首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been proposed that two events of duplication of the entire genome occurred early in vertebrate history (2R hypothesis). Several phylogenetic studies with a few gene families (mostly Hox genes and proteins from the MHC) have tried to confirm these polyploidization events. However, data from a single locus cannot explain the evolutionary history of a complete genome. To study this 2R hypothesis, we have taken advantage of the phylogenetic position of the lamprey to study the history of gene duplications in vertebrates. We selected most gene families that contain several paralogous genes in vertebrates and for which lamprey genes and an out-group are known in databases. In addition, we isolated members of the nuclear receptor superfamily in lamprey. Hagfish genes were also analyzed and found to confirm the lamprey gene analysis. Consistent with the 2R hypothesis, the phylogenetic analysis of 33 selected gene families, dispersed through the whole genome, revealed that one period of gene duplication arose before the lamprey-gnathostome split and this was followed by a second period of gene duplication after the lamprey-gnathostome split. Nevertheless, our analysis suggests that numerous gene losses and other gene-genome duplications occurred during the evolution of the vertebrate genomes. Thus, the complexity of all the paralogy groups present in vertebrates should be explained by the contribution of genome duplications (2R hypothesis), extra gene duplications, and gene losses.  相似文献   

2.
3.
Large-scale gene amplifications may have facilitated the evolution of morphological innovations that accompanied the origin of vertebrates. This hypothesis predicts that the genomes of extant jawless fish, scions of deeply branching vertebrate lineages, should bear a record of these events. Previous work suggests that nonvertebrate chordates have a single Hox cluster, but that gnathostome vertebrates have four or more Hox clusters. Did the duplication events that produced multiple vertebrate Hox clusters occur before or after the divergence of agnathan and gnathostome lineages? Can investigation of lamprey Hox clusters illuminate the origins of the four gnathostome Hox clusters? To approach these questions, we cloned and sequenced 13 Hox cluster genes from cDNA and genomic libraries in the lamprey, Petromyzon marinus. The results suggest that the lamprey has at least four Hox clusters and support the model that gnathostome Hox clusters arose by a two-round-no-cluster-loss mechanism, with tree topology [(AB)(CD)]. A three-round model, however, is not rigorously excluded by the data and, for this model, the tree topologies [(D(C(AB))] and [(C(D(AB))] are most parsimonious. Gene phylogenies suggest that at least one Hox cluster duplication occurred in the lamprey lineage after it diverged from the gnathostome lineage. The results argue against two or more rounds of duplication before the divergence of agnathan and gnathostome vertebrates. If Hox clusters were duplicated in whole-genome duplication events, then these data suggest that, at most, one whole genome duplication occurred before the evolution of vertebrate developmental innovations.  相似文献   

4.
SUMMARY We have cloned and analyzed two Emx genes from the lamprey Petromyzon marinus and our findings provide insight into the patterns and developmental consequences of gene duplications during early vertebrate evolution. The Emx gene family presents an excellent case for addressing these issues as gnathostome vertebrates possess two or three Emx paralogs that are highly pleiotropic, functioning in or being expressed during the development of several vertebrate synapomorphies. Lampreys are the most primitive extant vertebrates and characterization of their development and genomic organization is critical for understanding vertebrate origins. We identified two Emx genes from P. marinus and analyzed their phylogeny and their embryological expression relative to other chordate Emx genes. Our phylogenetic analysis shows that the two lamprey Emx genes group independently from the gnathostome Emx1, Emx2 , and Emx3 paralogy groups. Our expression analysis shows that the two lamprey Emx genes are expressed in distinct spatial and temporal patterns that together broadly encompass the combined sites of expression of all gnathostome Emx genes. Our data support a model wherein large-scale regulatory evolution of a single Emx gene occurred after the protochordate/vertebrate divergence, but before the vertebrate radiation. Both the lamprey and gnathostome lineages then underwent independent gene duplications followed by extensive paralog subfunctionalization. Emx subfunctionalization in the telencephalon is remarkably convergent and refines our understanding of lamprey forebrain patterning. We also identify lamprey-specific sites of expression that indicate either neofunctionalization in lampreys or sites-specific nonfunctionalization of all gnathostome Emx genes. Overall, we see only very limited correlation between Emx gene duplications and the acquisition of novel expression domains.  相似文献   

