首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Liu HT  Zhang HF  Si R  Zhang QJ  Zhang KR  Guo WY  Wang HC  Gao F 《生理学报》2007,59(5):651-659
我们前期研究表明胰岛素可激活细胞内信号转导机制如磷脂酰肌醇3.激酶.蛋白激酶B.内皮型一氧化氮合酶.一氧化氮(P13-K-Akt-eNOS-NO)信号通路,减轻心肌缺血/再灌注(ischemia/reperfusion,I/R)损伤,改善缺血后心肌功能恢复。然而c-Jun氨基末端激酶(c-JunNH2-terminal kinase,JNK)信号通路在胰岛素保护I/R心肌中的作用尚不清楚,本研究旨在探讨JNK信号通路在胰岛素保护I/R心肌中的作用及其与P13.K/Akt信号通路间的相互关系。离体Sprague-Dawley大鼠心脏缺血30min后施行2h或4h的再灌注,缺血前用LY294002(15mmol/L)和SP600125(10mmol/L)灌注15min,分别阻断P13.K/Akt和磷酸化JNK(phosphorylated.JNK,p-JNK)活化,观测心脏功能、心肌梗死、细胞凋亡和蛋白磷酸化水平。与对照组相比,胰岛素再灌注2h后,心率、左心室发展压和左心室收缩/舒张最大速率均明显增加,梗死面积减少约16.1%[(28.9±2.0)%vs(45.0±4.0)%,n=6,P〈O.01],细胞凋亡指数从(27.6±113)%减少到(16.0±0.7)%(n=6,P〈O.01),Akt的活性增加1.7倍(n=6,P〈0.05),同时JNK活性增加1.5倍铆=6,P〈O.05)。用LY294002处理后,胰岛素对I/R心肌的保护作用消失;而用SP600125处理可增强胰岛素的保护作用,且可部分逆转LY294002的抑制作用。进一步观察发现SP600125减弱了Akt的磷酸化m=6,P〈0.05)。上述结果表明,在I/R心肌中,胰岛素可同时激活P13.K/Akt及JNK信号通路,且通过后者进一步增加Akt活化,从而减轻I/R损伤,改善心肌功能。这种P13.K/Akt与JNK信号通路交互机制对胰岛素保护I/R心肌有重要意义。  相似文献   

2.

Aims

Peroxisome proliferator-activated receptor (PPAR)-α is downregulated in ischemic myocardium resulting in substrate switch from fatty acid oxidation to glucose utilization. Pharmacological PPAR-α activation leads to increased fatty acid oxidation and myocardial lipotoxicity. The aim of our study was to investigate the role of cardiomyocyte specific PPAR-α overexpression in myocardial adaptation to repetitive ischemic injury without myocardial infarction.

Main methods

Repetitive, brief I/R was performed in male and female MHC-PPAR-α overexpressing and wildtype-C57/Bl6 (WT)-mice, age 10–12 weeks, for 3 and 7 consecutive days. After echocardiography, their hearts were excised for histology and gene/protein-expression measurements (Taqman/Western blot).

Key findings

MHC-PPAR-α mice developed microinfarctions already after 3 days of repetitive I/R in contrast to interstitial fibrosis in WT-mice. We found higher deposition of glycogen, increased apoptosis and dysfunctional regulation of antioxidative mediators in MHC-PPAR-α mice. MHC-PPAR-α mice presented with maladaptation of myosin heavy chain isoforms and worse left ventricular dysfunction than WT-mice. We found prolonged, chemokine-driven macrophage infiltration without induction of proinflammatory cytokines in MHC-PPAR-α mice. Persistent accumulation of myofibroblasts in microinfarctions indicated active remodeling resulting in scar formation in contrast to interstitial fibrosis without microinfarctions in WT-mice. However, MHC-PPAR-α hearts had only a weak induction of tenascin-C in contrast to its strong expression in WT-hearts.

