首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
2.
Lactosylceramide stimulates aortic smooth muscle cell proliferation.   总被引:3,自引:0,他引:3  
We have investigated the effects of various sphingolipids on aortic smooth muscle cell proliferation employing viable cell counting, [3H] thymidine incorporation into DNA and the release of lactate dehydrogenase. Assays for UDP Gal: GlcCer Bl-4 galactosyltransferase (GalT-2) in control and treated cells were pursued simultaneously. Lactosylceramide stimulated cell proliferation in the order of 5 fold. Antibody against LacCer but not GbOse3Cer blocked the proliferative effects of LacCer in these cells. This phenomena was specific for aortic smooth muscle cells as LacCer decreased cell viability of aortic endothelial cells and had no effect on pulmonary endothelial cells. D-PDMP inhibited the activity of GalT-2 in smooth muscle cells and markedly prevented cell proliferation. In contrast, L-PDMP stimulated the activity of GalT-2 in smooth muscle cells and stimulated cell proliferation. Antibody against GalT-2 inhibited cell proliferation. Our findings suggest that the activation of GalT-2 leads to increased LacCer levels, which in turn, may be involved in aortic smooth muscle cell proliferation.  相似文献   

3.
Oxidized phospholipids, including 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), typically present in minimally modified low density lipoprotein, have been found in atherosclerotic lesions. These compounds are gaining increasing importance as inducers of different cellular responses (inflammation, proliferation, or cell death). It was the aim of this study to understand their impact on intracellular signal transduction pathways that are responsible for these biological effects. We found that in arterial smooth muscle cells, PGPC and POVPC activated sphingomyelinases, in particular the acid isoform, which is known to participate in the very early phase of apoptotic stress responses. In addition, mitogen-activated protein kinases, which are involved in induction of stress response and apoptosis were phosphorylated (activated). Finally, activation of caspase 3 was observed, showing that stimulation of smooth muscle cells with POVPC and PGPC is associated with apoptosis. Stimulation of all these enzymes by the oxidized phospholipids almost perfectly matched their activation by minimally modified LDL. Consequently, these phospholipids seem to be responsible for the effect of this particle on cell signaling. Survival and proliferation pathways including NF-kappa B or AKT kinase were not induced by POVPC and PGPC. Experiments with a specific inhibitor of acid sphingomyelinase named NB6 showed that this enzyme plays a central role in mediating the apoptotic effects of the oxidized lipids. Thus, we conclude that modified phospholipids induce signaling cascades via activation of acid sphingomyelinase finally leading to apoptosis of smooth muscle cells, which is a detrimental process in the development of atherosclerosis.  相似文献   

4.
We have shown previously that low density lipoproteins (LDL) suppressed the synthesis of lactosylceramide in normal human proximal tubular cells, but stimulated such synthesis in proximal tubular cells from LDL receptor negative subjects (Chatterjee, S., Clarke, K., and Kwiterovich, P.O., Jr. (1986) J. Biol. Chem. 261, 13474-13479). To understand the mechanism(s) of this effect of LDL, we have studied here the effects of LDL on the activity of UDP-GalCer:beta-galactosyltransferase (GalT-2). Maximum suppression (70-80%) of the activity of GalT-2 in normal proximal tubular cells at 37 degrees C occurred at a LDL concentration of 25 micrograms/ml medium. Such suppression was not observed either when the cells were incubated with LDL at 4 degrees C, or when the cells were preincubated with leupeptin, followed by incubation with LDL at 37 degrees C. High density lipoproteins and fetuin did not suppress the activity of GalT-2 in normal proximal tubular cells. In contrast LDL modified by reductive methylation (M-LDL, 100 micrograms/ml) stimulated the activity of GalT-2, approximately 3-fold. The effects of LDL and M-LDL were not related to their glycosphingolipid content. Much less suppression and stimulation of the activity of GalT-2 in proximal tubular cells by LDL and M-LDL, respectively, was found in normal human skin fibroblasts, Chinese hamster ovary cells, and bovine smooth muscle cells, suggesting that the LDL-mediated effect may be tissue-specific. In cells grown to very high density, the activity of the LDL receptor is decreased, and there was less suppression of GalT-2 activity by LDL. In normal proximal tubular cells, LDL stimulated the activity of UDP-Gal:LacCer, alpha-galactosyltransferase activity, UDP-Gal:LcOse3Cer, beta-galactosyltransferase, and CMP-NeuAc:LacCer,alpha-sialyltransferase activity but did not alter the activity of sulfotransferase. In conclusion, LDL that entered the normal proximal tubular cells via the LDL receptor-mediated pathway decreased GalT-2 activity, an effect that was dependent upon the binding, internalization, and degradation of receptor-bound LDL. In contrast LDL that entered normal or LDL receptor-negative proximal tubular cells via an LDL receptor-independent pathway failed to suppress GalT-2 activity, and led to a stimulation of LacCer synthesis.  相似文献   

