首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mexican howler monkey (Alouatta palliata mexicana) is a critically endangered primate, which is paleoendemic to Mexico. However, despite the potential significance of genetic data for its management and conservation, there have been no population genetic studies of this subspecies. To examine genetic diversity in the key remaining forest refuge for A. p. mexicana, the Selva Zoque, we amplified full-length mitochondrial control region sequences (1,100 bp) from 45 individuals and found 7 very similar haplotypes. Haplotype diversity (h = 0.486) and nucleotide diversity (π = 0.0007) were extremely low compared to other Neotropical primates. Neutrality tests, used to evaluate demographic effects (Tajima’s D = ?1.48, p = 0.05; Fu’s F s = ?3.33, p = 0.02), and mismatch distribution (sum of squares deviation = 0.006, p = 0.38; raggedness index = 0.12, p = 0.33) were consistent with a recent and mild population expansion and genetic diversity appears to be historically low in this taxon. Future studies should use a combination of mitochondrial and nuclear markers to fully evaluate genetic diversity and to better understand demographic history in A. p. mexicana. These studies should be undertaken throughout its geographic range in order to evaluate population structure and identify management units for conservation. Due to the limited distribution and population size of A. p. mexicana, future conservation strategies may need to consider genetic management. However, a more detailed knowledge of the population genetics of the subspecies is urgently recommended to maximise the conservation impact of these strategies.  相似文献   

2.
The effect of population size on population genetic diversity and structure has rarely been studied jointly with other factors such as the position of a population within the species’ distribution range or the presence of mutualistic partners influencing dispersal. Understanding these determining factors for genetic variation is critical for conservation of relict plants that are generally suffering from genetic deterioration. Working with 16 populations of the vulnerable relict shrub Cneorum tricoccon throughout the majority of its western Mediterranean distribution range, and using nine polymorphic microsatellite markers, we examined the effects of periphery (peripheral vs. central), population size (large vs. small), and seed disperser (introduced carnivores vs. endemic lizards) on the genetic diversity and population structure of the species. Contrasting genetic variation (HE: 0.04–0.476) was found across populations. Peripheral populations showed lower genetic diversity, but this was dependent on population size. Large peripheral populations showed high levels of genetic diversity, whereas small central populations were less diverse. Significant isolation by distance was detected, indicating that the effect of long‐distance gene flow is limited relative to that of genetic drift, probably due to high selfing rates (FIS = 0.155–0.887), restricted pollen flow, and ineffective seed dispersal. Bayesian clustering also supported the strong population differentiation and highly fragmented structure. Contrary to expectations, the type of disperser showed no significant effect on either population genetic diversity or structure. Our results challenge the idea of an effect of periphery per se that can be mainly explained by population size, drawing attention to the need of integrative approaches considering different determinants of genetic variation. Furthermore, the very low genetic diversity observed in several small populations and the strong among‐population differentiation highlight the conservation value of large populations throughout the species’ range, particularly in light of climate change and direct human threats.  相似文献   

3.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

4.
Evolutionary transitions from outcrossing to selfing can strongly affect the genetic diversity and structure of species at multiple spatial scales. We investigated the genetic consequences of mating‐system shifts in the North American, Pacific coast dune endemic plant Camissoniopsis cheiranthifolia (Onagraceae) by assaying variation at 13 nuclear (n) and six chloroplast (cp) microsatellite (SSR) loci for 38 populations across the species range. As predicted from the expected reduction in effective population size (Ne) caused by selfing, small‐flowered, predominantly selfing (SF) populations had much lower nSSR diversity (but not cpSSR) than large‐flowered, predominantly outcrossing (LF) populations. The reduction in nSSR diversity was greater than expected from the effects of selfing on Ne alone, but could not be accounted for by indirect effects of selfing on population density. Although selfing should reduce gene flow, SF populations were not more genetically differentiated than LF populations. We detected five clusters of nSSR genotypes and three groups of cpSSR haplotypes across the species range consisting of parapatric groups of populations that usually (but not always) differed in mating system, suggesting that selfing may often initiate ecogeographic isolation. However, lineage‐wide genetic variation was not lower for selfing clusters, failing to support the hypothesis that selection for reproductive assurance spurred the evolution of selfing in this species. Within three populations where LF and SF plants coexist, we detected genetic differentiation among diverged floral phenotypes suggesting that reproductive isolation (probably postzygotic) may help maintain the striking mating‐system differentiation observed across the range of this species.  相似文献   