5.
基因倍增和脊椎动物起源   总被引:1,自引:1,他引:0  
有机体基因复制导致基因复杂性增加及其和脊椎动物起源的关系已经成为进化生物学研究的热点。20世纪70年代由Ohno提出后经Holland等修正的原始脊索动物经两轮基因组复制产生脊椎动物的假设目前已被广泛接受。脊椎动物起源和进化过程中发生过两轮基因组复制的主要证据有三点:(1)据估计脊椎动物基因组内编码基因数目大约相当于果蝇、海鞘等无脊椎动物的4倍;原口动物如果蝇和后口动物如头索动物文昌鱼的基因组大都只有单拷贝的基因,而脊椎动物的基因组则通常有4个同属于一个家族的基因。(2)无脊椎动物如节肢动物、海胆和头索动物文昌鱼都只有一个Hox基因簇,而脊椎动物除鱼类外,有7个具有Hox基因簇,其余都具有4个Hox基因簇。(3)基因作图证明,不但在鱼类和哺乳动物染色体广大片段上基因顺序相似,而且有证据显示哺乳动物基因组不同染色体之间存在相似性。据认为第一次基因倍增发生在脊椎动物与头索动物分开之后,第二次基因倍增发生在有颌类脊椎动物和无颌类脊椎动物分开以后。但是,基因是逐个发生倍增,还是通过基因组内某些DNA片段抑或整个基因组的加倍而实现的,目前还颇有争议。  相似文献   

6.
Genomic Evidence for a Simpler Clotting Scheme in Jawless Vertebrates   总被引:3,自引:0,他引:3  
Mammalian blood clotting involves numerous components, most of which are the result of gene duplications that occurred early in vertebrate evolution and after the divergence of protochordates. As such, the genomes of the jawless fish (hagfish and lamprey) offer the best possibility for finding systems that might have a reduced set of the many clotting factors observed in higher vertebrates. The most straightforward way of inventorying these factors may be through whole genome sequencing. In this regard, the NCBI Trace database ( http://www.ncbi.nlm.nih.gov/Traces/trace.cgi ) for the lamprey (Petromyzon marinus) contains more than 18 million raw DNA sequences determined by whole-genome shotgun methodology. The data are estimated to be about sixfold redundant, indicating that coverage is sufficiently complete to permit judgments about the presence or absence of particular genes. A search for 20 proteins whose sequences were determined prior to the trace database study found all 20. A subsequent search for specified coagulation factors revealed a lamprey system with a smaller number of components than is found in other vertebrates in that factors V and VIII seem to be represented by a single gene, and factor IX, which is ordinarily a cofactor of factor VIII, is not present. Fortuitously, after the completion of the survey of the Trace database, a draft assembly based on the same database was posted. The draft assembly allowed many of the identified Trace fragments to be linked into longer sequences that fully support the conclusion that lampreys have a simpler clotting scheme compared with other vertebrates. The data are also consistent with the hypothesis that a whole-genome duplication or other large scale block duplication occurred after the divergence of jawless fish from other vertebrates and allowed the simultaneous appearance of a second set of two functionally paired proteins in the vertebrate clotting scheme.  相似文献   

7.
8.
Bone morphogenetic protein (BMP) molecules are members of a large family of signaling molecules important in numerous developmental pathways throughout the metazoa. Single members of the BMP2/4 class have been found in invertebrates such as cnidarians, arthropods, nematodes, echinoderms, ascidians, and cephalochordates. In all vertebrates studied, there are at least two copies, BMP2 and BMP4, that play important roles in axial patterning, tissue specification, and organogenesis. The basal vertebrate, lamprey, diverged near the time of vertebrate origins and is useful for understanding the gene duplication events that led to the increased complexity of the vertebrate genome. We characterized the sequence and expression pattern of BMP2/4 class genes in the sea lamprey, Petromyzon marinus. We uncovered three genes that we named PmBMP2/4A, PmBMP2/4B, and PmBMP2/4C. Phylogenetic analysis indicates that PmBMP2/4A is closer than PmBMP2/4B or PmBMP2/4C in sequence identity to both BMP2 and BMP4 of gnathostomes. The developmental expression pattern of PmBMP2/4A also more closely resembles the combined early expression patterns of gnathostome BMP2 and BMP4, whereas PmBMP2/4B and PmBMP2/4C appear to play roles only later in development. Cell labeling showed that the BMP-expressing cells in the branchial arches of lampreys are of neural crest origin. Taken together, our sequence and expression data support the duplication of BMP2/4 genes in the lamprey from a single ancestral vertebrate BMP2/4 gene.  相似文献   

