首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effect of hydrogen peroxide on morphological characteristics and resistance of common wheat calluses ( Triticum aestivum L.) to Tilletia caries Tul. The induction of the defense response and morphogenesis in calluses depended on H2O2 concentration. A correlation was revealed between the elevated concentration of hydrogen peroxide in wheat calluses and high activity of oxalate oxidase in the cell wall. Administration of H2O2 into the callus culture medium was followed by rhizogenesis, induced the formation of dense regions, and inhibited fungal growth on calluses. Hydrogen peroxide at high concentrations was less potent in inhibiting the growth of fungi. A relationship was found between oxalate oxidase activity, H2O2 concentration, and morphogenetic and defense responses of calluses induced by exogenous hydrogen peroxide. These data suggest that the induction of H2O2 generation is one of the approaches to increase callus resistance.  相似文献   

2.
We have studied the influence of various concentrations of chitooligosaccharides (CO) on hydrogen peroxide (H2O2) generation, with the involvement of oxalate oxidase (OO), in rhizoids and in zones of hard brand pathogen penetration, as well as on oxalate oxidase activity in wheat calluses. In the control group, diaminobenzidin (DAB)-staining was typical of 30% of peripheral rhizoid cells, which provided their resistance during infection. In the zone of fungus penetration, the appearance of DAB-stained parenchyma-like cells was observed. Simultaneously, the activity OO cytoplasmic fraction increased, whereas OO activity in its ion-bound fraction was suppressed. Low concentrations of medication induced rhizoid formation, increased the number of DAB-stained cells in the pathogen penetration zone, and induced OO activity in cytoplasmic and ionically cell wall-bound fractions. On the contrary, a high concentration of CO (100 mg/ml) suppressed rhizoid formation, Oo activity and the fungus growth. The discovered correlation between enzymatic activation under CO influence, the high level of protective response during infection, and the intensity of rhizoid formation may suggest the community of protective and morphogenetic mechanisms of reactions in plant cells in respect to hydrogen peroxide production.  相似文献   

3.
A study was made of the influence of bisol 2 and baitan compounds on morphogenesis and defence response of wheat calluse cells infected with bunt agent in associated with oxalate oxidase activation. After introduction of bisol and baitan into cultivation medium, dense area with meristema zones, germs of shoots and rhizoids appeared on non-morphogenic calluses, which correlated with enzyme activation. Parenchyma-like cells, generating hydrogen peroxide, were seen in the site of pathogen penetration under infestation, but were never revealed in control. Generation of hydrogen peroxide in the site of infection was accompanied with an increased oxalate oxidase activity in the cytoplasmic fraction, and with suppression of this activity in a fraction bound to the cell wall. Both compounds induced oxalate oxidase activity under combined cultivation of wheat calluses with bunt agent.  相似文献   

4.
The effect of Ca2+ on morphophysiological parameters of calluses of wheat Triticum aestovum L., the level of active oxygen species, and the activity of oxalate oxidase, peroxidase, and catalase is investigated in the case of infestation with the fungus Triticum aestivum causing ball smut. The concentration of O2-, H2O2, and activity of oxidoreductases (oxalate oxidase, peroxidase, and catalase) depends on the content of Ca2+ ions in the culture medium of calluses. The increase in the concentration of Ca2+ ions in the culture medium led to higher structuring of calluses, induction of activity of oxalate oxidase and of some forms of peroxidase, and to accumulation of active oxygen species. These changes contributed to inhibition of development of the fungus. Discovery of such dependence agrees with the role of calcium as the intermediary in biochemical reactions related to the formation of the protective response of plant cells in case of infestation.  相似文献   