Significance

Cardiomyocyte-specific PPAR-α overexpression led to irreversible cardiomyocyte loss with deteriorated ventricular function during brief, repetitive I/R episodes. We identified higher glycogen deposition, increased apoptosis, deranged antioxidative capacity and maladaptation of contractile elements as major contributors involved in the modulation of post-ischemic inflammation and remodeling.  相似文献   

3.
Endogenous cardiac protection against prolonged ischemic insult can be achieved by repeated brief episodes of ischemia (hypoxia) or by cardiac adaptation to various stresses such as chronic hypoxia. Activation of phosphatidylinositol 3-kinase (PI3K)/Akt is involved in antiapoptotic effects, however, it is not clear whether it is required for overall heart salvage including protection against myocardial infarction and arrhythmias. We focussed on the potential common role of PI3K/Akt in anti-infarct protection, in the experimental settings of long-term adaptation to chronic intermittent hypobaric hypoxia (IHH; 8 h/day, 25–30 exposures, in vivo rats) and acute ischemic preconditioning (IP; Langendorff-perfused hearts). In addition, we explored the role of PI3K/Akt in susceptibility to ischemic ventricular arrhythmias. In normoxic open-chest rats, PI3K/Akt inhibitor LY294002 (LY; 0.3 mg/kg) given 5 min before test occlusion/reperfusion (I/R) did not affect infarct size (IS) normalized to the size of area at risk (AR). In hypoxic rats, LY partially attenuated IS-limiting effect of IHH (IS/AR 59.7 ± 4.1% vs. 51.8 ± 4.4% in the non-treated rats; p > 0.05) and increased IS/AR to its value in normoxic rats (64.9 ± 5.1%). In the isolated hearts, LY (5 μM) applied 15 min prior to I/R completely abolished anti-infarct protection by IP (IS/AR 55.0 ± 4.9% vs. 15.2 ± 1.2% in the non-treated hearts and 42.0 ± 5.5% in the non-preconditioned controls; p < 0.05). In the non-preconditioned hearts, PI3K/Akt inhibition did not modify IS/AR, on the other hand, it markedly suppressed arrhythmias. In the LY-treated isolated hearts, the total number of ventricular premature beats and the incidence of ventricular tachycardia (VT) was reduced from 518 ± 71 and 100% in the controls to 155 ± 15 and 12.5%, respectively (p < 0.05). Moreover, bracketing of IP with LY did not reverse antiarrhythmic effect of IP. These results suggest that activation of PI3K/Akt cascade plays a role in the IS-limiting mechanism in the rat heart, however, it is not involved in the mechanisms of antiarrhythmic protection.  相似文献   

4.
Myocardial function is impaired 24 h after the induction of sepsis, however, recovery of left ventricular (LV) function after 35 min of global ischemia is complete. The mechanisms by which this protection occurs are unknown. Ischemic preconditioning, another form of myocardial protection from ischemia/reperfusion (I/R) injury, has been shown to be modulated by ATP-sensitive potassium (K+ATP) channels. To investigate the role of K+ATP channels in the regulation of coronary flow (CF) and protection from I/R injury in septic rat hearts, we assessed the effects of the K+ATP channel antagonist glibenclamide (GLIB) and the agonist cromakalim (CROM) on pre- and post-ischemic CF and left ventricular developed pressure (LVDP). Although GLIB decreased pre-ischemic CF in both control and septic rat hearts, LVDP was unaffected. After I/R, CF was decreased in GLIB-treated control and septic rat hearts and LVDP was more severely depressed in control rat hearts than in septic rat hearts. CROM increased pre-ischemic CF in the septic group although LVDP was unaltered in both groups. After I/R, control rat heart CF was depressed but LVDP completely recovered. Post-ischemic CF in septic rat hearts was elevated compared with vehicle-treated septic rat hearts, but the recovery of LVDP was not improved. These results suggest that K+ATP channels modulate CF in septic rat hearts, but do not mediate cardioprotection as observed in control rat hearts.  相似文献   