9.
Aromatic amino acid hydroxylase (AAAH) genes and insulin-like genes form part of an extensive paralogy region shared by human chromosomes 11 and 12, thought to have arisen by tetraploidy in early vertebrate evolution. Cloning of a complementary DNA (cDNA) for an amphioxus (Branchiostoma floridae) hydroxylase gene (AmphiPAH) allowed us to investigate the ancestry of the human chromosome 11/12 paralogy region. Molecular phylogenetic evidence reveals that AmphiPAH is orthologous to vertebrate phenylalanine (PAH) genes; the implication is that all three vertebrate AAAH genes arose early in metazoan evolution, predating vertebrates. In contrast, our phylogenetic analysis of amphioxus and vertebrate insulin-related gene sequences is consistent with duplication of these genes during early chordate ancestry. The conclusion is that two tightly linked gene families on human chromosomes 11 and 12 were not duplicated coincidentally. We rationalize this paradox by invoking gene loss in the AAAH gene family and conclude that paralogous genes shared by paralogous chromosomes need not have identical evolutionary histories.  相似文献   

10.
11.
12.
To understand the question of whether divergence of eukaryotic genes by gene duplications and domain shufflings proceeded gradually or intermittently during evolution, we have cloned and sequenced Giardia lamblia cDNAs encoding kinesins and kinesin-related proteins and have obtained 13 kinesin-related cDNAs, some of which are likely homologs of vertebrate kinesins involved in vesicle transfer to ER, Golgi, and plasma membrane. A phylogenetic tree of the kinesin family revealed that most gene duplications that gave rise to different kinesin subfamilies with distinct functions have been completed before the earliest divergence of extant eukaryotes. This suggests that the complex endomembrane system has arisen very early in eukaryotic evolution, and the diminutive ER and Golgi apparatus recognized in the giardial cells, together with the absence of mitochondria, might be characters acquired secondarily during the evolution of parasitism. To understand the divergence pattern of the kinesin family in the lineage leading to vertebrates, seven more Unc104-related cDNAs have been cloned from sponge, amphioxus, hagfish, and lamprey. The divergence pattern of the animal Unc104/KIF1 subfamily is characterized by two active periods in gene duplication interrupted by a considerably long period of silence, instead of proceeding gradually: animals underwent extensive gene duplications before the parazoan-eumetazoan split. In the early evolution of vertebrates around the cyclostome-gnathostome split, further gene duplications occurred, by which a variety of genes with similar structures over the entire regions were generated. This pattern of divergence is similar to those of animal genes involved in cell-cell communication and developmental control.  相似文献   

13.
The widely accepted notion that two whole-genome duplications occurred during early vertebrate evolution (the 2R hypothesis) stems from the fact that vertebrates often possess several genes corresponding to a single invertebrate homolog. However the number of genes predicted by the Human Genome Project is less than twice as many as in the Drosophila melanogaster or Caenorhabditis elegans genomes. This ratio could be explained by two rounds of genome duplication followed by extensive gene loss, by a single genome duplication, by sequential local duplications, or by a combination of any of the above. The traditional method used to distinguish between these possibilities is to reconstruct the phylogenetic relationships of vertebrate genes to their invertebrate orthologs; ratios of invertebrate-to-vertebrate counterparts are then used to infer the number of gene duplication events. The lancelet, amphioxus, is the closest living invertebrate relative of the vertebrates, and unlike protostomes such as flies or nematodes, is therefore the most appropriate outgroup for understanding the genomic composition of the last common ancestor of all vertebrates. We analyzed the relationships of all available amphioxus genes to their vertebrate homologs. In most cases, one to three vertebrate genes are orthologous to each amphioxus gene (median number=2). Clearly this result, and those of previous studies using this approach, cannot distinguish between alternative scenarios of chordate genome expansion. We conclude that phylogenetic analyses alone will never be sufficient to determine whether genome duplication(s) occurred during early chordate evolution, and argue that a "phylogenomic" approach, which compares paralogous clusters of linked genes from complete amphioxus and human genome sequences, will be required if the pattern and process of early chordate genome evolution is ever to be reconstructed.  相似文献   

