首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Free radical reactions are believed to play an important role in the mechanism of Cr(VI)-induced carcinogenesis. Most studies concerning the role of free radical reactions have been limited to soluble Cr(VI). Various studies have shown that solubility is an important factor contributing to the carcinogenic potential of Cr(VI) compounds. Here, we report that reduction of insoluble PbCrO4 by glutathione reductase in the presence of NADPH as a cofactor generated hydroxyl radicals (.OH) and caused DNA damage. The .OH radicals were detected by electron spin resonance (ESR) using 5,5-dimethyl-N-oxide as a spin trap. Addition of catalase, a specific H2O2 scavenger, inhibited the .OH radical generation, indicating the involvement of H2O2 in the mechanism of Cr(VI)-induced .OH generation. Catalase reduced .OH radicals measured by electron spin resonance and reduced DNA strand breaks, indicating .OH radicals are involved in the damage measured. The H2O2 formation was measured by change in fluorescence of scopoletin in the presence of horseradish peroxidase. Molecular oxygen was used in the system as measured by oxygen consumption assay. Chelation of PbCrO4 impaired the generation of .OH radical. The results obtained from this study show that reduction of insoluble PbCrO4 by glutathione reductase/NADPH generates .OH radicals. The mechanism of .OH generation involves reduction of molecular oxygen to H2O2, which generates .OH radicals through a Fenton-like reaction. The .OH radicals generated by PbCrO4 caused DNA strand breakage.  相似文献   

2.
The metal-independent production of hydroxyl radicals (*OH) from H(2)O(2) and tetrachloro-1,4-benzoquinone (TCBQ), a carcinogenic metabolite of the widely used wood-preservative pentachlorophenol, was studied by electron spin resonance methods. When incubated with the spin trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO), TCBQ and H(2)O(2) produced the DMPO/*OH adduct. The formation of DMPO/*OH was markedly inhibited by the *OH scavenging agents dimethyl sulfoxide (DMSO), ethanol, formate, and azide, with the concomitant formation of the characteristic DMPO spin trapping adducts with *CH(3), *CH(CH(3))OH, *COO(-), and *N(3), respectively. The formation of DMPO/*OH and DMPO/*CH(3) from TCBQ and H(2)O(2) in the absence and presence, respectively, of DMSO was inhibited by the trihydroxamate compound desferrioxamine, accompanied by the formation of the desferrioxamine-nitroxide radical. In contrast, DMPO/*OH and DMPO/*CH(3) formation from TCBQ and H(2)O(2) was not affected by the nonhydroxamate iron chelators bathophenanthroline disulfonate, ferrozine, and ferene, as well as the copper-specific chelator bathocuproine disulfonate. A comparative study with ferrous iron and H(2)O(2), the classic Fenton system, strongly supports our conclusion that *OH is produced by TCBQ and H(2)O(2) through a metal-independent mechanism. Metal-independent production of *OH from H(2)O(2) was also observed with several other halogenated quinones.  相似文献   

3.
Liszkay A  van der Zalm E  Schopfer P 《Plant physiology》2004,136(2):3114-23; discussion 3001
Cell extension in the growing zone of plant roots typically takes place with a maximum local growth rate of 50% length increase per hour. The biochemical mechanism of this dramatic growth process is still poorly understood. Here we test the hypothesis that the wall-loosening reaction controlling root elongation is effected by the production of reactive oxygen intermediates, initiated by a NAD(P)H oxidase-catalyzed formation of superoxide radicals (O(2)(.-)) at the plasma membrane and culminating in the generation of polysaccharide-cleaving hydroxyl radicals ((.)OH) by cell wall peroxidase. The following results were obtained using primary roots of maize (Zea mays) seedlings as experimental material. (1) Production of O(2)(.-), H(2)O(2), and (.)OH can be demonstrated in the growing zone using specific histochemical assays and electron paramagnetic resonance spectroscopy. (2) Auxin-induced inhibition of growth is accompanied by a reduction of O(2)(.-) production. (3) Experimental generation of (.)OH in the cell walls with the Fenton reaction causes wall loosening (cell wall creep), specifically in the growing zone. Alternatively, wall loosening can be induced by (.)OH produced by endogenous cell wall peroxidase in the presence of NADH and H(2)O(2). (4) Inhibition of endogenous (.)OH formation by O(2)(.-) or (.)OH scavengers, or inhibitors of NAD(P)H oxidase or peroxidase activity, suppress elongation growth. These results show that juvenile root cells transiently express the ability to generate (.)OH, and to respond to (.)OH by wall loosening, in passing through the growing zone. Moreover, inhibitor studies indicate that (.)OH formation is essential for normal root growth.  相似文献   