5.
The present study describes the role of glycosphingolipids in neuroinflammatory disease and investigates tumor necrosis factor alpha (TNFalpha)-induced astrogliosis following spinal cord injury. Astrogliosis is the hallmark of neuroinflammation and is characterized by proliferation of astrocytes and increased glial fibrillary acidic protein (GFAP) gene expression. In primary astrocytes, TNFalpha stimulation increased the intracellular levels of lactosylceramide (LacCer) and induced GFAP expression and astrocyte proliferation. D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol.HCl (PDMP), a glucosylceramide synthase and LacCer synthase (GalT-2) inhibitor, inhibited astrocyte proliferation and GFAP expression, which were reversed by exogenous supplementation of LacCer but not by other glycosphingolipids. TNFalpha caused a rapid increase in the activity of GalT-2 and synthesis of LacCer. Silencing of GalT-2 gene using antisense oligonucleotides also attenuated the proliferation of astrocytes and GFAP expression. The PDMP and antisense-mediated inhibition of proliferation and GFAP expression was well correlated with decreased Ras/ERK1/2 pathway activation. Furthermore, TNFalpha-mediated astrocyte proliferation and GFAP expression was also inhibited by LY294002, a phosphatidylinositol 3-kinase inhibitor, which was reversed by exogenous LacCer. LY294002 also inhibited TNFalpha-induced GalT-2 activation and LacCer synthesis, suggesting a phosphatidylinositol 3-kinase-mediated regulation of GalT-2. In vivo, PDMP treatment attenuated chronic ERK1/2 activation and spinal cord injury (SCI)-induced astrocyte proliferation with improved functional recovery post-SCI. Therefore, the in vivo studies support the conclusions drawn from cell culture studies and provide evidence for the role of LacCer in TNFalpha-induced astrogliosis in a rat model of SCI. To our knowledge, this is the first report demonstrating the role of LacCer in the regulation of TNFalpha-induced proliferation and reactivity of primary astrocytes.  相似文献   

6.
Lipid oxidation is now thought to be an initiating and sustaining event in atherogenesis. Oxidatively fragmented phospholipids, namely 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), present in minimally modified LDL and atherosclerotic lesions, have been reported to elicit a wide range of pathophysiological responses in the cells of the vascular wall. Nevertheless, the question of their potential sites of action and their primary molecular targets remains open. To address this issue, a series of fluorescently labeled analogs, which differ with regard to structure and binding site of the fluorophore, were synthesized and used as tools for studying the uptake, intracellular stability, and distribution of PGPC and POVPC in vascular smooth muscle cells (VSMCs). We demonstrate that in accordance with their lysophospholipid-like structure, these highly similar molecules transferred rapidly either from aqueous phospholipid dispersions or preloaded native LDL into VSMCs, producing disparate fluorescence patterns irrespective of the attached fluorophore. PGPC derivatives were translocated to the lysosomes. In sharp contrast, POVPC analogs were initially captured in the plasma membrane, most likely in consequence of the formation of covalent adducts with free amino and sulfhydryl groups of proteins and phospholipids. LDL internalization is not required for cellular lipid uptake. Collectively, our data provide evidence that oxidized phospholipids, owing to their high exchangeability between lipoproteins and cell membranes, may act within a short time on different cellular sites in VSMCs and affect various lipid and protein components through physical or chemical interactions, which might then serve as starting points for intracellular signaling.  相似文献   