5.
To study the mechanisms of mitochondrial dysfunction due to ischemia-reperfusion (I/R) injury, rat hearts were subjected to 20 or 30 min of global ischemia followed by 30 min of reperfusion. After recording both left ventricular developed pressure (LVDP) and end-diastolic pressure (LVEDP) to monitor the status of cardiac performance, mitochondria from these hearts were isolated to determine respiratory and oxidative phosphorylation activities. Although hearts subjected to 20 min of ischemia failed to generate LVDP and showed a marked increase in LVEDP, no changes in mitochondrial respiration and phosphorylation were observed. Reperfusion of 20-min ischemic hearts depressed mitochondrial function significantly but recovered LVDP completely and lowered the elevated LVEDP. On the other hand, depressed LVDP and elevated LVEDP in 30-min ischemic hearts were associated with depressions in both mitochondrial respiration and oxidative phosphorylation. Reperfusion of 30-min ischemic hearts elevated LVEDP, attenuated LVDP, and decreased mitochondrial state 3 and uncoupled respiration, respiratory control index, ADP-to-O ratio, as well as oxidative phosphorylation rate. Alterations of cardiac performance and mitochondrial function in I/R hearts were attenuated or prevented by pretreatment with oxyradical scavenging mixture (superoxide dismutase and catalase) or antioxidants [N-acetyl-L-cysteine or N-(2-mercaptopropionyl)-glycine]. Furthermore, alterations in cardiac performance and mitochondrial function due to I/R were simulated by an oxyradical-generating system (xanthine plus xanthine oxidase) and an oxidant (H(2)O(2)) either upon perfusing the heart or upon incubation with mitochondria. These results support the view that oxidative stress plays an important role in inducing changes in cardiac performance and mitochondrial function due to I/R.  相似文献   

6.
We investigated the eplerenone-induced, PI3K/Akt- and GSK-3β-mediated cardioprotection against ischemia/reperfusion (I/R) injury in diabetic rats. The study groups comprising diabetic rats were treated for 14 days with 150 mg/kg/day eplerenone orally and 1 mg/kg wortmannin (PI3K/Akt antagonist) intraperitoneally with eplerenone. On the 15th day, the rats were exposed to I/R injury by 20-min occlusion of the left anterior descending coronary artery followed by 30 min of reperfusion. The hearts were processed for biochemical, molecular, and histological investigations. The I/R injury in diabetic rats inflicted a significant rise in the oxidative stress and apoptosis along with a decrease in the arterial and ventricular function and the expressions of PI3K/Akt and GSK-3β proteins. Eplerenone pretreatment reduced the arterial pressure, cardiac inotropy, and lusitropy. It significantly reduced apoptosis and cardiac injury markers. The histology revealed cardioprotection in eplerenone-treated rats. Eplerenone up-regulated the PI3K/Akt and reduced the GSK-3β expression. The group receiving wortmannin with eplerenone was deprived eplerenone-induced cardioprotection. Our results reveal the eplerenone-induced cardioprotection against I/R injury in diabetic rats and substantiate the involvement of PI3K/Akt and GSK-3β pathways in its efficacy.  相似文献   

7.
Earlier studies have demonstrated that aldose reductase (AR) plays a key role in mediating ischemia-reperfusion (I/R) injury. Our objective was to investigate if AR mediates I/R injury by influencing phosphorylation of glycogen synthase kinase-3β (p-GSK3β). To investigate this issue, we used three separate models to study the effects of stress injury on the heart. Hearts isolated from wild-type (WT), human expressing AR transgenic (ARTg), and AR knockout (ARKO) mice were perfused with/without GSK3β inhibitors (SB-216763 and LiCl) and subjected to I/R. Ad-human AR (Ad-hAR)-expressing HL-1 cardiac cells were exposed to hypoxia (0.5% O(2)) and reoxygenation (20.9% O(2)) conditions. I/R in a murine model of transient occlusion and reperfusion of the left anterior descending coronary artery (LAD) was used to study if p-GSK3β was affected through increased AR flux. Lactate dehydrogenase (LDH) release and left ventricular developed pressure (LVDP) were measured. LVDP was decreased in hearts from ARTg mice compared with WT and ARKO after I/R, whereas LDH release and apoptotic markers were increased (P < 0.05). p-GSK3β was decreased in ARTg hearts compared with WT and ARKO (P < 0.05). In ARKO, p-GSK3β and apoptotic markers were decreased compared with WT (P < 0.05). WT and ARTg hearts perfused with GSK3β inhibitors improved p-GSK3β expression and LVDP and exhibited decreased LDH release, apoptosis, and mitochondrial pore opening (P < 0.05). Ad-hAR-expressing HL-1 cardiac cells, exposed to hypoxia (0.5% O(2)) and reoxygenation (20.9% O(2)), had greater LDH release compared with control HL-1 cells (P < 0.05). p-GSK3β was decreased and correlated with increased apoptotic markers in Ad-hAR HL-1 cells (P < 0.05). Treatment with phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) inhibitor increased injury demonstrated by increased LDH release in ARTg, WT, and ARKO hearts and in Ad-hAR-expressing HL-1 cells. Cells treated with protein kinase C (PKC) α/β inhibitor displayed significant increases in p-Akt and p-GSK3β expression, and resulted in decreased LDH release. In summary, AR mediates changes in p-GSK3β, in part, via PKCα/β and Akt during I/R.  相似文献   