4.
To reveal whether reactive oxygen species (ROS) play a role after spinal cord injury, we developed a unique method for assaying hydrogen peroxide (H2O2) and determined the time course of its concentration changes following impact injury to the rat spinal cord. Microdialysis was used to sample H2O2 in the extracellular space and the dialysates were collected into a vial containing salicylate and ferrous chloride (FeCl2). H2O2 collected in the vial was converted to hydroxyl radicals (*OH) by FeCl2 catalysis. 2,3- and 2,5-dihydroxybenzoic acid produced by reaction of *OH with salicylate in the collecting vial were measured by HPLC and calibrated to H2O2 concentrations. The postinjury levels of H2O2 were significantly increased (p = 0.02) for over 11 h. FeCl2 administered through the dialysis fiber catalyzes H2O2 conversion in the cord to *OH. This *OH does not reach the collecting vial due to its extremely short lifetime (nanoseconds). The reduced H2O2 levels in the vials validate the measurement of H2O2. The relatively long-lasting formation of H2O2 and superoxide reported herein and previously suggests that ROS may be important in secondary spinal cord damage and that removal of ROS may be a realistic treatment strategy for reducing injury caused by free radicals.  相似文献   

5.
Three salen-Mn(II) complexes bearing hydroxyl groups in either the ortho, para or meta positions have been synthesized and the structures of the metal complexes and their potential to produce free radicals investigated by electron spin resonance (ESR) and X-ray absorption near edge structures (XANES) spectroscopy. All three compounds were shown to generate a high level of superoxide anions in dimethyl sulfoxide (DMSO) solution. The production of oxygen radicals results from a one electron process oxidation of Mn(II) species leading to the formation Mn(III) redox state species, as revealed by a higher XANES edge energy of 2.7 eV. The formation of superoxide anion was characterized by ESR, both directly and via the use of a spin-trapping method. Under reductive condition in the presence of ascorbic acid, the reduction of Mn(III) to Mn(II) leads to the production of hydroxyl radicals by the ortho and para compounds. The efficient production O(2)*- by such salen-Mn complexes could be useful to evaluate the scavenging properties of antioxidant molecules.  相似文献   

6.
The G values for single-strand breaks G(ssb) in polyuridylic acid (poly U) have been measured by low-angle laser light scattering in aqueous solutions under various conditions (e.g. in the presence of N2O, Ar and t-butanol). In N2O-saturated solutions at room temperature and pH 5.6, the G(ssb) is 2.3. The efficiency of ssb formation was found to be 41 per cent for OH radicals, 19 per cent for H atoms and congruent to zero for e-aq. On the basis of 20 per cent and less than 5 per cent attack on the sugar moiety by OH radicals and H atoms, respectively, the large G(ssb) values obtained cannot be explained solely as resulting from radicals produced by reaction of OH radicals and H atoms on the sugar moiety. It is therefore proposed that base radicals produced by the reaction of OH radicals or H atoms with the uracil moiety can also lead to chain break formation in poly U via radical transfer to the sugar moiety.  相似文献   

