首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Connexin (Cx) proteins are known to play a role in cell-to-cell communication via intercellular gap junction channels or transiently open hemichannels. Previous studies have identified several connexin isoforms in the juxtaglomerular apparatus (JGA), but the vascular connexin isoform Cx45 has not yet been studied in this region. The present work aimed to identify in detail the localization of Cx45 in the JGA and to suggest a functional role for Cx45 in the kidney using conditions where Cx45 expression or function was altered. Using mice that express lacZ coding DNA under the control of the Cx45 promoter, we observed beta-galactosidase staining in cortical vasculature and glomeruli, with specific localization to the JGA region. Renal vascular localization of Cx45 was further confirmed with the use of conditional Cx45-deficient (Cx45fl/fl:Nestin-Cre) mice, which express enhanced green fluorescence protein (EGFP) instead of Cx45 only in cells that, during development, expressed the intermediate filament nestin. EGFP fluorescence was found in the afferent and efferent arteriole smooth muscle cells, in the renin-producing juxtaglomerular cells, and in the extra- and intraglomerular mesangium. Cx45fl/fl:Nestin-Cre mice exhibited increased renin expression and activity, as well as higher systemic blood pressure. The propagation of mechanically induced calcium waves was slower in cultured vascular smooth muscle cells (VSMCs) from Cx45fl/fl:Nestin-Cre mice and in control VSMC treated with a Cx45 gap mimetic peptide that inhibits Cx45 gap junctional communication. VSMCs allowed the cell-to-cell passage of the gap junction permeable dye Lucifer yellow, and calcium wave propagation was not altered by addition of the ATP receptor blocker suramin, suggesting that Cx45 regulates calcium wave propagation via direct gap junction coupling. In conclusion, the localization of Cx45 to the JGA and functional data from Cx45fl/fl:Nestin-Cre mice suggest that Cx45 is involved in the propagation of JGA vascular signals and in the regulation of renin release and blood pressure.  相似文献   

2.
We previously found that deletion of connexin 40 (Cx40) causes a misdirection of renin-expressing cells from the media layer of afferent arterioles to the perivascular tissue, extraglomerular mesangium, and periglomerular and peritubular interstitium. The mechanisms underlying this aberrant renin expression are unknown. Here, we questioned the relevance of cyclooxygenase-2 (COX-2) activity for aberrant renin expression in Cx40-deficient kidneys. We found that COX-2 mRNA levels were increased three-fold in the renal cortex of Cx40-deficient kidneys relative to wild-type (wt) kidneys. In wt kidneys, COX-2 immunoreactivity was minimally detected in the juxtaglomerular region, but renin expression was frequently associated with COX-2 immunoreactivity in Cx40-deficient kidneys. Treatment with COX-2 inhibitors for 1 wk lowered renin mRNA levels in wt kidneys by about 40%. In Cx40-deficient kidneys, basal renin mRNA levels were increased two-fold relative to wt kidneys, and these elevated mRNA levels were reduced to levels of untreated wt mice by COX-2 inhibitors. In parallel, renin immunoreactive areas were clearly reduced by COX-2 inhibitors such that renin expression vanished and decreased significantly in the periglomerular and peritubular extensions. Notably, COX-2 inhibitor treatment lowered plasma renin concentration (PRC) in wt kidneys by about 40% but did not affect the highly elevated PRC levels in Cx40-deficient mice. These findings suggest that aberrant renin-producing cells in Cx40-deficient kidneys express significant amounts of COX-2, which contribute to renin expression in these cells, in particular, those in the periglomerular and peritubular position. Apparently, these disseminated cells do not contribute to the enhanced renin secretion rates of Cx40-deficient kidneys.  相似文献   

3.
4.
5.
6.
The cellular distribution of connexin40 (Cx40), a newly cloned gap junction structural protein, was examined by immunofluorescence microscopy using two different specific anti-peptide antibodies. Cx40 was detected in the endothelium of muscular as well as elastic arteries in a punctate pattern consistent with the known distribution of gap junctions. However, it was not detected in other cells of the vascular wall. By contrast, Cx43, another connexin present in the cardiovascular system, was not detected in endothelial cells of muscular arteries but was abundant in the myocardium and aortic smooth muscle. We have tested the ability of these connexins to interact functionally. Cx40 was functionally expressed in pairs of Xenopus oocytes and induced the formation of intercellular channels with unique voltage dependence. Unexpectedly, communication did not occur when oocytes expressing Cx40 were paired with those expressing Cx43, although each could interact with a different connexin, Cx37, to form gap junction channels in paired oocytes. These findings indicate that establishment of intercellular communication can be spatially regulated by the selective expression of different connexins and suggest a mechanism that may operate to control the extent of communication between cells.  相似文献   