5.
Germin gene expression is induced in wheat (Triticum aestivum L.) leaves by powdery mildew (Erysiphe graminis f. sp. tritici) infection. Germin is a protein marker for early cereal development and is an oxalate oxidase, an enzyme that catalyzes the conversion of oxalate to CO2 and H2O2. The induction of germin gene expression by powdery mildew infection is consistent with the importance of H2O2 to plant defense and identifies a mechanism for the elevation of H2O2 levels in wheat leaves. Germin mRNA levels increased 2 d after inoculation of seedlings with powdery mildew and continued to increase throughout an 8-d time course. The increase in accumulation of germin mRNA was accompanied by an increase in the germin oligomer, which reached maximal levels by d 6. An increase in oxalate oxidase activity paralleled germin oligomer accumulation. Germin gene expression was induced in a relatively resistant cultivar (Bobwhite) as well as in a susceptible cultivar (Cheyenne), suggesting that the induction of germin gene expression is an indicator of powdery mildew infection rather than cultivar resistance.  相似文献   

6.
The influence of salicylic acid (SA) on cell resistance to bunt pathogen in wheat calluses has been studied. Cell staining by diaminobenzidin substratum (DAB-cells) was conditioned by hydrogen peroxide (H2O2) generation with the involvement of oxalate oxidase (OO). In the control group, DAB-staining was typical only of rhizoid cells (up to 50%). The infection caused no significant increase in the number of such cells; however, in the zone of fungus penetration parenchyma-like DAB-stained cells were observed (up to 24%). Under the influence of SA, the number of DAB-stained cells did not change, but increased in the zone of fungus penetration (up to 36%). Besides, SA increased OO activity and accelerated proembyogenic complex formation in the calluses, which, unlike rhizoids, were not sensitive to the phytopathogen. The infection caused an increase of OO activity in the cytoplasm and in an intercellular fraction, and an inhibition of an extracellular fraction of the enzyme.  相似文献   

7.
Oxalate oxidase activity was detected in situ during the development of barley seedlings. The presence of germin-like oxalate oxidase was confirmed by immunoblotting using an antibody directed against wheat germin produced in Escherichia coli, which is shown to cross-react with barley (Hordeum vulgare) oxalate oxidase and by enzymatic assay after electrophoresis of the protein extracts on polyacrylamide gels. In 3-d-old barley seedlings, oxalate oxidase is localized in the epidermal cells of the mature region of primary roots and in the coleorhiza. After 10 d of growth, the activity is detectable only in the coleorhiza. Moreover, we show that oxalate oxidase is induced in barley leaves during infection by the fungus Erysiphe graminis f. sp. hordei but not by wounding. Thus, oxalate oxidase is a new class of proteins that responds to pathogen attack. We propose that oxalate oxidase could have a role in plant defense through the production of H2O2.  相似文献   

8.
The effect of Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), infestation on the hydrogen peroxide (H(2)O(2)) content and NADPH oxidase (EC 1.6.3.1) activity was studied in the resistant (cv. Tugela DN) and near-isogenic susceptible (cv. Tugela) wheat (Triticum aestivum L.). The objective of this study was to investigate the involvement of the reactive oxygen species (ROS) during the resistance responses against the RWA. Infestation significantly induced an early accumulation of the H(2)O(2) and increase of NADPH oxidase activity to higher levels in the resistant than susceptible plants. Results of inhibitory studies using diphenylene iodonium (DPI), a suicide inhibitor of NADPH oxidase, strongly suggested a possible signalling role for H(2)O(2) during RWA resistance response by activation of downstream defence enzymes [intercellular peroxidase (EC 1.11.1.7) and beta-1,3-glucanase (EC 3.2.1.39)].  相似文献   

