首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
《Autophagy》2013,9(7):911-913
Atg8 and its mammalian homolog LC3, ubiquitin-like proteins (Ubls) required for autophagosome formation, are remarkably unique in that their conjugation target is the lipid phosphatidylethanolamine (PE). Although PE was identified as the sole lipid conjugated with Atg8/LC3 in vivo, phosphatidylserine (PS) can be also a good substrate for its conjugation reaction in vitro. This posed a simple, intriguing question: What confers substrate specificity to lipidation of Atg8/LC3 in vivo? Our recent in vitro studies propose that intracellular milieus such as cytosolic pH and acidic phospholipids in membranes significantly contribute to selective production of the Atg8¬¬–PE conjugate.1

Addendum to: Oh-oka K, Nakatogawa H, Ohsumi Y. Physiological pH and acidic phospholipids contribute to substrate specificity in lipidation of Atg8. J Biol Chem 2008; 10.1074/jbc.M801836200.  相似文献   

2.
Atg8 and its mammalian homolog LC3, ubiquitin-like proteins (Ubls) required for autophagosome formation, are remarkably unique in that their conjugation target is the lipid phosphatidylethanolamine (PE). Although PE was identified as the sole lipid conjugated with Atg8/LC3 in vivo, phosphatidylserine (PS) can be also a good substrate for its conjugation reaction in vitro. This posed a simple, intriguing question: What confers substrate specificity to lipidation of Atg8/LC3 in vivo? Our recent in vitro studies propose that intracellular milieus such as cytosolic pH and acidic phospholipids in membranes significantly contribute to selective production of the Atg8-PE conjugate.  相似文献   

3.
Nakatogawa H  Ichimura Y  Ohsumi Y 《Cell》2007,130(1):165-178
Autophagy involves de novo formation of double membrane-bound structures called autophagosomes, which engulf material to be degraded in lytic compartments. Atg8 is a ubiquitin-like protein required for this process in Saccharomyces cerevisiae that can be conjugated to the lipid phosphatidylethanolamine by a ubiquitin-like system. Here, we show using an in vitro system that Atg8 mediates the tethering and hemifusion of membranes, which are evoked by the lipidation of the protein and reversibly modulated by the deconjugation enzyme Atg4. Mutational analyses suggest that membrane tethering and hemifusion observed in vitro represent an authentic function of Atg8 in autophagosome formation in vivo. In addition, electron microscopic analyses indicate that these functions of Atg8 are involved in the expansion of autophagosomal membranes. Our results provide further insights into the mechanisms underlying the unique membrane dynamics of autophagy and also indicate the functional versatility of ubiquitin-like proteins.  相似文献   

4.
Steady state and time resolved fluorescence spectroscopy have been used to probe microenvironments of the therapeutically active intrinsically fluorescent flavonoid, 7-hydroxyflavone (7-HF), in model membranes consisting of multilamellar phosphatidylcholine liposomes. Additionally, the antioxidant effects of 7-HF against lipid peroxidation have been evaluated using spectrophotometric assay. Large Stokes shifted emissions with distinct spectroscopic signatures, are observed from the excited state proton transfer (ESPT) tautomer (which is generated by a solvent mediated mechanism) and the ground state anion of 7-HF. The neutral (7-HFN) and anionic (7-HFA) species' appear to be located in the non-polar acyl chain and the polar head group regions of the lipid vesicles respectively. The partition coefficients of 7-HFN and 7-HFA in these vesicles have also been estimated using their intrinsic fluorescence. Anisotropy (r) versus temperature (T) measurements reveal the utility of the tautomer fluorescence anisotropy as a sensitive parameter for exploring structural changes in the membranes. Fluorescence decay kinetics studies indicate heterogeneity in the microenvironments of both 7-HFN and 7-HFA. Furthermore, we demonstrate that lipid peroxidation of the model membranes is partially arrested upon 7-HF binding, suggesting its potential usefulness as an inhibitor of peroxidative damage of cell membranes.  相似文献   