7.
There are marked changes in vascular dynamics during prolonged periods in the cold, entrance into hibernation, and arousal to euthermy. Cell-to-cell communication through gap junction channels plays a pivotal role in the control of vasomotor function. Multiple gap junction proteins are expressed in blood vessels, including connexins 37 (Cx37), 40 (Cx40), 43 (Cx43), and 45 (Cx45). Using immunolabeling techniques combined with confocal microscopy, we quantitated the levels of these connexins in coronary arterioles and the thoracic aorta of the golden hamster in four physiological conditions: normal control animals at euthermy; cold-exposed animals (before entrance into hibernation); during hibernation; and after 2-hr arousal from hibernation. In all groups, Cx37 was localized between endothelial cells of the aorta and Cx40 was observed between endothelial cells of coronary arterioles and the aorta. Cx43 was confined to smooth muscle cells of the aorta. Labeling for Cx45 was detected in the endothelium of the ascending aorta. The expression of Cx37 was significantly reduced in cold-exposed, hibernating, and aroused animals. Immunolabeling for Cx40 was increased in the coronary arteriolar endothelium of the cold-exposed group compared with normal controls, hibernating, and aroused animals, perhaps to facilitate intercellular communication during the prolonged circulatory changes to vascular dynamics required to maintain core temperature during cold adaptation. Cx40 expression was unchanged in the aorta. Cx43 immunoexpression in the aorta remained constant under all conditions examined. These changes in connexin expression did not occur during the rapid circulatory changes associated with arousal from hibernation.  相似文献   

8.
Cells in blood vessel walls express connexin (Cx)43, Cx40, and Cx37. We recently characterized gap junction channels in rat basilar artery smooth muscle cells and found features attributable not only to these three connexins but also to an unidentified connexin, including strong voltage dependence and single channel conductance of 30-40 pS. Here, we report data consistent with identification of Cx45. Immunofluorescence using anti-human Cx45 and anti-mouse Cx45 antibodies revealed labeling between alpha-actin-positive cells, and RT-PCR of mRNA from arteries after endothelial destruction yielded amplicons exhibiting 90-98% identity with mouse Cx45 and human Cx45. Dual-perforated patch clamping was performed after exposure to oligopeptides that interfere with docking of Cx43, Cx40, or Cx45. Cell pairs pretreated with blocking peptides for Cx43 and Cx40 exhibited strongly voltage-dependent transjunctional conductances [voltage at which voltage-dependent conductance declines by one-half (V1/2) = +/-18.9 mV] and small single channel conductances (31 pS), consistent with the presence of Cx45, whereas cell pairs pretreated with blocking peptide for Cx45 exhibit weaker voltage-dependent conductances (V1/2 = +/-37.9 mV), consistent with block of Cx45. Our data suggest that Cx45 is transcribed, expressed, and forms functional gap junction channels in rat cerebral arterial smooth muscle.  相似文献   

9.
In the vessel wall, endothelial cells are metabolically and electrically coupled to each other and to the adjacent smooth muscle cells by gap junctions composed of connexins. Gap junctions may be formed from combinations of several different connexin proteins, and deletion of one connexin can lead to modification of the expression of another. To reveal a possible interaction between connexin40 (Cx40) and connexin43 (Cx43) in endothelium, we studied their distribution in vessels from C57Bl/6 and Cx40 knockout mice (Cx40-/-) using immunoblots and immunocytochemistry on aortic cross sections and en face whole mounts. En face preparations from C57Bl/6 mice revealed two distinct pools of Cx43, one pericellular and the other intracellular. Cx40 was largely restricted to the periphery of the cells, and in Cx40-/- mice it was, as expected, undetectable. In the Cx40-/- mice, total Cx43 protein was also modestly reduced (immunoblots), but there was a major redistribution of the protein within the cell. The pericellular component of Cx43 was rendered virtually undetectable, and the intracellular compartments were normal or even slightly elevated. Smooth muscle Cx43 was also reduced in the Cx40-/- animals. These findings indicate that the cellular distribution of Cx43 is dependent on the presence of Cx40, and in view of the profound effects on the pericellular pool of the Cx43, the findings suggest that interactions between Cx40 and Cx43 regulate communication between endothelial cells and perhaps between smooth muscle and endothelial cells as well.  相似文献   