14.
Lamin proteins are found in all metazoans. Most non-vertebrate genomes including those of the closest relatives of vertebrates, the cephalochordates and tunicates, encode only a single lamin. In teleosts and tetrapods the number of lamin genes has quadrupled. They can be divided into four sub-types, lmnb1, lmnb2, LIII, and lmna, each characterized by particular features and functional differentiations. Little is known when during vertebrate evolution these features have emerged. Lampreys belong to the Agnatha, the sister group of the Gnathostomata. They split off first within the vertebrate lineage. Analysis of the sea lamprey (Petromyzon marinus) lamin complement presented here, identified three functional lamin genes, one encoding a lamin LIII, indicating that the characteristic gene structure of this subtype had been established prior to the agnathan/gnathostome split. Two other genes encode lamins for which orthology to gnathostome lamins cannot be designated. Search for lamin gene sequences in all vertebrate taxa for which sufficient sequence data are available reveals the evolutionary time frame in which specific features of the vertebrate lamins were established. Structural features characteristic for A-type lamins are not found in the lamprey genome. In contrast, lmna genes are present in all gnathostome lineages suggesting that this gene evolved with the emergence of the gnathostomes. The analysis of lamin gene neighborhoods reveals noticeable similarities between the different vertebrate lamin genes supporting the hypothesis that they emerged due to two rounds of whole genome duplication and makes clear that an orthologous relationship between a particular vertebrate paralog and lamins outside the vertebrate lineage cannot be established.  相似文献   

15.
We have identified a novel Drosophila Sox-domain gene, Sox100B, related to the vertebrate group E genes Sox9 and Sox10. In vertebrates, group E Sox genes are expressed in the developing gonad, adult kidney and gut as well as other tissues. During embryogenesis in Drosophila, Sox100B is expressed in two rows of large intestinal cells, in midgut basophilic cells, in the Malpighian tubules and at the posterior cap of gonadal mesoderm. Our observations indicate that aspects of tissue-specific expression, as well as sequence, are conserved between vertebrate and invertebrate group E Sox proteins.  相似文献   

16.
The Pitx homeobox gene family has important roles in vertebrate pituitary, eye, branchial arch, hindlimb and brain development, as well as a key function in regulating left-right asymmetry. Here we report the isolation of a Pitx gene, PitxA, from two lamprey species, Lampetra planeri and Petromyzon marinus. Molecular phylogenetics show PitxA is most closely related to the Pitx1 and Pitx2 genes of jawed vertebrates, however resolution in the trees is insufficient to determine if PitxA is orthologous to a specific jawed vertebrate gene. In situ hybridisation studies show lamprey PitxA is expressed in the developing nasohypohyseal system and stomodeal ectoderm from early development through to early ammocoette larvae. PitxA expression was also detected in several areas of the developing brain, in the developing optic system, in pharyngeal endoderm and endostyle and in the lateral somite. These results show some key aspects of Pitx gene expression in gnathostomes are primitive for all living vertebrates.  相似文献   

17.
Chen Y  Ding Y  Zhang Z  Wang W  Chen JY  Ueno N  Mao B 《遗传学报》2011,38(12):577-584
The evolution of the central nervous system (CNS) is one of the most striking changes during the transition from invertebrates to vertebrates. As a major source of genetic novelties, gene duplication might play an important role in the functional innovation of vertebrate CNS. In this study, we focused on a group of CNS-biased genes that duplicated during early vertebrate evolution. We investigated the tempo-spatial expression patterns of 33 duplicate gene families and their orthologs during the embryonic development of the vertebrate Xenopus laevis and the cephalochordate Brachiostoma belcheri. Almost all the identified duplicate genes are differentially expressed in the CNS in Xenopus embryos, and more than 50% and 30% duplicate genes are expressed in the telencephalon and mid-hindbrain boundary, respectively, which are mostly considered as two innovations in the vertebrate CNS. Interestingly, more than 50% of the amphioxus orthologs do not show apparent expression in the CNS in amphioxus embryos as detected by in situ hybridization, indicating that some of the vertebrate CNS-biased duplicate genes might arise from non-CNS genes in invertebrates. Our data accentuate the functional contribution of gene duplication in the CNS evolution of vertebrate and uncover an invertebrate non-CNS history for some vertebrate CNS-biased duplicate genes.  相似文献   