7.
Phagocytes generate superoxide (O2-.) and hydrogen peroxide (H2O2) and their interaction in an iron-catalyzed reaction to form hydroxyl radicals (OH.) (Haber-Weiss reaction) has been proposed. Deferoxamine chelates iron in a catalytically inactive form, and thus inhibition by deferoxamine has been employed as evidence for the involvement of OH. generated by the Haber-Weiss reaction. We report here that deferoxamine also inhibits reactions catalyzed by the peroxidases of phagocytes, i.e., myeloperoxidase (MPO) and eosinophil peroxidase (EPO). The reactions inhibited include iodination in the presence and absence of chloride and the oxidation of guaiacol. Iodination by MPO and H2O2 is stimulated by chloride due to the intermediate formation of hypochlorous acid (HOCl). Iodination by reagent HOCl also is inhibited by deferoxamine with the associated consumption of HOCl. Iron saturation of deferoxamine significantly decreased but did not abolish its inhibitory effect on iodination by MPO + H2O2 or HOCl. Deferoxamine did not affect the absorption spectrum of MPO, suggesting that it does not react with or remove the heme iron. The conversion of MPO to Compound II by H2O2 was not seen when H2O2 was added to MPO in the presence of deferoxamine, suggesting either that deferoxamine inhibited the formation of Compound II by acting as an electron donor for MPO Compound I or that deferoxamine immediately reduced the Compound II formed. Iodination by stimulated neutrophils also was inhibited by deferoxamine, suggesting an effect on peroxidase-catalyzed reactions in intact cells. Thus deferoxamine has multiple effects on the formation and activity of phagocyte-derived oxidants and therefore its inhibitory effect on oxidant-dependent damage needs to be interpreted with caution.  相似文献   

8.
Kim YS  Han S 《FEBS letters》2000,479(1-2):25-28
Reaction of Cu,Zn-superoxide dismutase (SOD1) and hydrogen peroxide generates a putative oxidant SOD-Cu2+-.OH that can inactivate the enzyme and oxidize 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) to DMPO-.OH. In the presence of nitric oxide (.NO), the SOD1/H2O2 system is known to produce peroxynitrite (ONOO-). In contrast to the proposed cytotoxicity of .NO conferred by ONOO-, we report here a protective role of .NO in the H2O2-induced inactivation of SODI. In a dose-dependent manner, .NO suppressed formation of DMPO-.OH and inactivation of the enzyme. Fragmentation of the enzyme was not affected by .NO. Bicarbonate retarded formation of ONOO-, suggesting that .NO competes with bicarbonate for the oxidant SOD-Cu2+-.OH. We propose that .NO protects SOD1 from H2O2-induced inactivation by reducing SOD-Cu2+.OH to the active SOD-Cu2+ with concomitant production of NO+ which reacts with H2O2 to give ONOO-.  相似文献   

9.
Extracellularly secreted peroxidases in cell suspension culture of tobacco (Nicotiana tabacum L. cv. Bright Yellow-2, cell line BY-2) catalyse the salicylic acid (SA)-dependent formation of active oxygen species (AOS) which, in turn, triggers an increase in cytosolic Ca2+ concentration. Addition of horseradish peroxidase (HRP) to tobacco cell suspension culture enhanced the SA-induced increase in cytosolic Ca2+ concentration, suggesting that HRP enhanced the production of AOS. The mechanism of peroxidase-catalysed generation of AOS in SA signalling was investigated with chemiluminescence sensitive to AOS and electron spin resonance (ESR) spectroscopy, using the cell suspension culture of tobacco, and HRP as a model system of peroxidase reaction. The results showed that SA induced the peroxidase inhibitor-sensitive production of superoxide and H2O2 in tobacco suspension culture, but no production of hydroxy radicals was detected. Similar results were obtained using HRP. It was also observed that SA suppressed the H2O2-dependent formation of hydroxy radicals in vitro. The results suggest that SA protect the cells from highly reactive hydroxy radicals, while producing the less reactive superoxide and H2O2 through peroxidase-catalysed reaction, as the intermediate signals. The formation of superoxide was followed by that of H2O2, suggesting that superoxide was converted to H2O2. In addition, it was observed that superoxide dismutase-insensitive ESR signal of monodehydroascorbate radical was induced by SA both in the tobacco suspension culture and HRP reaction mixture, suggesting that SA free radicals, highly reactive against ascorbate, were formed by peroxidase-catalysed reactions. The formation of SA free radicals may lead to subsequent monovalent reduction of O2 to superoxide.  相似文献   