10.
We analyzed the expression of connexin(Cx)43 in proliferating and differentiating C(2)C(12) cells and in myoblasts obtained from newborn mice. Cx43 was present in both cell types and under both conditions. The functional role of gap junctional communication (GJC) during terminal differentiation was evaluated in C(2)C(12) myoblasts in the presence or absence of the gap junction blocker 18beta-glycyrrhetinic acid (beta-GA). Differentiation was temporally analyzed through myogenin expression, activity of creatine kinase (CK), and yield of multinucleated cells. In cells treated with beta-GA, the CK activity and myotube formation were reversibly blocked. While in control cultures positive myogenin expression was seen in cell clusters, in beta-GA treated cultures the myogenin immunoreactivity was detected in few, preferentially sparse cells. The role of Cx43 during terminal differentiation was evaluated in cultures of myoblasts obtained from Cx43(Cre-ER(T)/fl) transgenic mice. Inducible deletion of Cx43 was obtained upon activation of Cre-ER(T) via 4-OH-tamoxifen applications. Cx43 deletion led to a drastic decrease in myogenin expression at 24 h of differentiation as compared to myoblasts from control mice. Our results indicate that Cx43-containing gap junctions are required for normal skeletal muscle terminal differentiation. These channels might provide a pathway for the intercellular transfer of signals involved in myogenesis.  相似文献   

11.
Electrophysiological remodeling involving gap junctions has been demonstrated in failing hearts and may contribute to intercellular uncoupling, delayed conduction, enhanced arrhythmias, and vulnerability to sudden death in patients with heart failure. Recently, we showed that failing human hearts exhibit marked increases in connexin45 (Cx45) expression in addition to previously documented decreases in connexin43 (Cx43) expression. Each of these changes results in reduced gap junction coupling. The objective of the present study was to examine functional consequences of increased Cx45 in cardiac gap junctions. Transgenic mice with cardiac-selective overexpression of the developmentally downregulated cardiac connexin, connexin45 (Cx45OE mice) were subjected to in vivo electrophysiology studies in which an intracardiac catheter was used to induce ventricular arrhythmias in anesthetized mice, and in which ambulatory ECG monitoring was used to detect spontaneous arrhythmias in unanesthetized mice. Hearts were analyzed by TaqMan RT-PCR, immunostaining, immunoblotting, and echocardiography. Lucifer yellow and neurobiotin dye transfer was used to assess coupling in transgenic and control myocyte cultures. Cx45 mRNA was two orders of magnitude greater in Cx45OE mice. Cx45-immunoreactive signal at gap junctions increased twofold and total Cx45 protein by immunoblotting increased 25% in Cx45OE mice compared with nontransgenic littermate controls. Functionally, Cx45OE mice exhibited more inducible ventricular tachycardia than controls but did not exhibit any other functional or structural derangements as assessed by echocardiography. Ventricular myocytes isolated from Cx45OE mice exhibited diminished intercellular transfer of Lucifer yellow dye and increased transfer of neurobiotin, consistent with altered cell-to-cell communication. Thus increased myocardial expression of Cx45 results in remodeling of intercellular coupling and greater susceptibility to ventricular arrhythmias in vivo.  相似文献   

12.
The gap junction protein connexin45-deficient (Cx45-KO) mice die shortly after the hearts begin to beat. In addition to the heart defect, they also show defective vascular development which may be closely related with the cardiac phenotype. Therefore, we created mice whose floxed-Cx45 locus could be removed conditionally. We utilized cardiac alpha-actin-Cre transgenic mice to investigate the specific cardiac muscular function of Cx45 in vivo. The resultant conditional mutants were lethal, showing conduction block similar to that of the Cx45-KO mice. Unlike Cx45-KO, development of the endocardial cushion was not disrupted in the conditional mutants. X-gal staining was detected in the embryonic cardiac myocytes as a hallmark of Cre-loxP mediated floxed-Cx45 deletion. These results reconfirm the requirement of Cx45 for developing cardiac myocytes. These also indicate that establishing the first contractions is a crucial task for the early hearts.  相似文献   

