首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The aims of the present study were to find more powerful promoter for DNA vaccines in olive flounder (Paralichthys olivaceus) and to evaluate the availability of the auxotrophic Edwardsiella tarda mutant (Δalr Δasd E. tarda) as a delivery vehicle for DNA vaccine against VHSV in olive flounder. The marine medaka (Oryzias dancena) β-actin promoter was clearly stronger than cytomegalovirus (CMV) promoter when the vectors were transfected to Epithelioma papulosum cyprini (EPC) cells or injected into the muscle of olive flounder, suggesting that marine medaka β-actin promoter would be more appropriate promoter for DNA vaccines in olive flounder than CMV promoter. Olive flounder immunized with the Δalr Δasd E. tarda harboring viral hemorrhagic septicemia virus (VHSV) DNA vaccine vector driven by the marine medaka β-actin promoter showed significantly higher serum neutralization titer and higher survival rates against challenge with VHSV than fish immunized with the bacteria carrying VHSV DNA vaccine vector driven by CMV promoter. These results indicate that auxotrophic E.?tarda mutant harboring marine medaka β-actin promoter-driven DNA vaccine vectors would be a potential system for prophylactics of infectious diseases in olive flounder.  相似文献   

2.
Bacterial sialidases are a group of glycohydrolases that are known to play an important role in invasion of host cells and tissues. In this study, we examined in a model of Japanese flounder (Paralichthys olivaceus) the potential function of NanA, a sialidase from the fish pathogen Edwardsiella tarda. NanA is composed of 670 residues and shares low sequence identities with known bacterial sialidases. In silico analysis indicated that NanA possesses a sialidase domain and an autotransporter domain, the former containing five Asp-boxes, a RIP motif, and the conserved catalytic site of bacterial sialidases. Purified recombinant NanA (rNanA) corresponding to the sialidase domain exhibited glycohydrolase activity against sialic acid substrate in a manner that is pH and temperature dependent. Immunofluorescence microscopy showed binding of anti-rNanA antibodies to E.?tarda, suggesting that NanA was localized on cell surface. Mutation of nanA caused drastic attenuation in the ability of E.?tarda to disseminate into and colonize fish tissues and to induce mortality in infected fish. Likewise, cellular study showed that the nanA mutant was significantly impaired in the infectivity against cultured flounder cells. Immunoprotective analysis showed that rNanA in the form of a subunit vaccine conferred effective protection upon flounder against lethal E.?tarda challenge. rNanA vaccination induced the production of specific serum antibodies, which enhanced complement-mediated bactericidal activity and reduced infection of E.?tarda into flounder cells. Together these results indicate that NanA plays an important role in the pathogenesis of E.?tarda and may be exploited for the control of E.?tarda infection in aquaculture.  相似文献   

3.
Two auxotrophic genes that play essential roles in bacterial cell wall biosynthesis--alanine racemase (alr) gene and aspartate semialdehyde dehydrogenase (asd) gene--knock-out Edwardsiella tarda (Δalr Δasd E. tarda) was generated by the allelic exchange method to develop a combined vaccine system. Green fluorescent protein (GFP) was used as a model foreign protein, and was expressed by transformation of the mutant E. tarda with antibiotic resistant gene-free plasmids harboring cassettes for GFP and asd expression (pG02-ASD-EtPR-GFP). In vitro growth of the mutant E. tarda was similar to wild-type E. tarda when D-alanine and diaminopimelic acid (DAP) were supplemented to growth medium. However, without d-alanine and/or DAP supplementation, the mutant showed very limited growth. The Δalr Δasd E. tarda transformed with pG02-ASD-EtPR-GFP showed a similar growth pattern of wild-type E. tarda when D-alanine was supplemented in the medium, and the expression of GFP could be observed even with naked eyes. The virulence of the auxotrophic mutant E. tarda was decreased, which was demonstrated by approximately 10? fold increase of LD?? dose compared to wild-type E. tarda. To assess vaccine potential of the present combined vaccine system, olive flounder (Paralichthys olivaceus) were immunized with the GFP expressing mutant E. tarda, and analyzed protection efficacy against E. tarda challenge and antibody titers against E. tarda and GFP. Groups of fish immunized with 10? CFU of the Δalr Δasd E. tarda harboring pG02-ASD-EtPR-GFP showed no mortality, which was irrespective to boost immunization. The cumulative mortality rates of fish immunized with 10? or 10? CFU of the mutant bacteria were lowered by a boost immunization. Fish immunized with the mutant E. tarda at doses of 10?-10? CFU/fish showed significantly higher serum agglutination activities against formalin-killed E. tarda than PBS-injected control fish. Furthermore, fish immunized with 10?-10? CFU/fish of the mutant E. tarda showed significantly higher ELISA titer against GFP antigen than fish in other groups. These results indicate that the present double auxotrophic genes knock-out E. tarda coupled with a heterologous antigen expression has a great strategic potential to be used as combined vaccines against various fish diseases.  相似文献   