5.
The muriqui or woolly spider monkey (Brachyteles arachnoids) is an endangered primate endemic to the Atlantic Forest of Brazil, <5% of which remains. The known muriqui population consists of <700 individuals separated into approximately 15 geographically isolated forest fragments. I present data on the distribution of genetic variation within and between two such remnant populations (FE and FBR) and summarize the implications of these results for long-range management of species genetic diversity. Eleven of 32 allozyme loci were polymorphic, representing an overall level of polymorphism of 34.4% and a mean heterozygosity per locus of 11%. Both values are among the highest reported for New World monkeys. Genetic differentiation between the two localities is highly significant (FST = 0.413, p < 0.001). Genetic distance between them is an order of magnitude greater than that between other populations of platyrrhine subspecies, but this could be an artifact of the small sample size from FBR. High levels of genetic diversity apparently characteristic of this species persist because (1) fragmentation and size reduction of muriqui populations has occurred very rapidly relative to the muriqui life span—although both polymorphism and heterozygosity were lost between generations in the largest population, the high genetic diversity present in the parent population was still in evidence; and (2) genetic diversity before population fragmentation by human activity was not distributed uniformly throughout the species' historic distribution. Thus, remnant muriqui populations are important genetic reservoirs of alleles that are unique or rare in the species gene pool as a whole. These results emphasize the need for the integration of conservation management efforts throughout the species range.  相似文献   

6.
Aim This study investigated the influence of contemporary habitat loss on the genetic diversity and structure of animal species using a common, but ecologically specialized, butterfly, Theclinesthes albocincta (Lepidoptera: Lycaenidae), as a model. Location South Australia. Methods We used amplified fragment length polymorphism (AFLP) and allozyme datasets to investigate the genetic structure and genetic diversity among populations of T. albocincta in a fragmented landscape and compared this diversity and structure with that of populations in two nearby landscapes that have more continuous distributions of butterflies and their habitat. Butterflies were sampled from 15 sites and genotyped, first using 363 informative AFLP bands and then using 17 polymorphic allozyme loci (n = 248 and 254, respectively). We complemented these analyses with phylogeographic information based on mitochondrial DNA (mtDNA) haplotype information derived from a previous study in the same landscapes. Results Both datasets indicated a relatively high level of genetic structuring across the sampling range (AFLP, FST = 0.34; allozyme, FST = 0.13): structure was greatest among populations in the fragmented landscape (AFLP, FST = 0.15; allozyme, FST = 0.13). Populations in the fragmented landscape also had significantly lower genetic diversity than populations in the other two landscapes: there were no detectable differences in genetic diversity between the two continuous landscapes. There was also evidence (r2 = 0.33) of an isolation by distance effect across the sampled range of the species. Main conclusions The multiple lines of evidence, presented within a phylogeographic context, support the hypothesis that contemporary habitat fragmentation has been a major driver of genetic erosion and differentiation in this species. Theclinesthes albocincta populations in the fragmented landscape are thus likely to be at greater risk of extinction because of reduced genetic diversity, their isolation from conspecific subpopulations in other landscapes, and other extrinsic forces acting on their small population sizes. Our study provides compelling evidence that habitat loss and fragmentation have significant rapid impacts on the genetic diversity and structure of butterfly populations, especially specialist species with particular habitat preferences and poor dispersal abilities.  相似文献   

7.
Alison Shapcott 《Biotropica》1999,31(4):579-590
Syzygium nervosum is a common monsoon rain forest tree. Its habitat in Australia consists of small rain forest patches that are scattered through a savanna matrix. It is a mast flowering canopy species that produces large quantities of fruits fed on by mobile frugivores such as birds and fruit bats. The genetic diversity of this species was investigated, especially in relation to rain forest patch size, geographic isolation, and geographic distribution. Syzygium nervosum was found to have high levels of genetic diversity within populations (He= 0.307). Diversity among populations, however, was relatively low (Fsr = 0.118), and was not spatially structured across its geographic range in Australia. This is thought to have been caused by relatively frequent gene flow among populations (Nm= 1.67), mediated primarily by mobile frugivores. Genetic diversity was not correlated with patch size or isolation. It is thought that seed dispersal by frugivores has acted to expand the effective population size of this species beyond the individual rain forest patch, and thus has prevented the substantial loss of genetic diversity that otherwise would have been observed. Thus this species is dependent upon these frugivores for the maintenance of its genetic diversity and hence its long-term viability. These results lend support to theories of post-Holocene expansion of rain forest by vagile species in northern Australia.  相似文献   