9.
Nitric oxide (NO) and hydrogen peroxide (H2O2) function as signalling molecules in plants under abiotic and biotic stresses. Calluses from Populus euphratica, which show salt tolerance, were used to study the interaction of NO and H2O2 in plant adaptation to salt resistance. The nitric oxide synthase (NOS) activity was identified in the calluses, and this activity was induced under 150 mM NaCl treatment. Under 150 mM NaCl treatment, the sodium (Na) percentage decreased, but the potassium (K) percentage and the K/Na ratio increased in P. euphratica calluses. Application of glucose/glucose oxidase (G/GO, a H2O2 donor) and sodium nitroprusside (SNP, a NO donor) revealed that both H2O2 and NO resulted in increased K/Na ratio in a concentration-dependent manner. Diphenylene iodonium (DPI, an NADPH oxidase inhibitor) counteracted H2O2 and NO effect by increasing the Na percentage, decreasing the K percentage and K/Na ratio. NG-monomethyl-L-Arg monoacetate (NMMA, an NO synthase inhibitor) and 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxyde (PTIO, a specific NO scavenger) only reversed NO effect, but did not block H2O2 effect. The increased activity of plasma membrane (PM) H+ -ATPase caused by salt stress was reversed by treatment with DPI and NMMA. Exogenous H2O2 increased the activity of PM H+ -ATPase, but the effect could not be diminished by NMMA and PTIO. The NO-induced increase of PM H+ -ATPase can be reversed by NMMA and PTIO, but not by DPI. Western blot analysis demonstrated that NO and H2O2 stimulated the expression of PM H+ -ATPase in P. euphratica calluses. These results indicate that NO and H2O2 served as intermediate molecules in inducing salt resistance in the calluses from P. euphratica under slat stress by increasing the K/Na ratio, which was dependent on the increased PM H+ -ATPase activity.  相似文献   

10.
Lectins were extracted from the surface of nitrogen-fixing soil bacteria Azospirillum brasilense Sp7 and from its mutant A. brasilense Sp7.2.3 defective in lectin activity. The ability of lectins to stimulate the rapid formation of hydrogen peroxide related to increase of oxalate oxidase and peroxidase activity in the roots of wheat seedlings has been demonstrated. The most rapid induced pathway of hydrogen peroxide formation in the roots of wheat seedlings was the oxalic acid oxidation by oxalate oxidase which is the effect of lectin in under 10 min in a concentration of 10 μg/ml. The obtained results show that lectins from Azospirillum are capable of inducing the adaptation processes in the roots of wheat seedlings.  相似文献   

11.
Oxalate oxidase (OXO) converts oxalic acid (OA) and O(2) to CO(2) and hydrogen peroxide (H(2)O(2)), and acts as a source of H(2)O(2) in certain plant-pathogen interactions. To determine if the H(2)O(2) produced by OXO can function as a messenger for activation of defense genes and if OXO can confer resistance against an OA-producing pathogen, we analyzed transgenic sunflower (Helianthus annuus cv SMF3) plants constitutively expressing a wheat (Triticum aestivum) OXO gene. The transgenic leaf tissues could degrade exogenous OA and generate H(2)O(2). Hypersensitive response-like lesion mimicry was observed in the transgenic leaves expressing a high level of OXO, and lesion development was closely associated with elevated levels of H(2)O(2), salicylic acid, and defense gene expression. Activation of defense genes was also observed in the transgenic leaves that had a low level of OXO expression and had no visible lesions, indicating that defense gene activation may not be dependent on hypersensitive response-like cell death. To further understand the pathways that were associated with defense activation, we used GeneCalling, an RNA-profiling technology, to analyze the alteration of gene expression in the transgenic plants. Among the differentially expressed genes, full-length cDNAs encoding homologs of a PR5, a sunflower carbohydrate oxidase, and a defensin were isolated. RNA-blot analysis confirmed that expression of these three genes was significantly induced in the OXO transgenic sunflower leaves. Furthermore, treatment of untransformed sunflower leaves with jasmonic acid, salicylic acid, or H(2)O(2) increased the steady-state levels of these mRNAs. Notably, the transgenic sunflower plants exhibited enhanced resistance against the OA-generating fungus Sclerotinia sclerotiorum.  相似文献   