4.
Edwardsiella tarda glyceraldehyde-3-phosphate dehydrogenase (GAPDH) may be an effective vaccine candidate against infection by E. tarda in Japanese flounder Paralichthys olivaceus. The GAPDH of E. tarda is highly homologous to that of Vibrio cholerae (91%), and therefore E. tarda GAPDH may have protective antigenicity against Vibrio species. In this study, we immunized Japanese flounder with GAPDH of E. tarda and infected the fish with V anguillarum. The result showed that GAPDH prepared from E. tarda protected Japanese flounder effectively in a challenge of V anguillarum. Therefore, E. tarda GAPDH should be considered as a multi-purpose vaccine candidate against several kinds of pathogenic bacteria.  相似文献   

5.
6.
Thirty-seven kilodalton glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Edwardsiella tarda was suggested to be an effective vaccine candidate against E. tarda infection in previous research. For developing a vaccine, obtaining GAPDH in large quantities is necessary. In this study, we determined the complete nucleotide sequence of the gene that encodes GAPDH of E. tarda, and overexpressed the GAPDH of E. tarda by using the Escherichia coli expression system. We immunized Japanese flounder with recombinant GAPDH (rGAPDH) and evaluated its vaccine efficacy. Our results showed that rGAPDH effectively protected Japanese flounder from experimental E. tarda infection, and will contribute to the development of a vaccine against E. tarda.  相似文献   

7.
We have isolated and characterized outer membrane vesicles (OMVs) from Francisella. Transport of effector molecules through secretion systems is a major mechanism by which Francisella tularensis alters the extracellular proteome and interacts with the host during infection. Outer membrane vesicles produced by Francisella were examined using TEM and AFM and found to be 43-125 nm in size, representing another potential mechanism for altering the extracellular environment. A proteomic analysis (LC-MS/MS) of OMVs from F. novicida and F. philomiragia identified 416 (F. novicida) and 238 (F. philomiragia) different proteins, demonstrating that OMVs are an important contributor to the extracellular proteome. Many of the identified OMV proteins have a demonstrated role in Francisella pathogenesis. Biochemical assays demonstrated that Francisella OMVs possess acid phosphatase and hemolytic activities that may affect host cells during infection, and are cytotoxic toward murine macrophages in cell culture. OMVs have been previously used as a human vaccine against Neisseria meningitidis . We hypothesized that Francisella OMVs could be useful as a novel Francisella vaccine. Vaccinated BALB/C mice challenged with up to 50 LD50 of Francisella showed statistically significant protection when compared to control mice. In the context of these new findings, we discuss the relevance of OMVs in Francisella pathogenesis as well as their potential use as a vaccine.  相似文献   

8.
9.
Outer membrane vesicles (OMVs) derived from pathogenic Gram-negative bacteria are an important vehicle for delivery of effector molecules to host cells, but the production of OMVs from Klebsiella pneumoniae, an opportunistic pathogen of both nosocomial and community-acquired infections, and their role in bacterial pathogenesis have not yet been determined. In the present study, we examined the production of OMVs from K. pneumoniae and determined the induction of the innate immune response against K. pneumoniae OMVs. Klebsiella pneumoniae ATCC 13883 produced and secreted OMVs during in vitro culture. Proteomic analysis revealed that 159 different proteins were associated with K. pneumoniae OMVs. Klebsiella pneumoniae OMVs did not inhibit cell growth or induce cell death. However, these vesicles induced expression of proinflammatory cytokine genes such as interleukin (IL)-1β and IL-8 in epithelial cells. An intratracheal challenge of K. pneumoniae OMVs in neutropenic mice resulted in severe lung pathology similar to K. pneumoniae infection. In conclusion, K. pneumoniae produces OMVs like other pathogenic Gram-negative bacteria and K. pneumoniae OMVs are a molecular complex that induces the innate immune response.  相似文献   

10.
The present study was aimed to investigate the effect of a probiotic, Enterococcus faecium, on the immune responses against infection with the marine fish pathogen Lactococcus garvieae in olive flounder (Paralichthys olivaceus). The immune responses were assessed by lysozyme activity, complement activity, protease activity, and expression of proinflammatory cytokines by RT-PCR. The lysozyme and complement activities were increased between 9 to 15 and 9 to 13 days, respectively, and antiprotease activity was slightly elevated after 5 days of probiotic treatment. The TNF-alpha and IL-1beta expressions were observed from kidney and spleen. The results of this study reveal that E. faecium induces immune-responsible materials and protects olive flounder from lactococcosis.  相似文献   