8.
The use of inotropic agents to support the neonatal heart after sepsis or hypoxia increases cardiac energy demand. Carnitine plays a vital role in energy, fuel metabolism. To test the hypothesis that inotropic agents affect carnitine metabolism, hearts from sow-fed piglets were isolated and perfused with an oxygenated buffer containing glucose and palmitate. Increasing dosages of dobutamine (DOB 2.5-15 microg/Kg body wt per min, 0.007-0.044 micromol/kg per min) or saline vehicle (SAL) were administered. Heart rate (HR), left ventricular systolic (LVSP) and end diastolic pressures (LVEDP) were measured. Left ventricular developed pressure (LVDP = LVSP-LVEDP) and pressure-rate product (LVDP x HR) were calculated. Coronary effluent was collected to measure flow and metabolites. Heart tissue samples were collected for metabolite analysis. RESULTS: DOB increased HR, LVEDP and the pressure-rate product [LVDP x HR]. Mean lactate production increased in DOB, but not in SAL control hearts, and was correlated with heart acylcarnitine, but not with coronary flow. Tissue acylcarnitine levels were higher in the DOB than in the SAL group. Plasma total carnitine was correlated with [LVDP x HR] and LVDP, but not with HR. The findings demonstrate that DOB alters myocardial carnitine metabolism and suggest that carnitine status may affect cardiac response to inotropic agents.  相似文献   

9.
The role of NO in ischemia/reperfusion injury in isolated rat heart   总被引:5,自引:0,他引:5  
Nitric oxide (NO) is an important regulator of myocardial function and vascular tone under physiological conditions. However, its role in the pathological situations, such as myocardial ischemia is not unequivocal, and both positive and negative effects have been demonstrated in different experimental settings including human pathology. The aim of the study was to investigate the role of NO in the rat hearts adapted and non-adapted to ischemia. Isolated Langendorff-perfused hearts were subjected to test ischemic (TI) challenge induced by 25 min global ischemia followed by 35 min reperfusion. Short-term adaptation to ischemia (ischemic preconditioning, IP) was evoked by 2 cycles of 5 min ischemia and 5 min reperfusion, before TI. Recovery of function at the end of reperfusion and reperfusion-induced arrhythmias served as the end-points of injury. Coronary flow (CF), left ventricular developed pressure (LVDP), and dP/dt(max) (index of contraction) were measured at the end of stabilization and throughout the remainder of the protocol until the end of reperfusion. The role of NO was investigated by subjecting the hearts to 15 min perfusion with NO synthase (NOS) inhibitor L-NAME (100 mmol/l), prior to sustained ischemia. At the end of reperfusion, LVDP in the controls recovered to 29.0 +/- 3.9 % of baseline value, whereas preconditioned hearts showed a significantly increased recovery (LVDP 66.4 +/- 5.7 %, p < 0.05). Recovery of both CF and dP/dt(max) after TI was also significantly higher in the adapted hearts (101.5 +/- 5.8 % and 83.64 +/- 3.92 % ) as compared with the controls (71.9 +/- 6.3 % and 35.7 +/- 4.87 %, respectively, p < 0.05). NOS inhibition improved contractile recovery in the non-adapted group (LVDP 53.8 +/- 3.1 %; dP/dt(max) 67.5 +/- 5.92 %) and increased CF to 82.4 +/- 5.2 %. In contrast, in the adapted group, it abolished the protective effect of IP (LVDP 31.8 +/- 3.1 %; CF 70.3 +/- 3.4 % and dP/dt(max) 43.25 +/- 2.19 %). Control group exhibited 100 % occurrence of ventricular tachycardia (VT), 57 % incidence of ventricular fibrillation (VF) - 21 % of them was sustained VF (SVF); application of L-NAME attenuated reperfusion arrhythmias (VT 70 %, VF 20 %, SVF 0 %). Adaptation by IP also reduced arrhythmias, however, L-NAME in the preconditioned hearts increased the incidence of arrhythmias (VT 100 %, VF 58 %, SVF 17 %). In conclusion: our results indicate that administration of L-NAME might be cardioprotective in the normal hearts exposed to ischemia/reperfusion (I/R) alone, suggesting that NO contributes to low ischemic tolerance in the non-adapted hearts. On the other hand, blockade of cardioprotective effect of IP by L-NAME points out to a dual role of NO in the heart: a negative role in the non-adapted myocardium subjected to I/R, and a positive one, due to its involvement in the mechanisms of protection triggered by short-term cardiac adaptation by preconditioning.  相似文献   

