首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to generate code for physiological simulations and provides a tool for studying cardiac electrophysiology.  相似文献   

2.
We develop a second-order high-resolution finite difference scheme to approximate the solution of a mathematical model describing the within-host dynamics of malaria infection. The model consists of two nonlinear partial differential equations coupled with three nonlinear ordinary differential equations. Convergence of the numerical method to the unique weak solution with bounded total variation is proved. Numerical simulations demonstrating the achievement of the designed accuracy are presented.  相似文献   

3.
A system of nonlinear hyperbolic partial differential equations is derived using mixture theory to model the formation of biofilms. In contrast with most of the existing models, our equations have a finite speed of propagation, without using artificial free boundary conditions. Adapted numerical scheme will be described in detail and several simulations will be presented in one and more space dimensions in the particular case of cyanobacteria biofilms. Besides, the numerical scheme we present is able to deal in a natural and effective way with regions where one of the phases is vanishing.  相似文献   

4.
5.
Phototransduction starts with the activation of a rhodopsin (respectively, coneopsin) molecule, located in the outer segment of rod (respectively, cone) photoreceptors. The subsequent amplification pathway proceeds via the G-protein transducin to the activation of phosphodiesterase (PDE), a G-protein coupled effector enzyme. In this article, we study the dynamics of PDE activation by constructing a Markov model that is based on the underlying chemical reactions including multiple rhodopsin phosphorylations. We derive explicit equations for the mean and the variance of activated PDE. Our analysis reveals that a low rhodopsin lifetime variance is neither necessary nor sufficient to achieve reliable PDE activation. The numerical simulations show that during the rising phase the variability of PDE activation is much lower compared to the recovery phase, and this property depends crucially on the transducin activation rates. Furthermore, we find that the dynamics of the activation process greatly differs depending on whether rhodopsin or PDE deactivation limits the recovery of the photoresponse. Finally, our simulations for cones show that only very few PDEs are activated by an excited photopigment, which might explain why in S-cones no single photon response can be observed.  相似文献   

6.
The contraction of the heart is preceded and caused by a cellular electro-chemical reaction, causing an electrical field to be generated. Performing realistic computer simulations of this process involves solving a set of partial differential equations, as well as a large number of ordinary differential equations (ODEs) characterizing the reactive behavior of the cardiac tissue. Experiments have shown that the solution of the ODEs contribute significantly to the total work of a simulation, and there is thus a strong need to utilize efficient solution methods for this part of the problem. This paper presents how an efficient implicit Runge-Kutta method may be adapted to solve a complicated cardiac cell model consisting of 31 ODEs, and how this solver may be coupled to a set of PDE solvers to provide complete simulations of the electrical activity.  相似文献   

7.
We develop a thermodynamically consistent mixture model for avascular solid tumor growth which takes into account the effects of cell-to-cell adhesion, and taxis inducing chemical and molecular species. The mixture model is well-posed and the governing equations are of Cahn-Hilliard type. When there are only two phases, our asymptotic analysis shows that earlier single-phase models may be recovered as limiting cases of a two-phase model. To solve the governing equations, we develop a numerical algorithm based on an adaptive Cartesian block-structured mesh refinement scheme. A centered-difference approximation is used for the space discretization so that the scheme is second order accurate in space. An implicit discretization in time is used which results in nonlinear equations at implicit time levels. We further employ a gradient stable discretization scheme so that the nonlinear equations are solvable for very large time steps. To solve those equations we use a nonlinear multilevel/multigrid method which is of an optimal order O(N) where N is the number of grid points. Spherically symmetric and fully two dimensional nonlinear numerical simulations are performed. We investigate tumor evolution in nutrient-rich and nutrient-poor tissues. A number of important results have been uncovered. For example, we demonstrate that the tumor may suffer from taxis-driven fingering instabilities which are most dramatic when cell proliferation is low, as predicted by linear stability theory. This is also observed in experiments. This work shows that taxis may play a role in tumor invasion and that when nutrient plays the role of a chemoattractant, the diffusional instability is exacerbated by nutrient gradients. Accordingly, we believe this model is capable of describing complex invasive patterns observed in experiments.  相似文献   

8.
9.
The nonlinear, core-conductor model of action potential propagation down axisymmetric nerve fibers is adapted for an implicit, numerical simulation by computer solution of the differential equations. The calculation allows a septum to be inserted in the model fiber; the thin, passive septum is characterized by series resistance Rsz and shunt resistance Rss to the grounded bath. If Rsz is too large or Rss too small, the signal fails to propagate through the septum. Plots of the action potential profiles for various axial positions are obtained and show distortions due to the presence of the septum. A simple linear model, developed from these simulations, relates propagation delay through the septum and the preseptal risetime to Rsz and Rss. This model agrees with the simulations for a wide range of parameters and allows estimation of Rsz and Rss from measured propagation delays at the septum. Plots of the axial current as a function of both time and position demonstrate how the presence of the septum can cause prominent local reversals of the current. This result, not previously described, suggests that extracellular magnetic measurements of cellular action currents could be useful in the biophysical study of septated fibers.  相似文献   