12.
The effect of 1-methylcyclopropene (1-MCP), which inhibits the reception of ethylene, on the following has been studied: hydrogen peroxide generation, oxalate oxidase activity, peroxidase activity, catalase activity, and lignin accumulation in infected leaves of soft spring wheat (Triticum aestivum L.) cultivars that differ in their resistance to the leaf blotch disease, caused by the hemibiotrophic fungus Septoria nodorum Berk. A decrease in the development of leaf blotch in wheat leaves under the influence of 1-MCP was, on one hand, followed by an inhibition of catalase activity; on the other hand, it was accompanied by an increase in oxalate oxidase and peroxidase activity, as well as an accumulation of H2O2 in tissues and lignin in the infected zone. The role of the ethylene reception system in the defense response of plants to infection with a hemibiotrophic pathogen, that causes leaf blotch disease, is discussed.  相似文献   

13.
以小麦品种‘烟优361’(Triticum aestivum L.cv.Yanyou 361)萌发4 d幼苗为试验材料,分析了草酸氧化酶(OxO)在幼苗中的定位和表达,以及光照强度处理对小麦幼苗OxO活性的影响。实验结果显示,萌发后小麦幼苗的OxO分布在子叶与根的连接处和成熟的根中,其活性随光照强度的增加而下降;200μmol.m-2.s-1的强光显著抑制了OxO活性,该处理培养4 d幼苗的OxO活性仅为40μmol.m-2.s-1光照培养条件下的18.7%;强光还缩短OxO在苗期的表达时间,抑制了OxO的mRNA表达量。同时,光照强度还能影响小麦幼苗中H2O2的含量,200μmol.m-2.s-1处理幼苗的H2O2的含量显著下降,其培养4 d的幼苗H2O2含量仅为40μmol.m-2.s-1光照强度培养条件下的18.0%。研究发现,光照强度可通过调节OxO的活性和表达量来控制H2O2的产量,从而影响幼苗的生长发育。  相似文献   

14.
Caliskan M  Turet M  Cuming AC 《Planta》2004,219(1):132-140
In wheat ( Triticum aestivum L.), embryogenic callus formation comprises suppression of precocious germination by the zygotic embryo and the initiation of dedifferentiated cellular proliferation within it. Embryogenic calli are induced by treating immature embryos with 2,4-dichlorophenoxyacetic acid (2,4-D). Upon withdrawal from 2,4-D, somatic embryos develop from the periphery of the callus. Prior to visible callus formation, there is a striking induction of "germin-like" oxalate oxidase ("gl-OXO": EC 1.2.3.4) gene expression. Accumulation of gl-OXO mRNA is rapidly stimulated upon auxin treatment, with a consequent development of apoplastic enzyme activity producing H(2)O(2) within the cell wall. Within the dedifferentiated calli, gl-OXO enzyme activity becomes widespread over the surface of embryogenic calli. Differentiation of somatic embryos is initiated in regions of densely cytoplasmic, meristematic cells that are marked by highly localised expression of gl-OXO activity within these embryogenic cell masses. We suggest that this localised generation of H(2)O(2) by gl-OXO promotes peroxidative cross-linking of cell wall components, thereby preventing cellular expansion and maintaining these cell masses in an embryogenically competent condition.  相似文献   

15.
16.
The adaptive response of the phytopathogenic fungus Fusarium decemcellulare to the oxidative stress induced by hydrogen peroxide and juglone (5-hydroxy-1,4-naphthoquinone) was studied. At concentrations higher than 1 mM, H2O2 and juglone completely inhibited the growth of the fungus. The 60-min pretreatment of logarithmic-phase cells with nonlethal concentrations of H2O2 (0.25 mM) and juglone (0.1 mM) led to the development of a resistance to high concentrations of these oxidants. The stationary-phase cells were found to be more resistant to the oxidants than the logarithmic-phase cells. The adaptation of fungal cells to H2O2 and juglone was associated with an increase in the activity of cellular catalase and superoxide dismutase, the main oxidative stress defense of enzymes.  相似文献   