10.
Selective delta-opioid agonists produce delayed cardioprotection that lasts for 24-48 h in rats; however, the maximum length of the cardioprotective window is unclear. In this study, we attempted to prolong the cardioprotective window using a unique delta-opioid agonist, fentanyl isothiocyanate (FIT), which binds irreversibly to the delta-receptor, and determined the role of the phosphatidylinositol 3-kinase (PI3K) pathway as a trigger or end effector of FIT-induced cardioprotection. Initially, male rats were administered FIT (10 microg/kg) 10 min before hearts were subjected to 30 min of ischemia and 2 h of reperfusion followed by infarct size (IS) assessment. Acute FIT administration reduced IS when given before ischemia, 5 min before reperfusion, or 10 s after reperfusion compared with control. IS reduction also occurred following a single dose of FIT at 48, 72, 96, and 120 h after administration vs. control, with the maximum effect observed at 96 h. FIT-induced IS reduction at 96 h was completely abolished when the irreversible PI3K inhibitor wortmannin (15 microg/kg) was given before FIT during the trigger phase; however, the effect was only partially abrogated when wortmannin was given 96 h later. These data suggest that FIT has a prolonged cardioprotective window greater than that of any previously described cardioprotective agent that requires PI3K primarily in the trigger phase but also partially, as a mediator or end effector.  相似文献   

11.
Opioid and alpha-adrenergic receptor activation protect the heart from ischemic damage. One possible intracellular mechanism to explain this is that an improvement in ATP availability contributes to cardioprotection. We tested this hypothesis by correlating postischemic left ventricular developed pressure (LVDP) and myofibrillar Ca(2+)-dependent actomyosin Mg(2+)-ATPase from isolated rat hearts treated with the kappa-opioid receptor agonist U-50488H (1 microM) or the alpha-adrenergic receptor agonist phenylephrine (10 microM) + propranolol (3 microM). Preischemic treatment with U-50488H or phenylephrine + propranolol improved postischemic LVDP recovery by 25-30% over control hearts. Ca(2+)-dependent actomyosin Mg(2+)-ATPase was found to be 20% lower in both U-50488H- and phenylephrine + propranolol-treated hearts compared with control hearts. The kappa-opioid receptor antagonist nor-binaltorphimine (1 microM) abolished the effects of U-50488H on postischemic LVDP and actomyosin Mg(2+)-ATPase activity. Reduced actomyosin ATP utilization was also suggested in single ventricular myocytes treated with either U-50488H or the protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), because U-50488H and PMA lowered maximum velocity of unloaded shortening by 15-25% in myocytes. U-50488H and phenylephrine + propranolol treatment both resulted in increased phosphorylation of troponin I and C protein. These findings are consistent with the hypothesis that kappa-opioid and alpha-adrenergic receptors decrease actin-myosin cycling rate, leading to a conservation of ATP and cardioprotection during ischemia.  相似文献   