5.
Recently a noncanonical activity of autophagy proteins has been discovered that targets lipidation of microtubule-associated protein 1 light chain 3 (LC3) onto macroendocytic vacuoles, including macropinosomes, phagosomes, and entotic vacuoles. While this pathway is distinct from canonical autophagy, the mechanism of how these nonautophagic membranes are targeted for LC3 lipidation remains unclear. Here we present evidence that this pathway requires activity of the vacuolar-type H+-ATPase (V-ATPase) and is induced by osmotic imbalances within endolysosomal compartments. LC3 lipidation by this mechanism is induced by treatment of cells with the lysosomotropic agent chloroquine, and through exposure to the Heliobacter pylori pore-forming toxin VacA. These data add novel mechanistic insights into the regulation of noncanonical LC3 lipidation and its associated processes, including LC3-associated phagocytosis (LAP), and demonstrate that the widely and therapeutically used drug chloroquine, which is conventionally used to inhibit autophagy flux, is an inducer of LC3 lipidation.  相似文献   

6.
Nakatogawa H  Ishii J  Asai E  Ohsumi Y 《Autophagy》2012,8(2):177-186
Atg8 is a ubiquitin-like protein required for autophagy in the budding yeast Saccharomyces cerevisiae. A ubiquitin-like system mediates the conjugation of the C terminus of Atg8 to the lipid phosphatidylethanolamine (PE), and this conjugate (Atg8-PE) plays a crucial role in autophagosome formation at the phagophore assembly site/pre-autophagosomal structure (PAS). The cysteine protease Atg4 processes the C terminus of newly synthesized Atg8 and also delipidates Atg8 to release the protein from membranes. While the former is a prerequisite for lipidation of Atg8, the significance of the latter in autophagy has remained unclear. Here, we show that autophagosome formation is significantly retarded in cells deficient for Atg4-mediated delipidation of Atg8. We find that Atg8-PE accumulates on various organelle membranes including the vacuole, the endosome and the ER in these cells, which depletes unlipidated Atg8 and thereby attenuates its localization to the PAS. Our results suggest that the Atg8-PE that accumulates on organelle membranes is erroneously produced by lipidation system components independently of the normal autophagic process. It is also suggested that delipidation of Atg8 by Atg4 on different organelle membranes promotes autophagosome formation. Considered together with other results, we propose that Atg4 acts to compensate for the intrinsic defect in the lipidation system; it recycles Atg8-PE generated on inappropriate membranes to maintain a reservoir of unlipidated Atg8 that is required for autophagosome formation at the PAS.  相似文献   

7.
《Autophagy》2013,9(2):177-186
Atg8 is a ubiquitin-like protein required for autophagy in the budding yeast Saccharomyces cerevisiae. A ubiquitin-like system mediates the conjugation of the C terminus of Atg8 to the lipid phosphatidylethanolamine (PE), and this conjugate (Atg8–PE) plays a crucial role in autophagosome formation at the phagophore assembly site/pre-autophagosomal structure (PAS). The cysteine protease Atg4 processes the C terminus of newly synthesized Atg8 and also delipidates Atg8 to release the protein from membranes. While the former is a prerequisite for lipidation of Atg8, the significance of the latter in autophagy has remained unclear. Here, we show that autophagosome formation is significantly retarded in cells deficient for Atg4-mediated delipidation of Atg8. We find that Atg8–PE accumulates on various organelle membranes including the vacuole, the endosome and the ER in these cells, which depletes unlipidated Atg8 and thereby attenuates its localization to the PAS. Our results suggest that the Atg8–PE that accumulates on organelle membranes is erroneously produced by lipidation system components independently of the normal autophagic process. It is also suggested that delipidation of Atg8 by Atg4 on different organelle membranes promotes autophagosome formation. Considered together with other results, we propose that Atg4 acts to compensate for the intrinsic defect in the lipidation system; it recycles Atg8–PE generated on inappropriate membranes to maintain a reservoir of unlipidated Atg8 that is required for autophagosome formation at the PAS.  相似文献   