10.
Solutions to axon equations   总被引:1,自引:0,他引:1       下载免费PDF全文
J Evans  N Shenk 《Biophysical journal》1970,10(11):1090-1101
The solutions to a general class of axon partial differential equations proposed by FitzHugh which includes the Hodgkin-Huxley equations are studied. It is shown that solutions to the partial differential equations are exactly the solutions to a related set of integral equations. An iterative procedure for constructing the solutions based on standard methods for ordinary differential equations is given and each set of initial values is shown to lead to a unique solution. Continuous dependence of the solutions on the initial values is established and solutions with initial values in a restricted (physiological) range are shown to remain in that range for all time. The iterative procedure is not suggested as the basis for numerical integration.  相似文献   

11.
Reaction diffusion systems are often used to study pattern formation in biological systems. However, most methods for understanding their behavior are challenging and can rarely be applied to complex systems common in biological applications. I present a relatively simple and efficient, nonlinear stability technique that greatly aids such analysis when rates of diffusion are substantially different. This technique reduces a system of reaction diffusion equations to a system of ordinary differential equations tracking the evolution of a large amplitude, spatially localized perturbation of a homogeneous steady state. Stability properties of this system, determined using standard bifurcation techniques and software, describe both linear and nonlinear patterning regimes of the reaction diffusion system. I describe the class of systems this method can be applied to and demonstrate its application. Analysis of Schnakenberg and substrate inhibition models is performed to demonstrate the methods capabilities in simplified settings and show that even these simple models have nonlinear patterning regimes not previously detected. The real power of this technique, however, is its simplicity and applicability to larger complex systems where other nonlinear methods become intractable. This is demonstrated through analysis of a chemotaxis regulatory network comprised of interacting proteins and phospholipids. In each case, predictions of this method are verified against results of numerical simulation, linear stability, asymptotic, and/or full PDE bifurcation analyses.  相似文献   

12.
Numerical simulations of defibrillation using the Bidomain model coupled to a model of membrane kinetics represent a serious numerical challenge. This is because very high voltages close to defibrillation electrodes demand that extreme time step restrictions be placed on standard numerical schemes, e.g. the forward Euler scheme. A common solution to this problem is to modify the cell model by simple if-tests applied to several equations and rate functions. These changes are motivated by numerical problems rather than physiology, and should therefore be avoided whenever possible. The purpose of this paper is to present a numerical scheme that handles the original model without modifications and which is unconditionally stable for the Luo-Rudy phase 1 model. This also shows that the cell model is mathematically well-behaved, even in the presence of very high voltages. Our theoretical results are illustrated by numerical computations.  相似文献   

13.
A stabilizing criterion is derived for equations governing vascular growth and remodeling. We start from the integral state equations of the continuum-based constrained mixture theory of vascular growth and remodeling and obtain a system of time-delayed differential equations describing vascular growth. By employing an exponential form of the constituent survival function, the delayed differential equations can be reduced to a nonlinear ODE system. We demonstrate the degeneracy of the linearized system about the homeostatic state, which is a fundamental cause of the neutral stability observations reported in prior studies. Due to this degeneracy, stability conclusions for the original nonlinear system cannot be directly inferred. To resolve this problem, a sub-system is constructed by recognizing a linear relation between two states. Subsequently, Lyapunov’s indirect method is used to connect stability properties between the linearized system and the original nonlinear system, to rigorously establish the neutral stability properties of the original system. In particular, this analysis leads to a stability criterion for vascular expansion in terms of growth and remodeling kinetic parameters, geometric quantities and material properties. Numerical simulations were conducted to evaluate the theoretical stability criterion under broader conditions, as well as study the influence of key parameters and physical factors on growth properties. The theoretical results are also compared with prior numerical and experimental findings in the literature.  相似文献   

14.
Mathematical models of cardiac electro-mechanics typically consist of three tightly coupled parts: systems of ordinary differential equations describing electro-chemical reactions and cross-bridge dynamics in the muscle cells, a system of partial differential equations modelling the propagation of the electrical activation through the tissue and a nonlinear elasticity problem describing the mechanical deformations of the heart muscle. The complexity of the mathematical model motivates numerical methods based on operator splitting, but simple explicit splitting schemes have been shown to give severe stability problems for realistic models of cardiac electro-mechanical coupling. The stability may be improved by adopting semi-implicit schemes, but these give rise to challenges in updating and linearising the active tension. In this paper we present an operator splitting framework for strongly coupled electro-mechanical simulations and discuss alternative strategies for updating and linearising the active stress component. Numerical experiments demonstrate considerable performance increases from an update method based on a generalised Rush–Larsen scheme and a consistent linearisation of active stress based on the first elasticity tensor.  相似文献   