12.
We previously demonstrated that myocardial p38 mitogen-activated protein kinase (MAPK) and heat shock protein 27 (HSP27) are phosphorylated following cardioplegic arrest in patients undergoing cardiac surgery and correlate with reduced cardiac function. The following studies were performed to determine whether inhibition of p38 MAPK and/or overexpression of nonphosphorylatable HSP27 improves cardiac function following cardioplegic arrest. Langendorff-perfused isolated rat hearts were subjected to 2 h of intermittent cold cardioplegia followed by 30 min of reperfusion. Hearts were treated with (CP+SB) or without (CP) the p38 MAPK inhibitor SB-203580 (5 μM) supplied in the cardioplegia. Sham-treated hearts served as controls. In separate experiments, isolated rat ventricular myocytes infected with either green fluorescent protein (GFP) or a nonphosphorylatable HSP27 mutant (3A-HSP27) were subjected to 3 h of cold hypoxic cardioplegia and simulated reperfusion (CP) followed by video microscopy and length change measurements. Baseline parameters of cardiac function were similar between groups [left ventricular developed pressure (LVDP), 119 ± 4.9 mmHg; positive and negative first derivatives of LV pressure (± dP/dt), 3,139 ± 245 and 2, 314 ± 110 mmHg/s]. CP resulted in reduced cardiac function (LVDP, 72.2 ± 5.8 mmHg; ± dP/dt, 2,076 ± 231 and -1,317 ± 156 mmHg/s) compared with baseline. Treatment with 5 μM SB-203580 significantly improved CP-induced cardiac function (LVDP, 101.9 ± 0 mmHg; ± dP/dt, 2,836 ± 163 and -2,108 ± 120 mmHg/s; P = 0.03, 0.01, and 0.04, CP+SB vs. CP). Inhibition of p38 MAPK significantly lowered CP-induced p38 MAPK, HSP27, and αB-crystallin (cryAB) phosphorylation. In vitro CP decreased myocyte length changes from 10.3 ± 1.5% (GFP) to 5.7 ± 0.8% (GFP+CP). Infection with 3A-HSP27 completely rescued CP-induced decreased myocyte contraction (11.1 ± 1.0%). However, infection with 3A-HSP27 did not block the endogenous HSP27 response. We conclude that inhibition of p38 MAPK and subsequent HSP27 and cryAB phosphorylation and/or overexpression of nonphosphorylatable HSP27 significantly improves cardiac performance following cardioplegic arrest. Modulation of HSP27 phosphorylation may improve myocardial stunning following cardiac surgery.  相似文献   

13.
Although numerous advancements made in the field of human health have resulted in reduced deaths due to cardiovascular diseases (CVD), many patients with cardiac disease show no established risk. Therefore, other unknown factors may be responsible for the pathophysiology of CVD. Out of 350,000 sudden cardiac deaths each year in the United States, 60,000 deaths have been related to air pollution, suggesting a detrimental role of environmental pollutants in the development of CVD. The present study tested our hypothesis that chronic ozone exposure enhances the sensitivity to ischemia–reperfusion (I/R) injury in isolated perfused hearts. Sprague-Dawley rats were continuously exposed for 8 h/day for 28 and 56 days to filtered air or 0.8 ppm ozone. Isolated hearts were subjected to 30 min of global ischemia followed by 60 min of reperfusion. Cardiac function after I/R measured as left ventricular developed pressure (LVDP), +dP/dt, –dP/dt, and left ventricular end diastolic pressure (LVEDP) was significantly decreased and increased respectively in ozone-exposed I/R hearts compared to I/R hearts exposed to filtered air. The enhanced sensitivity to I/R injury upon ozone exposure was associated with increased myocardial TNF-α levels and lipid peroxidation and decreased myocardial activities of superoxidase dismutase (SOD) and IL-10. These data suggest that ozone-induced sensitivity to myocardial I/R injury may be due to promoting levels of oxidative stress as well as inflammatory mediators.  相似文献   

14.
Ha KC  Piao CS  Chae HJ  Kim HR  Chae SW 《Regulatory peptides》2006,133(1-3):13-19
The present study used isolated rat hearts to investigate whether (1) Dendroaspis natriuretic peptide (DNP) is protective against post-ischemic myocardial dysfunction, and (2) whether the cardioprotective effects of DNP is related to alteration of Bcl-2 family protein levels. The excised hearts of Sprague-Dawley rats were perfused on a Langendorff apparatus with Krebs-Henseleit solution with a gas mixture of 95% O2 and 5% CO2. Left ventricular end-diastolic pressure (LVEDP, mmHg), left ventricular developed pressure (LVDP, mmHg) and coronary flow (CF, ml/min) were continuously monitored. In the presence of 50 nM DNP, all hearts were perfused for a total of 100 min consisting of a 20 min pre-ischemic period followed by a 30 min global ischemia and 50 min reperfusion. Lactate dehydrogenase (LDH) activity in the effluent was measured during reperfusion. Treatment with DNP alone improved the pre-ischemic LVEDP and post-ischemic LVEDP significantly comparing with the untreated control hearts during reperfusion. However, DNP did not affect the LVDP, heart rate (HR, beats/min), and CF. Bcl-2, an anti-apoptotic protein expressed in ischemic myocardium of DNP+ischemia/reperfusion (I/R) group, was higher than that in I/R alone group. Bax, a pro-apoptotic protein expressed in ischemic myocardium of DNP+I/R group, has no significant difference compared with I/R alone group. These results suggest that the protective effects of DNP against I/R injury would be mediated, at least in part, through the increased ratio of Bcl-2 to Bax protein after ischemia-reperfusion.  相似文献   