8.
Abstract

Brassica rupestris Raf. is a chasmophyte species that includes two subspecies, both endemic to Central-Western Sicily (Italy). Inter-Simple Sequence Repeat (ISSR) markers were used to detect genetic diversity within and among eight populations representative of the species' distribution range. High levels of genetic diversity were revealed both at the population (PPB = 53.88%, H S = 0.212, Sh = 0.309) and at the species level (PPB = 96.55%, H T = 0.307, Sh = 0.464). The correlation between genetic and geographical distances was negative (Mantel test, r = ?0.06, P < 0.95). The two subspecies of B. rupestris, subsp. rupestris and subsp. hispida, showed remarkable genetic similarity and molecular data did not unequivocally support their distinctness. The pattern of genetic variation revealed by our study bears important consequences for conservation management: It is desirable to preserve B. rupestris populations in situ with a “dynamic” strategy, while, ex situ conservation programmes might be improved to safeguard maximum genetic diversity.  相似文献   

9.
The beech species Fagus hayatae is an important relict tree species in subtropical China, whose biogeographical patterns may reflect floral responses to climate change in this region during the Quaternary. Previous studies have revealed phylogeography for three of the four Fagus species in China, but study on F. hayatae, the most sparsely distributed of these species, is still lacking. Here, molecular methods based on eight simple sequence repeat (SSR) loci of nuclear DNA (nDNA) and three chloroplast DNA (cpDNA) sequences were applied for analyses of genetic diversity and structure in 375 samples from 14 F. hayatae populations across its whole range. Both nDNA and cpDNA indicated a high level of genetic diversity in this species. Significant fixation indexes and departures from the Hardy–Weinberg equilibrium, with a genetic differentiation parameter of Rst of 0.233, were detected in nDNA SSR loci among populations, especially those on Taiwan Island, indicating strong geographic partitioning. The populations were classified into two clusters, without a prominent signal of isolation‐by‐distance. For the 15 haplotypes detected in the cpDNA sequence fragments, there was a high genetic differentiation parameter (Gst = 0.712) among populations. A high Gst of 0.829 was also detected outside but not within the Sichuan Basin. Consistent with other Fagus species in China, no recent population expansion was detected from tests of neutrality and mismatch distribution analysis. Overall, genetic isolation with limited gene flow was prominent for this species and significant phylogeographic structures existed across its range except for those inside the Sichuan Basin. Our study suggested long‐term geographic isolation in F. hayatae with limited population admixture and the existence of multiple refugia in the mountainous regions of the Sichuan Basin and southeast China during the Quaternary. These results may provide useful information critical for the conservation of F. hayatae and other Chinese beech species.  相似文献   

10.
We studied microsatellite genetic variation in 14 different geographic populations of black grouse (Tetrao tetrix) across the European range. Populations were grouped in three different fragmentation categories: isolated, contiguous and continuous, respectively. Genetic diversity, measured as observed heterozygosity (H O), expected heterozygosity (H E) and allelic richness, were lower in isolated populations as compared to the other two categories that did not differ amongst one another. These results imply that lowered genetic variability in black grouse populations is negatively affected by population isolation. Our results suggest that the connectivity of small and isolated populations in Western Europe should be improved or else these face an increased risk of extinction due to genetic and demographic stochasticity.  相似文献   