7.
Oxidized phospholipids, including 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) are typically present in oxidatively modified low density lipoprotein (oxLDL) and have been found in atherosclerotic lesions. These compounds are gaining increasing importance as inducers of different cellular responses like inflammation, proliferation, or cell death. The aim of this study was to elicit the type and outcome of the cellular response of vascular smooth muscle cells (VSMC) upon treatment with POVPC and PGPC. Both oxidized phospholipids led to inhibition of cell proliferation and showed cytotoxic effects in VSMC. Several morphological criteria, the presence of typical DNA fragments, and a phosphatidylserine shift towards the outer leaflet of the cell membrane revealed that apoptosis was the predominant mode of cell death. In all experiments, POVPC was found to be a more potent inducer of apoptosis than PGPC. Interestingly, in the presence of high levels of serum in the growth media the proapoptotic but not the antiproliferative effects of both oxidized phospholipids were abolished. Thus, we conclude that under low serum conditions both intact POVPC and PGPC are proapoptotic mediators. Under high serum conditions, these lipids are hydrolyzed and the resultant lipid mixture containing the degradation products is no longer apoptotic but antiproliferative. Thus, the direct and indirect effects of POVPC and PGPC on cell viability may account for the detrimental actions of oxLDL on VSMC.  相似文献   

8.
The oxidized phospholipids (oxPl) 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) are cytotoxic components of oxidized LDL (oxLDL). Sustained exposure to oxLDL or isolated oxPl induces apoptotic signaling in vascular cells, which is a hallmark of the late phase of atherosclerosis. Activation of sphingomyelinase, the coordinate formation of ceramide and activation of caspase 3/7 as well as the activation of stress-associated kinases are causally involved in this process. Here, we provide evidence for a role of PKCδ in oxPl cytotoxicity. Silencing of the enzyme by siRNA significantly reduced caspase 3/7 activation in RAW 264.7 macrophages under the influence of oxPl. Concomitantly, PKCδ was phosphorylated as a consequence of cell exposure to PGPC or POVPC. Single molecule fluorescence microscopy provided direct evidence for oxPl-protein interaction. Both oxPl recruited an RFP-tagged PKCδ to the plasma membrane in a concentration-dependent manner. In addition, two color cross-correlation number and brightness (ccN&B) analysis of the molecular motions revealed that fluorescently labeled PGPC or POVPC analogs co-diffuse and are associated with the fluorescent protein kinase in live cells. The underlying lipid-protein interactions may be due to chemical bonding (imine formation between the phospholipid aldehyde POVPC with protein amino groups) and physical association (with POVPC or PGPC). In summary, our data supports the assumption that PKCδ acts as a proapototic kinase in oxPl-included apoptosis of RAW 264.7 macrophages. The direct association of the bioactive lipids with this enzyme seems to be an important step in the early phase of apoptotic signaling.  相似文献   

9.
The generation of oxidized phospholipids in lipoproteins has been linked to vascular inflammation in atherosclerotic lesions. Products of phospholipid oxidation increase endothelial activation; however, their effects on macrophages are poorly understood, and it is unclear whether these effects are regulated by the biochemical pathways that metabolize oxidized phospholipids. We found that incubation of 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) with THP-1-derived macrophages upregulated the expression of cytokine genes, including granulocyte/macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor (TNF)-α, monocyte chemotactic protein 1 (MCP-1), interleukin (IL)-1β, IL-6, and IL-8. In these cells, reagent POVPC was either hydrolyzed to lyso-phosphatidylcholine (lyso-PC) or reduced to 1-palmitoyl-2-(5-hydroxy-valeroyl)-sn-glycero-3-phosphocholine (PHVPC). Treatment with the phospholipase A(2) (PLA(2)) inhibitor, pefabloc, decreased POVPC hydrolysis and increased PHVPC accumulation. Pefabloc also increased the induction of cytokine genes in POVPC-treated cells. In contrast, PHVPC accumulation and cytokine production were decreased upon treatment with the aldose reductase (AR) inhibitor, tolrestat. In comparison with POVPC, lyso-PC led to 2- to 3-fold greater and PHVPC 10- to 100-fold greater induction of cytokine genes. POVPC-induced cytokine gene induction was prevented in bone-marrow derived macrophages from AR-null mice. These results indicate that although hydrolysis is the major pathway of metabolism, reduction further increases the proinflammatory responses to POVPC. Thus, vascular inflammation in atherosclerotic lesions is likely to be regulated by metabolism of phospholipid aldehydes in macrophages.  相似文献   