13.
Gap junctional proteins (connexins) form aqueous channels that enable direct cell-cell transfer of ions and small molecules. The distribution and conductance of gap junction channels in cardiac muscle determine the pattern and synchrony of cellular activation. However, the capacity for smooth muscle to restrict contractile events temporally and spatially suggests that cell-cell coupling or its regulation may be decidedly different in this tissue. We isolated a cDNA from vascular smooth muscle which encodes a connexin (Mr 43,187) structurally homologous to cardiac connexin43. Vascular smooth muscle connexin43 mRNA was expressed prominently in smooth muscle tissues, cultured vascular myocytes, and arterial endothelial cells. A model for functional expression of connexins was developed in two-cell B6D2 mouse embryos. Microinjection of in vitro transcribed vascular smooth muscle connexin43 mRNA was shown to be sufficient to induce intercellular coupling in previously uncoupled blastomeres. Through the construction of two deletion mutants of connexin43, we also show that the formation of cell-to-cell connections does not depend upon a predicted cytoplasmic region within 98 residues of the carboxyl terminus. Finally, the identification of connexin43 in smooth muscle and endothelial cells provides supporting evidence for the existence of heterocellular coupling between cells of the vascular intima.  相似文献   

14.
A characteristic property of the vascular smooth muscle cell is its ability to modulate between a contractile phenotype, responsible for control of vascular tone and tension, through to a synthetic phenotype, capable of migration and synthesis of extracellular matrix molecules. Smooth muscle cells are coupled by gap junctions, the membrane structures which permit direct intercellular passage of ions and small molecules, and which play a role both in electrical coupling and intercellular communication during patterning and development. We have previously found that connexin43 type gap junction expression is upregulated in the synthetic phenotype smooth muscle cellin vitroand during atherosclerotic plaque formation in human coronary arteries. On the basis of immunohistochemical labelling, confocal laser scanning microscopy and digital image analysis, we now report that relatively high levels of connexin43 are expressed during development of the rat thoracic aorta, temporally correlating with reported periods of smooth muscle cell proliferation and secretion of elastic laminae. A major peak in expression occurs at seven days post-natal, with a second less pronounced peak at 72 days post-natal. The principal peak in gap junction levels appears to coincide with increased post-natal blood pressure and aorta media thickening. The amount of gap junction labelling falls off to normal adult levels as the smooth muscle cells modulate towards the contractile phenotype and growth is completed. The results indicate an association between direct cell-to-cell communication and synthetic phenotype smooth muscle cell activity during aortic growth and patterning.  相似文献   

15.
We analyzed the expression of connexin(Cx)43 in proliferating and differentiating C2C12cells and in myoblasts obtained from newborn mice. Cx43 was present in both cell types and under both conditions. The functional role of gap junctional communication (GJC) during terminal differentiation was evaluated in C2C12myoblasts in the presence or absence of the gap junction blocker 18β-glycyrrhetinic acid (β-GA). Differentiation was temporally analyzed through myogenin expression, activity of creatine kinase (CK), and yield of multinucleated cells. In cells treated with β-GA, the CK activity and myotube formation were reversibly blocked. While in control cultures positive myogenin expression was seen in cell clusters, in β-GA treated cultures the myogenin immunoreactivity was detected in few, preferentially sparse cells. The role of Cx43 during terminal differentiation was evaluated in cultures of myoblasts obtained from Cx43Cre-ER(T)/fltransgenic mice. Inducible deletion of Cx43 was obtained upon activation of Cre-ER(T) via 4-OH-tamoxifen applications. Cx43 deletion led to a drastic decrease in myogenin expression at 24 h of differentiation as compared to myoblasts from control mice. Our results indicate that Cx43-containing gap junctions are required for normal skeletal muscle terminal differentiation. These channels might provide a pathway for the intercellular transfer of signals involved in myogenesis.  相似文献   