11.
To study the direct cause of liver enlargement in the Japanese flounder Paralichthys olivaceus infected with Edwardsiella tarda, the fish were challenged with E. tarda and reared without feeding. The liver of fish exposed to the bacteria was markedly enlarged compared to that of the controls while no severe histopathological change appeared in the organ during the experiments. No notable difference was observed in the crude fat, glycogen, and water content of the liver between challenged and control fish. The size of liver cells and nuclei of the challenged fish was apparently larger than that of the controls. Analysis of crude DNA in the liver suggested that the number of liver cells of starved control fish significantly decreased during the experiment while that of the challenged fish was maintained at a level of the initial control. RNA/DNA ratio of the liver of challenged fish clearly increased while it decreased in the control fish during the experiment. These observations suggest that liver enlargement of flounder infected with E. tarda, at least in the early stage of infection, is not a result of any readily observable histopathological changes and that E. tarda infection causes hypertrophy of the cells, as well as preventing decrease in liver cell number.  相似文献   

12.
In this paper, we focused on the detection of differentially expressed genes in peripheral blood leucocytes (PBL) during the course of Edwardsiella tarda infection in vaccinated and non-vaccinated Japanese flounder (Paralichthys olivaceus). cDNA microarray analysis was performed to compare the gene expression patterns of the PBL between the vaccinated and non-vaccinated fish in response to E. tarda inoculation. Fish were vaccinated twice, at a two-week interval and experimentally challenged with E. tarda two weeks after the second vaccination. Among the 1187 analyzed genes, 42 genes were up-regulated during the course of infection either in vaccinated or non-vaccinated fish. These genes included immune-related genes, such as MMP-9, MMP-13, CXC chemokine, CD20 receptor and hepcidin. Some immune-related genes were down-regulated after the E. tarda challenge, i.e. interferon inducible Mx protein, MHC class II-associated invariant chain, MHC class II alpha and MHC class II beta encoding genes, immunoglobulin light chain precursor, immunoglobulin light chain and IgM. These responses are thought to be a common reaction of Japanese flounder PBL in the course of edwardsiellosis, irrespective of immunized condition. Ten genes were significantly up-regulated only in vaccinated fish, and 11 genes were significantly up-regulated only in non-vaccinated fish. These genes may have a correlation with the efficacy of vaccination, although we have no evidence to link the different gene expression patterns and the efficacy of vaccination at present.  相似文献   

13.
The vaccine potential of Edwardsiella tarda ghosts produced by gene E mediated lysis was investigated using tilapia (Oreochromis mosambicus). Tilapia immunized with E. tarda ghosts (ETG) and formalin killed E. tarda (FKC) vaccines showed significantly higher serum agglutination titers than control fish. Fish immunized with ETG showed no significant differences with fish immunized with FKC in serum agglutination titers, but showed significantly higher bactericidal activity than fish immunized with FKC. Furthermore, fish immunized with ETG showed higher protection than fish immunized with FKC. As this promising type of a non-living whole cell envelope preparation seems to be favorable over conventional vaccines, we suggest E. tarda ghosts as a new vaccine candidate.  相似文献   

14.
Streptococcus iniae is the major etiological agent of streptococcosis, which is responsible for hemorrhagic septicemia in fish, particularly olive flounder (Paralichthys olivaceus). In the present study, we sought to understand the pathogenicity and immunogenicity of S. iniae in order to develop a vaccine for streptococcosis. Immunoproteomics, a technique involving two-dimensional gel electrophoresis (2-DE) followed by immunoblotting, was employed to investigate the pathogenicity and immunogenicity of two S. iniae isolates, Jeju-13 and Jeju-45, in olive flounder. The virulence of Jeju-13 was moderate whereas that of Jeju-45 was high. A vaccination trial with formalin-killed Jeju-45 demonstrated relatively low protection against the homologous isolate compared with the heterologous isolate. A significant difference in the secretion of extracellular products (ECPs) was noticed between the two S. iniae isolates. ECP antigens were highly immunogenic compared to those from whole cell lysates as determined by 2-DE immunoblot assay of Jeju-13 and Jeju-45 anti-sera collected from post-challenge survival fish. Furthermore, there were differences in the appearance of antigenic spots on 2-DE immunoblot profiles of ECPs of the respective sera. Interestingly, the mixture of killed-cells and concentrated ECPs from Jeju-45 led to significant protection against the homologous isolate of S. iniae in olive flounder. The present study demonstrates the usefulness of immunoproteomics in understanding the pathogenicity of S. iniae to aid the development of a vaccine for fish streptococcosis.  相似文献   