8.
This paper reviews recent data relevant to the antioxidant effects of melatonin with special emphasis on the changes produced in polyunsaturated fatty acids located in the phospholipids of biological membranes. The onset of lipid peroxidation within cellular membranes is associated with changes in their physicochemical properties and with the impairment of protein functions located in the membrane environment. All cellular membranes are especially vulnerable to oxidation due to their high concentration of polyunsaturated fatty acids. These processes combine to produce changes in the biophysical properties of membranes that can have profound effects on the activity of membrane-bound proteins. This review deals with aspects for lipid peroxidation of biological membranes in general, but with some emphasis on changes of polyunsaturated fatty acids, which arise most prominently in membranes and have been studied extensively in our laboratory. The article provides current information on the effect of melatonin on biological membranes, changes in fluidity, fatty acid composition and lipid-protein modifications during the lipid peroxidation process of photoreceptor membranes and modulation of gene expression by the hormone and its preventive effects on adriamycin-induced lipid peroxidation in rat liver. Simple model systems have often been employed to measure the activity of antioxidants. Although such studies are important and essential to understand the mechanisms and kinetics of antioxidant action, it should be noted that the results of simple in vitro model experiments cannot be directly extrapolated to in vivo systems. For example, the antioxidant capacity of melatonin, one of the important physiological lipophilic antioxidants, in solution of pure triglycerides enriched in omega-3 polyunsaturated fatty acids is considerably different from that in subcellular membranes.  相似文献   

9.
10.
An isogenic pair of Escherichia coli strains lacking (pssA) and possessing (wild-type) the enzyme phosphatidylserine synthase was used to estimate the effects of the total lack of phosphatidylethanolamine (PE), the major phospholipid in E. coli membranes, on the activities of several sugar permeases (enzymes II) of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The mutant exhibits greatly elevated levels of phosphatidylglycerol (PG), a lipid that has been reported to stimulate the in vitro activities of several PTS permeases. The activities, thermal stabilities, and detergent sensitivities of three PTS permeases, the glucose enzyme II (IIGlc), the mannose enzyme II (IIMan) and the mannitol enzyme II (IIMtl), were characterized. Western blot analyses revealed that the protein levels of IIGlc were not appreciably altered by the loss of PE. In the pssA mutant, IIGlc and IIMan activities were depressed both in vivo and in vitro, with the in vivo transport activities being depressed much more than the in vitro phosphorylation activities. IIMtl also exhibited depressed transport activity in vivo but showed normal phosphorylation activities in vitro. IIMan and IIGlc exhibited greater thermal lability in the pssA mutant membranes than in the wild-type membranes, but IIMtl showed enhanced thermal stability. All three enzymes were activated by exposure to TritonX100 (0.4%) or deoxycholate (0.2%) and inhibited by SDS (0.1%), but IIMtl was the least affected. IIMan and, to a lesser degree, IIGlc were more sensitive to detergent treatments in the pssA mutant membranes than in the wild-type membranes while IIMtl showed no differential effect. The results suggest that all three PTS permeases exhibit strong phospholipid dependencies for transport activity in vivo but much weaker and differential dependencies for phosphorylation activities in vitro, with IIMan exhibiting the greatest and IIMtl the least dependency. The effects of lipid composition on thermal sensitivities and detergent activation responses paralleled the effects on in vitro phosphorylation activities. These results together with those previously published suggest that, while the in vivo transport activities of all PTS enzymes II require an appropriate anionic to zwitterionic phospholipid balance, the in vitro phosphorylation activities of these same enzymes show much weaker and differential dependencies. Alteration of the phospholipid composition of the membrane thus allows functional dissection of transport from the phosphorylation activities of PTS enzyme complexes.  相似文献   

11.
A protein's function depends on its localization to the right cellular compartment. A number of proteins require lipidation to associate with membranes. Protein palmitoylation is a reversible lipid modification and has been shown to mediate both membrane localization and control protein function. At the yeast vacuole, several palmitoylated proteins have been identified that are required for vacuole biogenesis, including the fusion factor Vac8, the SNARE Ykt6 and the casein kinase Yck3. Moreover, both the DHHC-CRD acyltransferase Pfa3 and Ykt6 are involved in palmitoylation at the vacuole Here, we present and discuss methods to probe for protein palmitoylation at vacuoles.  相似文献   