16.
Communication between vascular smooth muscle (VSM) cells via low-resistance gap junctions may facilitate vascular function by synchronizing the contractile state of individual cells within the vessel wall. We hypothesized that inhibition of gap junctional communication would impair constrictor responses of mesenteric resistance arteries. Immunohistochemical experiments revealed positive staining for connexin 37 (Cx37) in both endothelium and smooth muscle of rat mesenteric arterioles, whereas connexin 43 (Cx43) immunoreactivity was not detected in the mesenteric vasculature. Administration of the gap junction inhibitory peptide Gap27, which targets Cx37 and Cx43, significantly diminished myogenic vasoconstriction (8.6 +/- 3.8% of passive diameter at 100 Torr) and changes in vessel wall intracellular [Ca2+] of mesenteric resistance arteries compared with vessels treated with either vehicle (physiological saline solution) (33.5 +/- 6.1%) or a control peptide (32.1 +/- 6.5%). Administration of 18alpha-glycyrrhetinic acid, structurally distinct from Gap27, also significantly attenuated myogenic constriction compared with its vehicle control (DMSO) (9.6 +/- 3.2% vs. 23.8 +/- 4.6%). In contrast, phenylephrine-induced vasoconstriction was not altered by gap junction blockers. Attenuated myogenic vasoconstriction resulting from inhibition of gap junctions persisted after disruption of the endothelium. In additional experiments, VSM cell membrane potential was recorded in mesenteric resistance arteries pressurized to 20 or 100 Torr. VSM membrane potential was depolarized at 100 Torr compared with 20 Torr. However, VSM cells in arteries treated with Gap27 were significantly hyperpolarized (-48.6 +/- 1.4 mV) at the higher pressure compared with vehicle (-41.4 +/- 1.5 mV) and Gap20-treated (-38.4 +/- 0.7 mV) vessels. Our findings suggest that inhibition of smooth muscle gap junctions attenuates pressure-induced VSM cell depolarization and myogenic vasoconstriction.  相似文献   

17.
In the human heart, ventricular myocytes express connexin 43 (Cx43) and traces of Cx45. In congestive heart failure, Cx43 levels decrease, Cx45 levels increase and gap junction size decreases. To determine whether alterations of connexin coexpression ratio influence gap junction size, we engineered a rat liver epithelial cell line that endogenously expresses Cx43 to coexpress inducible levels of Cx45 under stimulation of the insect hormone, ponasterone A. In cells induced to express Cx45, gap junction sizes are significantly reduced (by 15% to 20%; p < 0.001), an effect that occurs despite increased levels of junctional connexons made from both connexins. In contrast, coexpression of Cx40 with Cx43 does not lead to any change in gap junction size. These results are consistent with the idea that increased Cx45 expression in the failing ventricle contributes to decreased gap junction size.  相似文献   

18.
19.
Gap junctional communication is involved in embryogenesis, cell growth control, and coordinated contraction of cardiac myocytes. It has been hypothesized that gap junctions coordinate responses of vascular cells to constrictor or dilator stimulation. Three connexin (Cx) proteins, 37, 40, and 43, are found in the vasculature. Cx43 gap junctions are widely distributed along the vascular tree, although a precise physiologic role in vascular function is unknown because of a lack of specific functional inhibitors and of suitable animal models. To investigate the role of Cx43 in intercellular communication among vascular smooth muscle (VSM) cells, we selectively modified the expression of the Cx43 gene using antisense cDNA stable transfections in culture. Results show that in cells stably transfected with antisense Cx43 cDNA, gene expression of Cx43 could be reduced to 20% of that observed in vector-transfected cells. In spite of the mRNA and protein reduction, the antisense Cx43 cDNA-transfected cells did not show a significant reduction in dye transfer or a difference in cell growth rate as compared with control. These results suggest either that the residual amount of Cx43 protein is sufficient for dye transfer and growth control or that the dye transfer in these cells can be mediated by Cx40 or other connexin proteins. Therefore, more potent approaches, such as dominant negative and gene knockout, are required to fully block gap junctional communication in VSM cells.  相似文献   

20.
The gap junction protein connexin45-deficient (Cx45-KO) mice die shortly after the hearts begin to beat. In addition to the heart defect, they also show defective vascular development which may be closely related with the cardiac phenotype. Therefore, we created mice whose floxed-Cx45 locus could be removed conditionally. We utilized cardiac α-actin-Cre transgenic mice to investigate the specific cardiac muscular function of Cx45 in vivo. The resultant conditional mutants were lethal, showing conduction block similar to that of the Cx45-KO mice. Unlike Cx45-KO, development of the endocardial cushion was not disrupted in the conditional mutants. X-gal staining was detected in the embryonic cardiac myocytes as a hallmark of Cre-loxP mediated floxed-Cx45 deletion. These results reconfirm the requirement of Cx45 for developing cardiac myocytes. These also indicate that establishing the first contractions is a crucial task for the early hearts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号