15.
The classical cable equation, in which membrane conductance is considered constant, is modified by including the linearized effect of membrane potential on sodium and potassium ionic currents, as formulated in the Hodgkin-Huxley equations for the squid giant axon. The resulting partial differential equation is solved by numerical inversion of the Laplace transform of the voltage response to current and voltage inputs. The voltage response is computed for voltage step, current step, and current pulse inputs, and the effect of temperature on the response to a current step input is also calculated.The validity of the linearized approximation is examined by comparing the linearized response to a current step input with the solution of the nonlinear partial differential cable equation for various subthreshold current step inputs.All the computed responses for the squid giant axon show oscillatory behavior and depart significantly from what is predicted on the basis of the classical cable equation. The linearization procedure, coupled with numerical inversion of the Laplace transform, proves to be a convenient approach which predicts at least qualitatively the subthreshold behavior of the nonlinear system.  相似文献   

16.
A model of the DNA is proposed and studied analytically and numerically. The model is an extension of a well known model and describes the double helix as two chains of pendula (each pendulum representing a base). Each base (or pendulum) can rotate and translate along the helix axis. In the continuum limit the system is described by the perturbed Sine–Gordon equation describing the twist of the bases and by a nonlinear partial differential equation (PDE) describing the longitudinal displacements of the bases. This coupled system of PDEs was studied analytically using different approaches and the corresponding results were tested through numerical simulations. It was found that if the coupling parameters satisfy a well defined relationship, then there exist bounded travelling wave solutions.  相似文献   

17.
Summary Growth curve data consist of repeated measurements of a continuous growth process over time in a population of individuals. These data are classically analyzed by nonlinear mixed models. However, the standard growth functions used in this context prescribe monotone increasing growth and can fail to model unexpected changes in growth rates. We propose to model these variations using stochastic differential equations (SDEs) that are deduced from the standard deterministic growth function by adding random variations to the growth dynamics. A Bayesian inference of the parameters of these SDE mixed models is developed. In the case when the SDE has an explicit solution, we describe an easily implemented Gibbs algorithm. When the conditional distribution of the diffusion process has no explicit form, we propose to approximate it using the Euler–Maruyama scheme. Finally, we suggest validating the SDE approach via criteria based on the predictive posterior distribution. We illustrate the efficiency of our method using the Gompertz function to model data on chicken growth, the modeling being improved by the SDE approach.  相似文献   

18.
Summary This article is concerned with the determination of kinetic parameters of the Calvin photosynthesis cycle which is described by seventeen nonlinear ordinary differential equations. It is shown that the task requires dynamic data for several sets of initial conditions. The numerical technique is based upon an algorithm for non-linear optimization and Gear's numerical integration scheme for stiff systems of differential equations. The sensitivity of the parameters to noise in the data is tested with a method adapted from Rosenbrook and Storey. A preliminary set of parameters has been obtained from a preliminary set of experimental data. The numerical methods are then tested with synthetic data derived from these parameters. The mathematical model and the results obtained in the simulation are used as an aid in designing new experiments.  相似文献   

19.
The aim of this work is to develop and study a fully continuous individual-based model (IBM) for cancer tumor invasion into a spatial environment of surrounding tissue. The IBM improves previous spatially discrete models, because it is continuous in all variables (including spatial variables), and thus not constrained to lattice frameworks. The IBM includes four types of individual elements: tumor cells, extracellular macromolecules (MM), a matrix degradative enzyme (MDE), and oxygen. The algorithm underlying the IBM is based on the dynamic interaction of these four elements in the spatial environment, with special consideration of mutation phenotypes. A set of stochastic differential equations is formulated to describe the evolution of the IBM in an equivalent way. The IBM is scaled up to a system of partial differential equations (PDE) representing the limiting behavior of the IBM as the number of cells and molecules approaches infinity. Both models (IBM and PDE) are numerically simulated with two kinds of initial conditions: homogeneous MM distribution and heterogeneous MM distribution. With both kinds of initial MM distributions spatial fingering patterns appear in the tumor growth. The output of both simulations is quite similar.  相似文献   

20.
In the literature some attempts were made to analyse and to construct models for biological growth processes and to describe the quantitative aspects of a growth characteristic's changes in time using the Gompertz' function y=aexp(-exp(b--ct)). In this paper differential equations are derived having the Gompertz' function as solution. The goodness of fit after adjusting a chosen analytical expression to the courses of measured values is able to give hints at the reliability of that expression as a true model. This possibility of verification was hardly practiced in past because of lacking in proper numerical procedures for performing the nonlinear regression. An ALGOL program for iterative adjusting the parameters of the GOMPERTZ' function (with or without a constant term) to measured values is given in an appendix of the present paper. Starting values for the nonlinear parameters b and c will be evaluated by Internal Least Squares using one of the derived differential equations. For this algorithm an ALGOL program is given in the appendix too. The growth of human embryo serves as an example to demonstrate the numerical procedures and related programs for evaluating the starting values of the parameters and for their iterative improvement until reaching a minimum for the remainding variance between calculated and measured courses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号