18.
Agnathan lampreys retain ancestral characteristics of vertebrates in the morphology of skeletal muscles derived from two mesodermal regions: trunk myotomes and unsegmented head mesoderm. During lamprey development, some populations of myoblasts migrate via pathways that differ from those of gnathostomes. To investigate the evolution of skeletal muscle differentiation in vertebrates, we characterize multiple contractile protein genes expressed in the muscle cells of the Japanese lamprey, Lethenteron japonicum. Lamprey actin gene LjMA2, and myosin heavy chain (MyHC) genes LjMyHC1 and LjMyHC2 are all expressed in the developing skeletal muscle cells of early embryos. However, LjMyHC1 and LjMyHC2 are expressed only in cells originating from myotomes, while LjMA2 is expressed in both myotomal and head musculature. Thus, in lampreys, myotomes and head mesoderm differ in the use of genes encoding contractile protein isoforms. Phylogenetic tree analyses including lamprey MyHCs suggest that the variety of muscle MyHC isoforms in different skeletal muscles may correspond to the morphological complexity of skeletal muscles of different vertebrate species. Another lamprey actin gene LjMA1 is likely to be the first smooth muscle actin gene isolated from non-tetrapods. We conclude that, in vertebrate evolution, the different regulatory systems for striated and smooth muscle-specific genes may have been established before the agnathan/gnathostome divergence.  相似文献   

19.
While the proposal that large-scale genome expansions occurred early in vertebrate evolution is widely accepted, the exact mechanisms of the expansion—such as a single or multiple rounds of whole genome duplication, bloc chromosome duplications, large-scale individual gene duplications, or some combination of these—is unclear. Gene families with a single invertebrate member but four vertebrate members, such as the Hox clusters, provided early support for Ohno's hypothesis that two rounds of genome duplication (the 2R-model) occurred in the stem lineage of extant vertebrates. However, despite extensive study, the duplication history of the Hox clusters has remained unclear, calling into question its usefulness in resolving the role of large-scale gene or genome duplications in early vertebrates. Here, we present a phylogenetic analysis of the vertebrate Hox clusters and several linked genes (the Hox “paralogon”) and show that different phylogenies are obtained for Dlx and Col genes than for Hox and ErbB genes. We show that these results are robust to errors in phylogenetic inference and suggest that these competing phylogenies can be resolved if two chromosomal crossover events occurred in the ancestral vertebrate. These results resolve conflicting data on the order of Hox gene duplications and the role of genome duplication in vertebrate evolution and suggest that a period of genome reorganization occurred after genome duplications in early vertebrates.  相似文献   

20.
High-mobility group family (HMG) genes are ubiquitous in vertebrates, including mammals, birds, amphibians and fishes. To elucidate the molecular phylogeny of the HMG genes in the primitive vertebrate, we have cloned three homologues of HMG-box genes, called Lj-HMGB1, Lj-HMGB2 and Lj-HMGBX, from a cDNA library generated from lymphocyte-like cells of the Japanese lamprey (Lampetra japonica), an Agnathan that occupies a critical phylogenetic position between invertebrates and vertebrates. The open reading frames of Lj-HMGB1, Lj-HMGB2 and Lj-HMGBX contained 627 bp, 585 bp and 678 bp, respectively. The analysis of the deduced amino acid sequences indicated that these three putative Lj-HMGB proteins contain four domains: HMG-box A, HMG-box B, an acidic carboxyl-terminal tail and a linker. A phylogenetic analysis revealed that the Lj-HMGB proteins fall outside the vertebrate clade; Lj-HMGBX is descended from a gene ancestral to the mammalian HMGB1/2/3. This discovery implies that there was a gene duplication event in the HMGB1/2/3 gene family that occurred after the divergence of the vertebrates (Cyclostomata) from the Cephalochordata and Urochordata at least 450 million years ago (MYA). The Lj-HMGB1, Lj-HMGB2 and Lj-HMGBX genes were detected in most tissues of the lamprey by RT-PCR. Our findings provide insight into the phylogeny of the HMGB genes in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号