15.
A recombinant viral hemorrhagic septicemia virus (rVHSV-ΔNV-EGFP) that has enhanced green fluorescent protein (EGFP) gene instead of NV gene was previously generated using reverse genetics technology. In this study, potential of the rVHSV-ΔNV-EGFP to be used as a live oral vaccine candidate was assessed. The presence of the recombinant virus in internal organs of orally administered olive flounder (Paralichthys olivaceus) was analyzed by semi-quantitative RT-PCR. Although the recombinant VHSV-specific band was detected only when the number of PCR cycle was increased to 35, the band was detected from internal organs, such as kidney, spleen, and liver of fish that were reared at either 15 °C or 20 °C till even 20 days, suggesting that a few orally administered rVHSV-ΔNV-EGFP might be transported to internal organs, and might keep weak replication ability in the organs. VHSV-neutralizing activity was induced by oral immunization of olive flounder with the NV gene knock-out recombinant VHSV not only in skin and intestinal mucus but also in serum, suggesting that mucosal and systemic adaptive immune responses were elicited by oral immunization. In challenge experiment, groups of fish immunized with 10?, 10?, and 2 × 10? PFU of rVHSV-ΔNV-EGFP/fish showed 25%, 50%, and 70% of relative percent survival (RPS), respectively. The RPSs were elevated to 60%, 75%, and 90% by a boost immunization in fish boost immunized with 10?, 10?, and 2 × 10? PFU of rVHSV-ΔNV-EGFP, respectively. The cumulative mortality of fish in the control groups was 100%. Conclusionly, the present results demonstrate that the NV gene knock-out recombinant VHSV administered orally to olive flounder can induce dose- and boosting-dependent VHSV-neutralizing antibody in mucus and serum, and can provide a high protection in olive flounder against a virulent VHSV challenge.  相似文献   

16.
Members of the DnaJ/Hsp40 family play an important role in protein homeostasis by regulating the activity of DnaK/Hsp70. In this study, we examined the activity and function of the DnaJ from Edwardsiella tarda, a serious fish pathogen that can also infect humans and birds. In silico analysis indicated that E. tarda DnaJ contains structural features, i.e. the J domain, the glycine/phenylalanine-rich region, and the zinc-finger domain, that are conserved among Type I Hsp40. Purified recombinant DnaJ was able to stimulate the ATPase activity of DnaK. Pull-down assay indicated that DnaJ could interact specifically with DnaK. Mutation of the conserved HPD site in the J domain completely abolished the DnaK-stimulating effect of DnaJ. To examine the functional importance of DnaJ, a dnaJ-defective mutant was constructed. Compared to the wild type, the dnaJ mutant (i) was retarded in growth and more sensitive to H?O?-induced oxidative damage, (ii) dramatically reduced in general bacterial virulence and in blood dissemination capacity, and (iii) significantly weakened in the ability to block macrophage activation and to survive within macrophages. Furthermore, when used as a subunit vaccine, purified recombinant DnaJ induced protective immunity in Japanese flounder (Paralichthys olivaceus). Taken together, these results indicate that DnaJ plays an important role in the pathogenesis of E. tarda probably by functioning as a DnaK partner and that DnaJ, with its immunoprotective property, may be useful in the control of E. tarda infection in aquaculture.  相似文献   

17.
18.
Edwardsiella tarda, which is known to be the causative agent of edwardsiellosis in freshwater and marine fish, has two motility phenotypes. Typical strains exhibiting motility are isolated mainly from freshwater fish and Japanese flounder. Atypical strains exhibiting non-motility are isolated mainly from marine fish, with the exception of Japanese flounder. Subtractive hybridization was performed to identify genomic differences between these two phenotypes. Two fragments which showed homology to potential virulence factors were isolated from atypical strains: the autotransporter adhesin AIDA and a component of T6SS. We analysed DNA sequences of about 5 kbp containing these fragments and identified two partial ORF, and ORF encoding for other components of T6SS. The predicted amino acid sequences showed remarkably low homology to components of T6SS reported in the typical E. tarda strain PPD130/91. Furthermore, the organization of these ORF was different from the gene cluster of the typical E. tarda strain. AIDA and T6SS may therefore be associated with different pathogenicity in typical and atypical E. tarda hosts.  相似文献   

19.
Outer membrane vesicles (OMVs) (~50–250?nm in diameter) are produced by both pathogenic and nonpathogenic bacteria as a canonical end product of secretion. In this review, we focus on the OMVs produced by gram-negative bacteria. We provide an overview of the OMV structure, various factors regulating their production, and their role in modulating host immune response using a few representative examples. In light of the importance of the diverse cargoes carried by OMVs, we discuss the different modes of their entry into the host cell and advances in the high-throughput detection of these OMVs. A conspicuous application of OMVs lies in the field of vaccination; we discuss its success in immunization against human diseases such as pertussis, meningitis, shigellosis and aqua-farming endangering diseases like edwardsiellosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号