17.
18.
Influence of mediators of the signal systems of salicylic (SA) and jasmonic (JA) acids and their mixture on reactive oxygen species' (ROS) (superoxide radical O2*- and H2O2) generation and activity of oxidoreductases (oxalate oxidase, peroxidase and catalase) in leaves of wheat Triticum aestivum L. infected by Septoria leaf blotch pathogen Septoria nodorum Berk. has been studied. Presowing treatment of seeds by SA and JA decreased the development rate of fungus on wheat leaves. SA provided earlier inductive effect on production of O2*- and H2O2 compared with JA. The protective effect of the salicylic and jasmonic acids against Septoria leaf blotch pathogen was caused by activation of oxalate oxidase, induction of anion and cation peroxidases, and decrease of catalase activity. Ability of compounds to stimulate ROS in the plant tissues can be used as criteria for evaluation of immune-modulating activity of new substances for protection of the plants.  相似文献   

19.
Choi HW  Kim YJ  Lee SC  Hong JK  Hwang BK 《Plant physiology》2007,145(3):890-904
Reactive oxygen species (ROS) are responsible for mediating cellular defense responses in plants. Controversy has existed over the origin of ROS in plant defense. We have isolated a novel extracellular peroxidase gene, CaPO2, from pepper (Capsicum annuum). Local or systemic expression of CaPO2 is induced in pepper by avirulent Xanthomonas campestris pv vesicatoria (Xcv) infection. We examined the function of the CaPO2 gene in plant defense using the virus-induced gene silencing technique and gain-of-function transgenic plants. CaPO2-silenced pepper plants were highly susceptible to Xcv infection. Virus-induced gene silencing of the CaPO2 gene also compromised hydrogen peroxide (H(2)O(2)) accumulation and hypersensitive cell death in leaves, both locally and systemically, during avirulent Xcv infection. In contrast, overexpression of CaPO2 in Arabidopsis (Arabidopsis thaliana) conferred enhanced disease resistance accompanied by cell death, H(2)O(2) accumulation, and PR gene induction. In CaPO2-overexpression Arabidopsis leaves infected by Pseudomonas syringae pv tomato, H(2)O(2) generation was sensitive to potassium cyanide (a peroxidase inhibitor) but insensitive to diphenylene iodonium (an NADPH oxidase inhibitor), suggesting that H(2)O(2) generation depends on peroxidase in Arabidopsis. Together, these results indicate that the CaPO2 peroxidase is involved in ROS generation, both locally and systemically, to activate cell death and PR gene induction during the defense response to pathogen invasion.  相似文献   

20.
The wheat genome encodes a family of germin-like proteins that differ with respect to regulation and tissue specificity of expression of the corresponding genes. While germin exhibits oxalate oxidase (E.C. 1.2.3.4.) activity, the germin-like proteins (GLPs) have no known enzymatic activity. A role of oxalate oxidase in plant defence has been proposed, based on the capacity of the enzyme to produce H2O2, a reactive oxygen species. The role in defence of germin and other members of the germin-like gene family was functionally assessed in a transient assay system based on particle bombardment of wheat leaves. Transient expression of the pathogen-induced germin gf-2.8 gene, but not of the constitutively expressed HvGLP1 gene, reduced the penetration efficiency of Blumeria (syn. Erysiphe) graminis f.sp. tritici, the causal agent of wheat powdery mildew, on transformed cells. Two engineered germin-gf-2.8 genes and the TaGLP2a gene, which all encoded proteins without oxalate oxidase activity, also reduced the penetration efficiency of the fungus, demonstrating that oxalate oxidase activity is not required for conferring enhanced resistance. Instead, activity tagging experiments showed that in cells transiently expressing the germin gf-2.8 gene, the transgene product became insolubilized at sites of attempted fungal penetration where localised production of H2O2 was observed. Thus, germin and GLPs may play a structural role in cell-wall re-enforcement during pathogen attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号