15.
Intake of dietary aroma compounds may regulate cellular lipid metabolism. We demonstrated that trans-caryophyllene, a flavor compound in plant foods and teas, activates peroxisome proliferator-activated receptor (PPAR)-α through direct interaction with the ligand-binding domain of PPAR-α. The agonistic activity of trans-caryophyllene was investigated by the luciferase reporter assay, surface plasmon resonance, and time-resolved fluorescence resonance energy transfer assay. Following the stimulation of cells with trans-caryophyllene, intracellular triglyceride concentrations were significantly reduced by 17%, and hepatic fatty acid uptake was significantly increased by 31%. The rate of fatty acid oxidation was also significantly increased. The expressions of PPAR-α and its target genes and proteins in fatty acid uptake and oxidation were significantly up-regulated as well. In HepG2 cells transfected with small interfering RNA of PPAR-α, the effects of trans-caryophyllene on PPAR-α responsive gene expressions, intracellular triglyceride, fatty acid uptake and oxidation were disappeared. These results indicate that the aroma compound, trans-caryophyllene, is PPAR-α agonist thus regulates cellular lipid metabolism in PPAR-α dependent manners.  相似文献   

16.
 探讨在肿瘤坏死因子α(TNF-α)作用下 ,粘着斑激酶 (focal adhesion kinase,FAK)对蛋白激酶 B(PKB)蛋白水平的影响 .利用构建、转染 FAK反义质粒来特异性降低 SMMC- 772 1细胞的FAK含量 ,及用 Western杂交的方法来检测 PKB的蛋白含量 .文献报道 TNF- α能够激活磷脂酰肌醇 3-激酶 (PI3K)而使 PKB发生磷酸化 .但是至于 TNF-α对 PKB蛋白水平的影响目前并无报道 .研究发现 ,当用 wortmannin特异性抑制 PI3K活性后可以显著降低 PKB的蛋白含量 .提示PI3K对维持 PKB的基础蛋白水平是必需的 .但是 TNF- α本身对 PKB的蛋白水平无明显影响 .而当用不同浓度的 TNF- α和 wortmannin处理 SMMC- 772 1细胞时 ,发现 PKB的蛋白含量随着TNF-α浓度的增加而降低 .提示 TNF-α可能除了通过 PI3K外 ,还可能通过另一条途径来下调PKB的表达 .而当用 FAK反义质粒转染 SMMC- 772 1细胞后 (FAK下降了 60 % ) ,发现在当用不同浓度的 TNF- α处理的情况下 ,FAK反义质粒转染株 AS- 772 1细胞的 PKB含量降低为对照的70 % ;而在用 TNF-α和 wortmannin处理的情况下 ,下降为对照的 40 %~ 60 % .TNF-α能够通过PI3K及另一未知途径来影响 PKB的蛋白水平 .而 FAK在 TNF- α作用下能够不通过 PI3K来影响PKB的蛋白水平 .  相似文献   