10.
Carbonate radicals (CO3-) can be formed biologically by the reaction of OH with bicarbonate, the decomposition of the peroxynitrite-carbon dioxide adduct (ONOOCO2-), and enzymatic activities, i.e., peroxidase activity of CuZnSOD and xanthine oxidase turnover in the presence of bicarbonate. It has been reported that the spin-trap DMPO reacts with CO3(-) to yield transient species to yield finally the DMPO-OH spin adduct. In this study, the kinetics of reaction of CO3(-) with DMPO were studied by pulse radiolysis, yielding a second-order rate constant of 2.5 x 10(6) M(-1) s(-1). A Fenton system, composed of Fe(II)-DTPA plus H2O2, generated OH that was trapped by DMPO; the presence of 50-500 mM bicarbonate, expected to convert OH to CO3(-), markedly inhibited DMPO-OH formation. This was demonstrated to be due mainly to a fast reaction of CO3(-) with FeII-DTPA (k=6.1 x 10(8) M(-1) s(-1)), supported by kinetic analysis. Generation of CO3(-) by the Fenton system was further proved by analysis of tyrosine oxidation products: the presence of bicarbonate caused a dose-dependent inhibition of 3,4-dihydroxiphenylalanine with a concomitant increase of 3,3'-dityrosine yields, and the presence of DMPO inhibited tyrosine oxidation, in agreement with the rate constants with OH or CO3(-). Similarly, the formation of CO3(-) by CuZnSOD/H(2)O(2)/bicarbonate and peroxynitrite-carbon dioxide was supported by DMPO hydroxylation and kinetic competition data. Finally, the reaction of CO3(-) with DMPO to yield DMPO-OH was shown in peroxynitrite-forming macrophages. In conclusion, CO3(-) reacts quite rapidly with DMPO and may contribute to DMPO-OH yields in chemical and cellular systems; in turn, the extent of oxidation of other target molecules (such as tyrosine) by CO3(-) will be sensitive to the presence of DMPO.  相似文献   

11.
The reduction of oxygen by irradiated chloroplasts was studied for elucidation of oxygen action site in the electron transport chain of photosynthesis. Chemiluminescence system, consisted of luminol and peroxidase, was used for registration of oxygen reduction products. In the first case chemiluminescence system was added to supernatant fraction after centrifugation of suspension of irradiated chloroplasts in order to determine H2O2 which was found to be the final product of oxygen photoreduction. In the second case when chloroplasts were illuminated in the presence of chemiluminescence system and oxygen the fact delayed luminescence of luminol was observed. This photoluminescence related also with the oxygen reduction in chloroplasts caused a possible formation of radicals HO2 (or -O2). The formation of this radicals and H2O2 was inhibited by DCMU, heating of chloroplasts at 45 degrees C for 5 min and by washing with EDTA and NH2OH. The rate of HO2 dissappearance was increased by methylviologen. The kinetics of photoluminescence of luminol and afterglow of chlorophyll in chloroplasts was identical in the interval from 20 msec to several seconds. It is suggested that oxygen reaction site is located near the reaction centre of chloroplasts.  相似文献   

12.
Biochemical pathogenesis of post-traumatic epilepsy   总被引:3,自引:0,他引:3  
Head trauma is often followed by epilepsy and may be related to the breakdown of red blood cells and hemoglobin within the CNS. Injection of hemoglobin or iron salts into the rat cortex is known to induce a chronic epileptic focus. We observed the formation of superoxide anion (O2) and hydroxyl radical (.OH) after ferric chloride injection into the rat cerebral cortex and suggest that these radicals, especially .OH, may be responsible for the initiation of lipid peroxidation in neuronal membranes and for the accelerated production of guanidine compounds in the brain, which may in turn lead to epileptogenicity. Then, we found that treatment with epigallocatechin (EGC) or a phosphate diester of vitamins E and C (EPC), which are potent .OH scavengers, significantly inhibited the formation of malondialdehyde and epileptic discharges in the iron-induced epileptic focus.  相似文献   