10.
11.
The truncated phospholipids 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) are oxidation products of 1-palmitoyl-2-arachidonoyl phosphatidylcholine. Depending on concentration and the extent of modification, these compounds induce growth and death, differentiation and inflammation of vascular cells thus playing a role in the development of atherosclerosis. Here we describe the import of fluorescent POVPC and PGPC analogs into cultured RAW 264.7 macrophages and the identification of their primary protein targets. We found that the fluorescent oxidized phospholipids were rapidly taken up by the cells. The cellular target sites depended on the chemical reactivity of these compounds but not on the donor (aqueous lipid suspension, albumin or LDL). The great differences in cellular uptake of PGPC and POVPC are a direct consequence of the subtle structural differences between both molecules. The former compound (carboxyl lipid) can only physically interact with the molecules in its immediate vicinity. In contrast, the aldehydo-lipid covalently reacts with free amino groups of proteins by forming covalent Schiff bases, and thus becomes trapped in the cell surface. Despite covalent binding, POVPC is exchangeable between (lipo)proteins and cells, since imines are subject to proton-catalyzed base exchange. Protein targeting by POVPC is a selective process since only a limited subfraction of the total proteome was labeled by the fluorescent aldehydo-phospholipid. Chemically stabilized lipid-protein conjugates were identified by MS/MS. The respective proteins are involved in apoptosis, stress response, lipid metabolism and transport. The identified target proteins may be considered primary signaling platforms of the oxidized phospholipid.  相似文献   

12.
13.
We have investigated the effects of modifying LDL by Cu++ and various hemoglobin preparations on aortic smooth muscle cell proliferation and on the activation of mitogen activated protein kinase. We found that at very low concentrations (10 g/ml), LDL modified by all of the above agonists markedly stimulated cell proliferation (5–10 fold). This was accompanied by a 2–3 fold stimulation in mitogen activated protein kinase (MAPK) activity. We conclude that modification of LDL under situations that are closer to those found in vivo (i.e. hypoxic conditions), may involve the activation of MAPK as a common biochemical mechanism of action. This in turn, contributes to aortic smooth muscle cell proliferation.  相似文献   

14.
Abnormal vascular smooth muscle cells proliferation is the pathophysiological basis of cardiovascular diseases, such as hypertension, atherosclerosis, and restenosis after angioplasty. Angiotensin II can induce abnormal proliferation of vascular smooth muscle cells, but the molecular mechanisms of this process remain unclear. Here, we explored the role and molecular mechanism of monocyte chemotactic protein-1, which mediated angiotensin II-induced proliferation of rat aortic smooth muscle cells. 1,000 nM angiotensin II could stimulate rat aortic smooth muscle cells' proliferation by angiotensin II type 1 receptor (AT(1)R). Simultaneously, angiotensin II increased monocyte chemotactic protein-1 expression and secretion in a dose-and time-dependent manner through activation of its receptor AT(1)R. Then, monocyte chemotactic protein-1 contributed to angiotensin II-induced cells proliferation by CCR2. Furthermore, we found that intracellular ERK and JNK signaling molecules were implicated in angiotensin II-stimulated monocyte chemotactic protein-1 expression and proliferation mediated by monocyte chemotactic protein-1. These results contribute to a better understanding effect on angiotensin II-induced proliferation of rat smooth muscle cells.  相似文献   