17.
Dexrazoxane (DEX), an inhibitor of topoisomerase II and intracellular iron chelator, is believed to reduce the formation of reactive oxygen species (ROS) and protects the heart from the toxicity of anthracycline antineoplastics. As ROS also play a role in the pathogenesis of cardiac ischaemia/reperfusion (I/R) injury, the aim was to find out whether DEX can improve cardiac ischaemic tolerance. DEX in a dose of 50, 150, or 450?mg·(kg body mass)(-1) was administered intravenously to rats 60?min before ischaemia. Myocardial infarct size and ventricular arrhythmias were assessed in anaesthetized open-chest animals subjected to 20?min coronary artery occlusion and 3?h reperfusion. Arrhythmias induced by I/R were also assessed in isolated perfused hearts. Only the highest dose of DEX significantly reduced infarct size from 53.9%?± 4.7% of the area at risk in controls to 37.5%?± 4.3% without affecting the myocardial markers of oxidative stress. On the other hand, the significant protective effect against reperfusion arrhythmias occurred only in perfused hearts with the dose of DEX of 150?mg·kg(-1), which also tended to limit the incidence of ischaemic arrhythmias. It is concluded that DEX in a narrow dose range can suppress arrhythmias in isolated hearts subjected to I/R, while a higher dose is needed to limit myocardial infarct size in open-chest rats.  相似文献   

18.
Brief episodes of myocardial ischemia-reperfusion applied early in reperfusion may attenuate the reperfusion injury, strategy called ischemic postconditioning (IPO). Our objective was to examine the effects of IPO compared with ischemic preconditioning (IP) on postischemic myocardial dysfunction in spontaneously hypertensive rats (SHR). Isolated hearts from SHR and normotensive WKY rats were subjected to the following protocols: (1) Ischemic control (IC): global ischemia 20 min (GI20) and reperfusion 30 min (R). (2) IPO: three cycles of R30sec–IG30sec at the onset of R; (3) IP: a cycle of IG5–R10 previous to GI20, (4) IPO in the presence of chelerythrine, an inhibitor of protein kinase C (PKC). Systolic and diastolic function were assessed through developed pressure (LVDP) and end diastolic pressure (LVEDP), respectively. Lipid peroxidation was estimated by thiobarbituric reactive substance (TBARS) concentration. IPO significantly improved postischemic dysfunction. At the end of R, LVDP recovered to 87 ± 7% in WKY and 94 ± 7% in SHR vs. 55 ± 11% and 58 ± 12% in IC hearts. LVEDP reached values of 24 ± 6 mmHg for WKY and 24 ± 3 mmHg for SHR vs. 40 ± 8 and 42 ± 5 mmHg in IC hearts. Similar protection was achieved by IP. TBARS contents of SHR hearts were significantly diminished by IP and IPO. PKC inhibition aborted the protection of myocardial function and attenuated the diminution of lipid peroxidation conferred by IPO. These data show that IPO was as effective as IP in improving the postischemic dysfunction of hearts from SHR hearts, and that this cardioprotection appears to be associated with a diminution of ROS-induced damage involving the PKC activation.  相似文献   

19.
20.
AimsShort periods of preischemic β-adrenoceptor stimulation protect hearts against postischemic left ventricular dysfunction. It was the aim of this study to decide whether this procedure mimics ischemic preconditioning by the generation of preischemic hemodynamic and energetic stress or whether it represents an endogenous phenomenon and to investigate the influence of age and hypertension.Main methodsIsolated rat hearts were investigated ex vivo by Langendorff perfusion and exposed to an established ischemia/reperfusion protocol (45 min no-flow ischemia and 90 min reperfusion). Left ventricular developed pressure (LVDP), rate pressure product, and ± dP/dt were analyzed.Key findingsIsoprenaline concentration dependently increased LVDP up to 40 ± 15 mm Hg (approximately EC50 of 9.9 ± 0.5 nM). Isoprenaline given prior to ischemia attenuated the subsequent postischemic ventricular dysfunction (approximately EC50 of 1.4 ± 0.2 pM). However, concentrations high enough to improve LVDP in normoxic hearts did not improve postischemic recovery albeit a significant reduction of hypercontraction-induced cell damage. The effect on functional recovery was attenuated by atenolol, H89, and wortmannin suggesting that β-adrenoceptor stimulation, protein kinase A, and PI 3-kinase activation are involved. The effect was conserved in hearts from 13 month old rats but lost in age-matched spontaneously hypertensive rats.SignificanceThe study identifies preischemic β-adrenoceptor stimulation as a pharmacological preconditioning protocol that does not simply mimic classical ischemic preconditioning by induction of hemodynamic or energetic stress prior to a prolonged ischemic period. The observed loss of effectiveness in hypertensives may contribute to the reduced ischemic tolerance of hypertensives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号