11.
With increasing human activities and associated landscape changes, distributions of terrestrial mammals become fragmented. These changes in distribution are often associated with reduced population sizes and loss of genetic connectivity and diversity (i.e., genetic erosion) which may further diminish a species' ability to respond to changing environmental conditions and lead to local population extinctions. We studied threatened boreal caribou (Rangifer tarandus caribou) populations across their distribution in Ontario/Manitoba (Canada) to assess changes in genetic diversity and connectivity in areas of high and low anthropogenic activity. Using data from >1,000 caribou and nine microsatellite loci, we assessed population genetic structure, genetic diversity, and recent migration rates using a combination of network and population genetic analyses. We used Bayesian clustering analyses to identify population genetic structure and explored spatial and temporal variation in those patterns by assembling networks based on RST and FST as historical and contemporary genetic edge distances, respectively. The Bayesian clustering analyses identified broad‐scale patterns of genetic structure and closely aligned with the RST network. The FST network revealed substantial contemporary genetic differentiation, particularly in areas presenting contemporary anthropogenic disturbances and habitat fragmentation. In general, relatively lower genetic diversity and greater genetic differentiation were detected along the southern range limit, differing from areas in the northern parts of the distribution. Moreover, estimation of migration rates suggested a northward movement of animals away from the southern range limit. The patterns of genetic erosion revealed in our study suggest ongoing range retraction of boreal caribou in central Canada.  相似文献   

12.
It is generally accepted that the spatial distribution of neutral genetic diversity within a species’ native range mostly depends on effective population size, demographic history, and geographic position. However, it is unclear how genetic diversity at adaptive loci correlates with geographic peripherality or with habitat suitability within the ecological niche. Using exome‐wide genomic data and distribution maps of the Alpine range, we first tested whether geographic peripherality correlates with four measures of population genetic diversity at > 17,000 SNP loci in 24 Alpine populations (480 individuals) of Swiss stone pine (Pinus cembra) from Switzerland. To distinguish between neutral and adaptive SNP sets, we used four approaches (two gene diversity estimates, FST outlier test, and environmental association analysis) that search for signatures of selection. Second, we established ecological niche models for P. cembra in the study range and investigated how habitat suitability correlates with genetic diversity at neutral and adaptive loci. All estimates of neutral genetic diversity decreased with geographic peripherality, but were uncorrelated with habitat suitability. However, heterozygosity (He) at adaptive loci based on Tajima's D declined significantly with increasingly suitable conditions. No other diversity estimates at adaptive loci were correlated with habitat suitability. Our findings suggest that populations at the edge of a species' geographic distribution harbour limited neutral genetic diversity due to demographic properties. Moreover, we argue that populations from suitable habitats went through strong selection processes, are thus well adapted to local conditions, and therefore exhibit reduced genetic diversity at adaptive loci compared to populations at niche margins.  相似文献   

13.
He J  Chen L  Si Y  Huang B  Ban X  Wang Y 《Genetica》2009,135(2):233-243
Magnolia officinalis subsp. biloba, a traditional Chinese medicinal plant, experienced severe declines in the number of populations and the number of individuals in the late 20th century due to the widespread harvest of the subspecies. A large-scale cultivation program was initiated and cultivated populations rapidly recovered the loss in individual plant numbers, but wild populations remained small as a consequence of cutting. In this study, the levels of genetic variation and genetic structure of seven wild populations and five domestic populations of M. officinalis subsp. biloba were estimated employing an AFLP methodology. The plant exhibited a relatively high level of intra-population genetic diversity (h = 0.208 and H j = 0.268). The cultivated populations maintained approximately 95% of the variation exhibited in wild populations, indicating a slight genetic bottleneck in the cultivated populations. The analysis of genetic differentiation revealed that most of the AFLP diversity resided within populations both for the wild group (78.22%) and the cultivated group (85.92%). Genetic differentiation among populations in the wild group was significant (F ST = 0.1092, P < 0.005), suggesting wild population level genetic structure. Principal coordinates analysis (PCO) did not discern among wild and cultivated populations, indicating that alleles from the wild population were maintained in the cultivated gene pool. Results from the present study provide important baseline data for effectively conserving the genetic resources of this medicinal subspecies.  相似文献   