12.
Atg3‐catalyzed transferring of Atg8 to phosphatidylethanolamine (PE) in the phagophore membrane is essential for autophagy. Previous studies have demonstrated that this process requires Atg3 to interact with the phagophore membrane via its N‐terminal amphipathic helix. In this study, by using combined biochemical and biophysical approaches, our data showed that in addition to binding to the membranes, Atg3 attenuates lipid diffusion and enriches lipid molecules with smaller headgroup. Our data suggest that Atg3 promotes Atg8 lipidation via altering lipid diffusion and rearrangement.  相似文献   

13.
Phospholipid and cholesterol amounts, intrinsic protein/lipid ratios in liver, brain and skeletal muscle microsomal membranes of 14 species of vertebrate animals have been studied. No significant differences between phospholipid amounts in tissues as well as vertebrate classes have been discovered. The highest cholesterol amount has been found in brain microsomes, the smallest one in sarcoplasmic reticulum membranes. In reptile brain and muscle microsomes a higher amount of cholesterol compared to that in species of other vertebrate classes has been found. In brain membranes intrinsic protein and lipid amounts are approximately equal, while in liver and muscle microsomes a protein component predominates. Phospholipid/protein ratio is larger in brain membranes than in liver and muscle ones. Cholesterol/protein ratio reaches the highest values in microsomal membranes of reptile tissues. Brain membranes of vertebrate animals are characterized by a greater stability of protein-lipid composition than liver and muscle ones.  相似文献   

14.
Sulfogalactosylglycerolipid (SGG) is found in detergent-resistant lipid raft fractions isolated from sperm plasma membranes and has been shown to be important in sperm-egg adhesion. In order to provide more direct evidence for the association of sulfoglycolipids with lipid raft domains, we have examined the distribution of two sulfoglycolipids in supported membranes prepared from artificial lipid mixtures and cellular lipid extracts. Atomic force microscopy has been used to visualize the localization of SGG and sulfogalactosylceramide (SGC) in liquid-ordered domains in supported bilayers of ternary lipid mixtures comprised of dipalmitoylphosphatidylcholine, cholesterol and palmitoyldocosahexaenoylphosphatidylcholine. The localization of SGC/SGG in the liquid-ordered raft domains is demonstrated by changes in bilayer morphology in the presence of sulfoglycolipid, by selective antibody labeling of the domains with anti-SGC/SGG and by the effects of the cholesterol-sequestering agent, methyl-β-cyclodextrin, on the supported membranes. In addition, we use a combination of atomic force microscopy and immunofluorescence to show that supported bilayers made from lipids extracted from sperm anterior head plasma membranes (APM) and isolated APM vesicles exhibit small SGG-rich domains that are similar to those observed in bilayers of artificial lipid mixtures. The possible implications of these results for the involvement of SGG-rich lipid rafts in modulating sperm-egg interactions in vivo and the utility of model membranes for studying the behavior of lipid rafts are discussed.  相似文献   

15.
《Autophagy》2013,9(8):1470-1471
The phagophore membrane is highly curved along the rim of the open cup, suggesting that the molecular mechanisms governing its formation and growth could rely on membrane curvature-dependent events. To this end, we recently reported that lipidation of the LC3 protein family is facilitated on highly curved membranes in vitro. We further showed that the conjugating enzyme ATG3 contains an amphipathic helix that is responsible for this membrane curvature dependency, and that the maintenance of this amphipathic structure is essential for ATG3 function in vivo.  相似文献   

16.
The phagophore membrane is highly curved along the rim of the open cup, suggesting that the molecular mechanisms governing its formation and growth could rely on membrane curvature-dependent events. To this end, we recently reported that lipidation of the LC3 protein family is facilitated on highly curved membranes in vitro. We further showed that the conjugating enzyme ATG3 contains an amphipathic helix that is responsible for this membrane curvature dependency, and that the maintenance of this amphipathic structure is essential for ATG3 function in vivo.  相似文献   