15.
16.
Entrapment and oxidation of low density lipoproteins (LDL) in the sub-endothelial space is a key process in the initiation of atherosclerotic lesion development. Functional changes induced by oxidized lipids in endothelial cells are early events in the pathogenesis of atherosclerosis. Oxidized-l-alpha-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (ox-PAPC), a major component of minimally modified/oxidized-LDL (MM-LDL) mimics the biological activities assigned to MM-LDL both in vitro in a co-culture model as well as in vivo in mice. We hypothesized that ox-PAPC initiates gene expression changes in endothelial cells that result in enhanced endothelial/monocyte interactions. To analyze the gene expression changes that oxidized lipids induce in endothelial cells, we used a suppression subtractive hybridization procedure to compare mRNA from PAPC-treated human aortic endothelial cells (HAEC) with that of ox-PAPC-treated cells. We report here the identification of a gene, mitogen-activated protein kinase phosphatase 1 (MKP-1), that is rapidly and transiently induced in ox-PAPC-treated HAEC. Inhibition of MKP-1 using either the phosphatase inhibitor sodium orthovanadate or antisense oligonucleotides prevents the accumulation of monocyte chemotactic activity in ox-PAPC-treated HAEC supernatants. Furthermore, we show that decreased monocyte chemotactic activity in HAEC treated with sodium orthovanadate or MKP-1 antisense oligonucleotides is due to decreased MCP-1 protein. Our results implicate a direct role for MKP-1 in ox-PAPC-induced signaling pathways that result in the production of MCP-1 protein by ox-PAPC-treated HAEC.  相似文献   

17.
The relationship between lipoproteins and growth of aortic smooth muscle cells has been a matter of controversy. We therefore reexamined this issue using serum-free defined media methodology. By themselves, LDL or HDL (50-500 micrograms/ml) from normolipemic human or bovine plasma produced little or no growth of homologous aortic smooth muscle cells incubated in serum-free medium that was supplemented with insulin and transferrin to maintain cell viability. In fact, LDL prepared in the absence of an antioxidant (BHT) was toxic to these cells. However, in the presence of maximally effective concentrations of platelet-derived growth factor (PDGF), LDL or HDL consistently increased the growth of homologous smooth muscle cells (up to twofold increased in DNA accumulation in 48 hr). Lipoproteins also augmented the growth response of arterial smooth muscle cells to fibroblast growth factor or epidermal growth factor. The mechanism of this effect was investigated further with HDL, because, in contrast to LDL, HDL apoproteins are water-soluble. Neither HDL delipidated by solvent extraction (apoHDL), purified bovine apoA-I, nor cholesterol added in the form of phospholipid vesicles appreciably increased PDGF-induced growth of bovine smooth muscle cells. However, HDL-like particles reconstituted by sonication of apoHDL with cholesterol and phospholipids did increase the growth of cultures of bovine smooth muscle cells treated with PDGF. Uptake of tritiated thymidine by cultures incubated with partially purified PDGF alone (10 micrograms/ml) was 5,693 +/- 235 dpm/24 hr compared to 10,381 +/- 645 dpm/24 hr (p less than 0.01) in the presence of both PDGF and reconstituted HDL-like particles (250 micrograms protein/ml). Thus both the lipid and protein components of HDL may be necessary for optimal potentiation of growth of mitogen-stimulated cells. These results indicate that lipoproteins from normolipemic sera are not bona fide growth factors but can potentiate the growth of mitogen-stimulated cells, perhaps by supplying exogenous cholesterol required for membrane biogenesis. This finding might be important in arterial injury when the release of PDGF and exposure to plasma lipoproteins could act in concert to stimulate the proliferation of smooth muscle cells.  相似文献   