14.
Recent molecular studies have indicated that phylogeographical history of Japanese biota is likely shaped by geohistory along with biological events, such as distribution shifts, isolation, and divergence of populations. However, the genetic structure and phylogeographical history of terrestrial Annelida species, including leech species, are poorly understood. Therefore, we aimed to understand the genetic structure and phylogeographical history across the natural range of Haemadipsa japonica, a sanguivorous land leech species endemic to Japan, by using nine polymorphic nuclear microsatellites (nSSR) and cytochrome oxidase subunit one (COI) sequences of mitochondrial DNA (mtDNA). Analyses using nSSR revealed that H. japonica exhibited a stronger regional genetic differentiation among populations (G'ST = 0.77) than other animal species, probably because of the low mobility of land leech. Analyses using mtDNA indicated that H. japonica exhibited two distinct lineages (A and B), which were estimated to have diverged in the middle Pleistocene and probably because of range fragmentation resulting from climatic change and glacial and interglacial cycles. Lineage A was widely distributed across Japan, and lineage B was found in southwestern Japan. Analyses using nSSR revealed that lineage A was roughly divided into two population groups (i.e., northeastern and southwestern Japan); these analyses also revealed a gradual decrease in genetic diversity with increasing latitude in lineage A and a strong genetic drift in populations of northeastern Japan. Combined with the largely unresolved shallow polytomies from the mtDNA phylogeny, these results implied that lineage A may have undergone a rapid northward migration, probably during the Holocene. Then, the regional genetic structure with local unique gene pools may have been formed within each lineage because of the low mobility of this leech species.  相似文献   

15.

Background  

Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood.  相似文献   

16.
Aim This study aims to link demographic traits and post‐glacial recolonization processes with genetic traits in Himantoglossum hircinum (L.) Spreng (Orchidaceae), and to test the implications of the central–marginal concept (CMC) in Europe. Location Twenty sites covering the entire European distribution range of this species. Methods We employed amplified fragment length polymorphism (AFLP) markers and performed a plastid microsatellite survey to assess genetic variation in 20 populations of H. hircinum located along central–marginal gradients. We measured demographic traits to assess population fitness along geographical gradients and to test for correlations between demographic traits and genetic diversity. We used genetic diversity indices and analyses of molecular variance (AMOVA) to test hypotheses of reduced genetic diversity and increased genetic differentiation and isolation from central to peripheral sites. We used Bayesian simulations to analyse genetic relationships among populations. Results Genetic diversity decreased significantly with increasing latitudinal and longitudinal distance from the distribution centre when excluding outlying populations. The AMOVA revealed significant genetic differentiation among populations (FST = 0.146) and an increase in genetic differentiation from the centre of the geographical range to the margins (except for the Atlantic group). Population fitness, expressed as the ratio NR/N, decreased significantly with increasing latitudinal distance from the distribution centre. Flower production was lower in most eastern peripheral sites. The geographical distribution of microsatellite haplotypes suggests post‐glacial range expansion along three major migratory pathways, as also supported by individual membership fractions in six ancestral genetic clusters (C1–C6). No correlations between genetic diversity (e.g. diversity indices, haplotype frequency) and population demographic traits were detected. Main conclusions Reduced genetic diversity and haplotype frequency in H. hircinum at marginal sites reflect historical range expansions. Spatial variation in demographic traits could not explain genetic diversity patterns. For those sites that did not fit into the CMC, the genetic pattern is probably masked by other factors directly affecting either demography or population genetic structure. These include post‐glacial recolonization patterns and changes in habitat suitability due to climate change at the northern periphery. Our findings emphasize the importance of distinguishing historical effects from those caused by geographical variation in population demography of species when studying evolutionary and ecological processes at the range margins under global change.  相似文献   

17.
Recently, an increased effort has been directed towards understanding the distribution of genetic variation within and between populations, particularly at central and marginal areas of a species’ distribution. Much of this research is centred on the central‐marginal hypothesis, which posits that populations at range margins are sparse, small and genetically diminished compared to those at the centre of a species’ distribution range. We tested predictions derived from the central‐marginal hypothesis for the distribution of genetic variation and population differentiation in five European Coenagrionid damselfly species. We screened genetic variation (microsatellites) in populations sampled in the centre and margins of the species’ latitudinal ranges, assessed genetic diversity (HS) in the populations and the distribution of this genetic diversity between populations (FST). We further assessed genetic substructure and migration with Bayesian assignment methods, and tested for significant associations between genetic substructure and bioclimatic and spatial (altitude and latitude) variables, using general linearized models. We found no general adherence to the central‐marginal hypothesis; instead we found that other factors such as historical or current ecological factors often better explain the patterns uncovered. This was illustrated in Coenagrion mercuriale whose colonisation history and behaviour most likely led to the observation of a high genetic diversity in the south and lower genetic diversity with increasing latitude, and in C. armatum and C. pulchellum whose patterns of low genetic diversity coupled with the weakest genetic differentiation at one of their range margins suggested, respectively, possible range shifts and recent, strong selection pressure.  相似文献   