13.
Mixed photosystem II (PSII) samples consisting of Cl(-)-depleted and active, or Ca(2+)-depleted and active PSII enriched membrane fragments, respectively, were investigated with respect to their susceptibility to light. In the presence of Cl(-)-depleted PSII, active centers were damaged more severely, most likely caused by a higher amount of reactive oxygen species formed in the nonfunctional centers. Cl(-) depletion led to an increased H(2)O(2) production, which seemed to be responsible for the stimulation of PSII activity loss. To distinguish between direct H(2)O(2) formation by partial water oxidation and indirect H(2)O(2) formation by oxygen reduction involving the prior formation of O(2)(-?), the production of reactive oxygen species was followed by spin trapping EPR spectroscopy. All samples investigated, i.e. PSII with a functional water splitting complex, Ca(2+)- and Cl(-)-depleted PSII, produced upon illumination O(2)(-?) and OH(?) radicals on the acceptor side, while Cl(-)-depleted PSII produced additionally OH(?) radicals originating from H(2)O(2) formed on the donor side of PSII.  相似文献   

14.
Liszkay A  Kenk B  Schopfer P 《Planta》2003,217(4):658-667
Hydroxyl radicals (*OH), produced in the cell wall, are capable of cleaving wall polymers and can thus mediate cell wall loosening and extension growth. It has recently been proposed that the biochemical mechanism responsible for *OH generation in the cell walls of growing plant organs represents an enzymatic reaction catalyzed by apoplastic peroxidase (POD). This hypothesis was investigated by supplying cell walls of maize ( Zea mays L.) coleoptiles and sunflower ( Helianthus annuus L.) hypocotyls with external NADH, an artificial substrate known to cause *OH generation by POD in vitro. The effects of NADH on wall loosening, growth, and *OH production in vivo were determined. NADH mediates cell wall extension in vitro and in vivo in an H2O2-dependent reaction that shows the characteristic features of POD. NADH-mediated production of *OH in vivo was demonstrated in maize coleoptiles using electron paramagnetic resonance spectroscopy in combination with a specific spin-trapping reaction. Kinetic properties and inhibitor/activator sensitivities of the *OH-producing reaction in the cell walls of coleoptiles resembled the properties of horseradish POD. Apoplastic consumption of external NADH by living coleoptiles can be traced back to the superimposed action of two enzymatic reactions, a KCN-sensitive reaction mediated by POD operating in the *OH-forming mode, and a KCN-insensitive reaction with the kinetic properties of a superoxide-producing plasma-membrane NADH oxidase the activity of which can be promoted by auxin. Under natural conditions, i.e. in the absence of external NADH, this enzyme may provide superoxide (O2*-) (and H2O2 utilized by POD for) *OH production in the cell wall.  相似文献   

15.
We demonstrated that oxidative stress plays a role in freeze-thaw-induced killing of Campylobacter coli following analysis of mutants deficient in key antioxidant functions. Superoxide anions, but not H(2)O(2), were formed during the freeze-thaw process. However, a failure to detoxify superoxide anions may lead to spontaneous disproportionation of the radicals to H(2)O(2).  相似文献   

16.
When OH. radicals are formed in a superoxide-driven Fenton reaction, in which O2.- is generated enzymically, deoxyribose degradation is effectively inhibited by CuZn- and Mn-superoxide dismutases. The products of this reaction are H2O2 and a Fe3+-EDTA chelate. The mixing of H2O2 and a Fe3+-EDTA chelate also generates OH. radicals able to degrade deoxyribose with the release of thiobarbituric acid-reactive material. This reaction too is inhibited by CuZn- and Mn-superoxide dismutases, suggesting that most of the OH. is formed by a non-enzymic O2.--dependent reduction of the Fe3+-EDTA chelate. Since the reaction between the Fe3+-EDTA chelate and H2O2 leads to a superoxide dismutase-inhibitable formation of OH. radicals, it could suggest a much wider protective role for the superoxide dismutase enzymes in biological systems. Urate produced during the reaction of xanthine oxidase and hypoxanthine limits deoxyribose degradation as well as the effectiveness of the superoxide dismutase enzymes to inhibit damage to deoxyribose by H2O2 and the Fe3+-EDTA chelate. Some of this damage may result from an O2.--independent pathway to OH. formation in which urate reduces the ferric complex.  相似文献   