18.
The activity of a galactosyltransferase (GalT-2) that catalyzes the transfer of galactose from uridinediphosphogalactose to glucosylceramide in cultured normal human proximal tubular (PT) cells was characterized with respect to substrate saturation and metal ion requirements. Using a membrane-bound enzyme source, optimum activity was obtained in the presence of 1.0 mM Mn2+/Mg2+ (1:1) and a detergent mixture, Triton X-100/Cutscum (1:2, v/v), 0.1 mg/ml. The apparent Km values for glucosylceramide and UDP[14C]galactose were 3 microM and 0.5 microM, respectively. The Vmax values for glucosylceramide and UDP[U-14C]galactose were 0.12 nmol/mg protein per 2 h and 173 nmol/mg protein per 2 h, respectively. The purified 14C-labelled product comigrated with authentic lactosylceramide (LacCer) on TLC and HPLC analysis. The presence of a terminal beta-[14C]galactosyl group in the enzymatic product was proved by its cleavage (79%) by beta-galactosidase. Following the development of optimal assay conditions in normal PT cells, GalT-2 activity was next measured in urinary PT cells from homozygous familial hypercholesterolemic (FH) patients previously shown to accumulate large amounts of lactosylceramide. Urinary PT cells from familial hypercholesterolemic homozygous patients contained 35% higher GalT-2 activity as compared to control cells. We speculate that elevated GalT-2 activity may contribute to the storage of LacCer in FH-PT cells.  相似文献   

19.
One of the earliest steps in the development of the atherosclerotic lesion is the accumulation of monocyte/macrophages within the vessel wall. Oxidized lipids present in minimally modified-low density lipoproteins (MM-LDL) contribute to this process by activating endothelial cells to express monocyte-specific adhesion molecules and chemoattractant factors. A major focus of our group has been the isolation and characterization of the biologically active oxidized lipids in MM-LDL. We have previously characterized three oxidized phospholipids present in MM-LDL, atherosclerotic lesions of fat fed rabbits, and autoxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (Ox-PAPC) that induced human aortic endothelial cells to adhere human monocytes in vitro. We have used sequential normal and reverse phase-high performance liquid chromatography to isolate various isomers of an oxidized phospholipid from autoxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine. The fatty acid in the sn-2 position of this biologically active isomer and its dehydration product was released by phospholipase A(2) and characterized. Hydrogenation with platinum(IV) oxide/hydrogen suggested a cyclic moiety, and reduction with sodium borohydride suggested two reducible oxygen-containing groups in the molecule. The fragmentation pattern produced by electrospray ionization-collision induced dissociation-tandem mass spectrometry was consistent with a molecule resembling an E-ring prostaglandin with an epoxide at the 5,6 position. The structure of this lipid was confirmed by proton nuclear magnetic resonance spectroscopy analysis of the free fatty acid isolated from the dehydration product of m/z 828.5. Based on these studies, we arrived at the structure of the biologically active oxidized phospholipids as 1-palmitoyl-2-(5, 6-epoxyisoprostane E(2))-sn-glycero-3-phosphocholine. The identification of this molecule adds epoxyisoprostanes to the growing list of biologically active isoprostanes.  相似文献   

20.
This study examined the premise that the atherogenic lipoprotein, beta-migrating very low density lipoprotein (betaVLDL), might activate the mitogen-activated protein (MAP) kinases ERK1/ERK2, thereby contributing to the induction of smooth muscle cell proliferation in atherosclerosis. The data show that betaVLDL activates rabbit smooth muscle cell ERK1/ERK2. Interestingly, ERK1/ERK2 activation is mediated by G protein-coupled receptors that transactivate the epidermal growth factor (EGF) receptor. betaVLDL-induced MAP kinase activation depends on Ras and Src activity as well as protein kinase C. The inhibition of lysosomal degradation of betaVLDL has no effect on ERK1/ERK2 activation. The contribution of betaVLDL-induced activation of ERK1/ERK2 to smooth muscle cell proliferation was also explored. betaVLDL induces expression of egr-1 and c-fos mRNA. Despite its ability to stimulate early gene expression, betaVLDL alone is unable to inspire quiescent cells into S phase. When added in conjunction with EGF, however, stimulation of [(3)H]thymidine incorporation into DNA and an increase in histone gene expression are observed. Moreover, betaVLDL plus EGF synergistically induce cyclin D1 expression and down-regulate p27(KIP1) expression. The addition of either betaVLDL or EGF stimulates a robust activation of ERK1/ERK2, but the addition of both agents simultaneously sustains the activation for a longer time period. Inhibition of MAP kinase kinase, pertussis toxin-sensitive G proteins, the EGF receptor, or protein kinase C blocks betaVLDL plus EGF-induced proliferation, demonstrating that activation of the betaVLDL-induced signaling pathway results in smooth muscle cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号