induced phosphorylation of either ERK isoform. In rat osteoblastic cells, SIP, ceramide and SPH stimulated phosphorylation of both isoforms. C1P did not induce phosphorylation of ERK1 but produced a mild increase in phosphorylation of ERK2. In human cells, only S1P significantly (P<0.05) increased osteoblastic cell proliferation, while in the rat cells all four sphingolipids significantly (P<0.05) induced proliferation. The calcium channel blocker verapamil blocked (P<0.05) these effects in both cell types. The MAPK inhibitor, PD98059, inhibited (P<0.05) the mitogenic effect of SIP in human cells. In rat cells, PD98059 effects were less substantial but significant for S1P and C1P. This study demonstrates that sphingolipids are mitogens for both human and rat osteoblastic cells with the MAPK pathway and calcium mediating in part these effects in a species specific manner.  相似文献   

14.
Molecular aspects of mechanical stress-induced cardiac hypertrophy   总被引:1,自引:0,他引:1  
To elucidate the signal transduction pathway from external stimuli to nuclear gene expression in mechanical stress-induced cardiac hypertrophy, we examined the time course of activation of protein kinases such as Raf-1 kinase (Raf-1), mitogen-activated protein kinase kinase (MAPKK), MAP kinases (MAPKs) and 90-kDa ribosomal S6 kinase (p90rsk) in neonatal rat cardiomyocytes. Mechanical stretch rapidly activated Raf-1 and its maximal activation was observed at 1–2 min after stretch. The activity of MAPKK was also increased by stretch, with a peak at 5 min after stretch. In addition, MAPKs and p90rsk were maximally activated at 8 min and at 10–30 min after stretch, respectively. Next, the relationship between mechanical stress-induced hypertrophy and the cardiac renin-angiotensin system was investigated. When the stretch-conditioned culture medium was transferred to the culture dish of non-stretched cardiac myocytes, the medium activated MAPK activity slightly but significantly, and the activation was completely blocked by the type 1 angiotensin II receptor antagonist, CV-11974. However, activation of Raf-1 and MAPKs provoked by stretching cardiomyocytes was only partially suppressed by pretreatment with CV-11974. These results suggest that mechanical stress activates the protein kinase cascade of phosphorylation in cardiac myocytes in the order of Raf-1, MAPKK, MAPKs and p90rsk, and that angiotensin II, which is secreted from stretched myocytes, activates a part of these protein kinases.Abbreviations MAPK mitogen-activated protein kinase - MAPKK MAP kinase kinase - Raf-1 - Raf- 1 kinase p90rsk, 90 kDa ribosomal S6 kinase; AngII - angiotensin II - MAPKKK MAP kinase kinase kinase - rMAPK recombinant MAPKK fused to gluthathione S transferase - MMAKK recombinant MAPK fused to maltose binding protein - MBP myelin basic protein - ACE angiotensin-converting enzyme  相似文献   

15.
In many normal and transformed cell types, the intracellular second messenger cyclic AMP (cAMP) blocks the effects of growth factors and serum on mitogenesis, proliferation, and cell cycle progression. cAMP exerts these growth-inhibitory effects via inhibition of the mitogen-activated protein (MAP) kinase cascade. Here, using Hek293 and NIH 3T3 cells, we show that cAMP's inhibition of the MAP kinase cascade is mediated by the small G protein Rap1. Activation of Rap1 by cAMP induces the association of Rap1 with Raf-1 and limits Ras-dependent activation of ERK. In NIH 3T3 cells, Rap1 is required not only for cAMP's inhibition of ERK activation but for inhibition of cell proliferation and mitogenesis as well.  相似文献   

16.
Recruitment and activation of Raf-1 kinase by nitric oxide-activated Ras   总被引:6,自引:0,他引:6  
Deora AA  Hajjar DP  Lander HM 《Biochemistry》2000,39(32):9901-9908
  相似文献   

17.
18.
MAPKs (mitogen-activated protein kinases) are key components in cell signalling pathways. Under optimal growth conditions, their activity is kept off, but in response to stimulation it is dramatically evoked. Because of the high degree of evolutionary conservation at the levels of sequence and mode of activation, MAPKs are believed to share similar regulatory mechanisms in all eukaryotes and to be functionally substitutable between them. To assess the reliability of this notion, we systematically analysed the activity, regulation and phenotypic effects of mammalian MAPKs in yeast. Unexpectedly, all mammalian MAPKs tested were spontaneously phosphorylated in yeast. JNKs (c-Jun N-terminal kinases) lost their phosphorylation in pbs2Delta cells, but p38s and ERKs (extracellular-signal-regulated kinases) maintained their spontaneous phosphorylation even in pbs2Deltaste7Deltamkk1Deltamkk2Delta cells. Kinase-dead variants of ERKs and p38s were phosphorylated in strains lacking a single MEK (MAPK/ERK kinase), but not in pbs2Deltaste7Deltamkk1Deltamkk2Delta cells. Thus, in yeast, p38 and ERKs are phosphorylated via a combined mechanism of autophosphorylation and MEK-mediated phosphorylation (any MEK). We further addressed the mechanism allowing mammalian MAPKs to exploit yeast MEKs in the absence of any activating signal. We suggest that mammalian MAPKs lost during evolution a C-terminal region that exists in some yeast MAPKs. Indeed, removal of this region from Hog1 and Mpk1 rendered them spontaneously and highly phosphorylated. It implies that MAPKs possess an efficient inherent autoposphorylation capability that is suppressed in yeast MAPKs via a C-terminal domain and in mammalian MAPKs via as yet unknown means.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号