17.
Ultrastructures of in vitro microspore embryoids and in vivo zygotic embryos of spring wheat have been analyzed and compared. Along with the similarity of ultrastructural characteristics of embryoid and embryo cells at the corresponding developmental stages, some differences have been revealed. Unlike embryos, embryoid cells are characterized by lipid inclusions and numerous mitochondria with well-developed internal membranes. According to our hypothesis, lipids represent an alternative energy source required for active cell divisions in the forming embryoids. Unlike embryos, since the earliest developmental stages, embryoid cells accumulate a significant amount of starch and then utilize it during the organogenesis and germination. A conclusion has been made that embryoid cells create their own reserve of carbohydrates, which is then mobilized during their development. The concept of T.B. Batygina (1987, 1997, 2014) about the universal character of the plant morphogenesis in vivo, in situ, and in vitro has been confirmed. The prospects for the use of microspore embryoidogenesis in vitro as a model to study cytophysiological aspects of zygotic embryogenesis in vivo are discussed.  相似文献   

18.
In order to elucidate the modes of interaction between lignin precursors and membranes, we have studied the influence of temperature, lipid composition and buffer composition on the partitioning of monolignol and dilignol model substances into phospholipid bilayers. The partitioning was determined by immobilized liposome chromatography, which is an established method for studies of pharmaceutical drugs but a new approach in studies of lignin synthesis. The temperature dependence of the retention and the effect of a high ammonium sulfate concentration in the mobile phase demonstrated that the interaction involved both hydrophobic effects and polar interactions. There was also a good correlation between the partitioning and the estimated hydrophobicity, in terms of octanol/water partitioning. The partitioning behavior of the model substances suggests that passive diffusion over the cell membrane is a possible transport route for lignin precursors. This conclusion is strengthened by comparison of the present results with the partitioning of pharmaceutical drugs that are known to pass cell membranes by diffusion.  相似文献   

19.
Membrane domains ("rafts") have received great attention as potential platforms for proteins in signaling and trafficking. Because rafts are believed to form by cooperative lipid interactions but are not directly accessible in vivo, artificial phase-separating lipid bilayers are useful model systems. Giant unilamellar vesicles (GUVs) offer large free-standing bilayers, but suitable methods for incorporating proteins are still scarce. Here we report the reconstitution of two water-insoluble SNARE proteins into GUVs without fusogenic additives. Following reconstitution, protein functionality was assayed by confocal imaging and fluorescence auto- and cross-correlation spectroscopy. Incorporation into GUVs containing phase-separating lipids revealed that, in the absence of other cellular factors, both proteins exhibit an intrinsic preference for the liquid-disordered phase. Although the picture from detergent resistance assays on whole cells is ambiguous, reconstitutions of components of the exocytic machinery into GUVs by this new approach should yield insight into the dynamics of protein complex associations with hypothesized liquid-ordered phase microdomains, the correspondence between detergent-resistant membranes and liquid-ordered phase, and the mechanism of SNARE-mediated membrane fusion.  相似文献   

20.
Beta-barrel membrane proteins occur in the outer membranes of Gram-negative bacteria, mitochondria and chloroplasts. The membrane-spanning sequences of beta-barrel membrane proteins are less hydrophobic than those of alpha-helical membrane proteins, which is probably the main reason why completely different folding and membrane assembly pathways have evolved for these two classes of membrane proteins. Some beta-barrel membrane proteins can be spontaneously refolded into lipid bilayer model membranes in vitro. They may also have this ability in vivo although lipid and protein chaperones likely assist with their assembly in appropriate target membranes. This review summarizes recent work on the thermodynamic stability and the mechanism of membrane insertion of beta-barrel membrane proteins in lipid model and biological membranes. How lipid compositions affect folding and assembly of beta-barrel membrane proteins is also reviewed. The stability of these proteins in membranes is not as large as previously thought (<10 kcal/mol) and is modulated by elastic forces of the lipid bilayer. Detailed kinetic studies indicate that beta-barrel membrane proteins fold in distinct steps with several intermediates that can be characterized in vitro. Formation of the barrel is synchronized with membrane insertion and all beta-hairpins insert simultaneously in a concerted pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号