18.
Primula apennina Widmer is endemic to the North Apennines (Italy). ISSR were used to detect the genetic diversity within and among six populations representative of the species distribution range. High levels of genetic diversity were revealed both at population percentage of polymorphic band (PPB = 75.92%, H S = 0.204, H pop = 0.319) and at species level (PPB = 96.95%, H T = 0.242, H sp = 0.381). Nei gene diversity statistics (15.7%), Shannon diversity index (16.3%) and AMOVA (14%) detected a moderate level of interpopulation diversity. Principal coordinate and Bayesian analyses clustered the populations in three major groups along a geographic gradient. The correlation between genetic and geographic distances was positive (Mantel test, r = 0.232). All together, these analyses revealed a weak but significant spatial genetic structure in P. apennina, with gene flow acting as a homogenizing force that prevents a stronger differentiation of populations. Conservation measures are suggested based on the observed pattern of genetic variability.  相似文献   

19.
Aim We used microsatellite markers to determine the range‐wide genetic structure of Picea jezoensis and to test the hypothesis that the past population history of this widespread cold‐temperate spruce has resulted in a low level of genetic variation and in imprints of inbreeding and bottlenecks in isolated marginal populations. Location The natural range of the three infraspecific taxa of P. jezoensis throughout north‐east Asia, including isolated marginal populations. Methods We analysed a total of 990 individuals across 33 natural populations using four nuclear microsatellite loci. Population genetic structure was assessed by analysing genetic diversity indices for each population, examining clustering (model‐based and distance‐based) among populations, evaluating signals of recent bottlenecks, and testing for isolation by distance (IBD). Results The 33 populations were clustered into five groups. The isolated marginal groups of populations (in Kamchatka, Kii in Japan and South Korea) exhibited low levels of allelic richness and gene diversity and a complete or almost complete loss of rare alleles. A recent bottleneck was detected in the populations in Hokkaido across to mid‐Sakhalin. The IBD analysis revealed that genetic divergence between populations was higher for populations separated by straits. Main conclusions Picea jezoensis showed a higher level of genetic differentiation among populations (FST = 0.101) than that observed in the genus Picea in general. This might be attributable to the fact that historically the straits around Japan acted as barriers to the movement of seeds and pollen. The low levels of genetic diversity in the isolated marginal population groups may reflect genetic drift that has occurred after isolation. Evidence of a significant bottleneck between the Hokkaido and mid‐Sakhalin populations implies that the cold, dry climate in the late Pleistocene resulted in the decline and contraction of populations, and that there was a subsequent expansion followed by a founder effect when conditions improved. The high polymorphism observed in P. jezoensis nuclear microsatellites revealed cryptic genetic structure that organellar DNA markers failed to identify in a previous study.  相似文献   

20.
Genetic diversity is important for species' fitness and evolutionary processes but our knowledge on how it varies across a species' distribution range is limited. The abundant centre hypothesis (ACH) predicts that populations become smaller and more isolated towards the geographic range periphery – a pattern that in turn should be associated with decreasing genetic diversity and increasing genetic differentiation. We tested this hypothesis in Adonis vernalis, a dry grassland plant with an extensive Eurasian distribution. Its life‐history traits and distribution characteristics suggest a low genetic diversity that decreases and a high genetic differentiation that increases towards the range edge. We analysed AFLP fingerprints in 28 populations along a 4698‐km transect from the geographic range core in Russia to the western range periphery in Central and Western Europe. Contrary to our expectation, our analysis revealed high genetic diversity (range of proportion of polymorphic bands = 56–81%, He = 0.168–0.238) and low genetic differentiation across populations (ΦST = 0.18). However, in congruence with the genetic predictions of the ACH, genetic diversity decreased and genetic differentiation increased towards the range periphery. Spanish populations were genetically distinct, suggesting a divergent post‐glacial history in this region. The high genetic diversity and low genetic differentiation in the remaining Avernalis populations is surprising given the species' life‐history traits and points to the possibility that the species has been widely distributed in the studied region or that it has migrated from a diverse source in an East–West direction, in the past.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号