17.
卤代醌是许多卤芳香持久有机污染物的致癌代谢产物和饮用水消毒副产物。羟基自由基(.OH)被公认为生物系统中最具活性的活性氧物种,能导致生物体内DNA等生物大分子的氧化损伤。目前,最被广泛接受的.OH产生机理是过渡金属离子催化的Fenton反应。综合采用电子自旋共振二级自旋捕获和其他分析方法,发现四氯苯醌和其它卤代醌皆可通过不依赖于过渡金属离子的途径,显著促进氢过氧化物(H2O2或有机氢过氧化物)的分解而产生.OH或烷氧自由基,并首次检测到一种新型的、以碳为中心的醌自由基。基于以上研究,提出一类不依赖于过渡金属离子的卤代醌介导的新型有机类Fenton反应机理。  相似文献   

18.
N S Dalal  X L Shi 《Biochemistry》1989,28(2):748-750
It has been recently suggested that the exceptionally high antitumor and antibacterial activity of natural fredericamycin A (FMA) is related to its ability to spontaneously generate the superoxide anion (O2-) and hydroxyl (.OH) radicals in aerobic solutions [Hilton, B. D., Misra, R., & Zweier, J. L. (1986) Biochemistry 25, 5533]. With a view to understand the mechanistic details, attempts were made to reproduce earlier electron spin resonance (ESR) evidence for the oxygenated free radical formation in well-aerated solutions of natural FMA in dimethyl sulfoxide and dilute H2O2. Little or no evidence was obtained for the formation of the O2- and methoxy (.OCH3) radicals, while the detected formation of the .OH and methyl (.CH3) radicals was attributable largely to mechanisms not involving FMA. These results thus reopen the question regarding the mechanism of its exceptionally high tumoricidal-bacteriocidal activity.  相似文献   

19.
Phenanthroline and bipyridine, strong chelators of iron, protect DNA from single-strand break formation by H2O2 in human fibroblasts. This fact strongly supports the concept that these DNA single-strand breaks are produced by hydroxyl radicals generated by a Fenton-like reaction between intracellular Fe2+ and H2O2: H2O2 + Fe2+----Fe3+ + OH- + OH: Corroborating this idea is the fact that thiourea, an effective OH radical scavenger, prevents the formation of DNA single-strand breaks by H2O2 in nuclei from human fibroblasts. The copper chelator diethyldithiocarbamate, a strong inhibitor of superoxide dismutase, greatly enhances the in vivo production of DNA single-strand breaks by H2O in fibroblasts. This supports the idea that Fe3+ is reduced to Fe2+ by superoxide ion: O divided by 2 + Fe3+----O2 + Fe2+; and therefore that the sum of this reaction and the Fenton reaction, namely the so-called Haber-Weiss reaction, H2O2 + O divided by 2----O2 + OH- + OH; represents the mode whereby OH radical is produced from H2O2 in the cell. EDTA completely protects DNA from single-strand break formation in nuclei. The chelator therefore removes iron from the chromatin, and although the Fe-EDTA complex formed is capable of reacting with H2O2, the OH radical generated under these conditions is not close enough to hit DNA. Therefore iron complexed to chromatin functions as catalyst for the Haber-Weiss reaction in vivo, similarly to the role played by Fe-chelates in vitro.  相似文献   

20.
The reactions of mobile electrons (em-) and oxygen radical anions (O--) with halogenated bases and nucleosides have been studies in gamma-irradiated alkaline glasses by e.s.r. and specific halogen-ion electrode techniques. It is shown that electrons react with halogenated uracil bases (XUr where X = Cl, Br. I but not F) by dissociative electron attachment to form uracil-5-yl radicals (U-) and halogen anions. The relative rates of reaction of em- with XUr decrease in the sequence BrUr greater than ClUr greater than FUr greater than IUr. Thermal annealing studies carried out on U- in H2O and D2O matrices support the hypothesis that U- in H2O hydrates across the 5-6 double bond in the temperature region 135 degrees-155 degrees K, and deuterates to a much smaller extent in D2O at temperatures above 155 degrees K. Studies on bromouridine and bromodeoxyurinde suggest that em- reacts with the base moieties to form U- type radicals which abstract H- from the sugar moieties of adjacent nucleosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号