首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Postinhibitory rebound (PIR) is defined as membrane depolarization occurring at the offset of a hyperpolarizing stimulus and is one of several intrinsic properties that may promote rhythmic electrical activity. PIR can be produced by several mechanisms including hyperpolarization-activated cation current (Ih) or deinactivation of depolarization-activated inward currents. Excitatory swim motor neurons in the leech exhibit PIR in response to injected current pulses or inhibitory synaptic input. Serotonin, a potent modulator of leech swimming behavior, increases the peak amplitude of PIR and decreases its duration, effects consistent with supporting rhythmic activity. In this study, we performed current clamp experiments on dorsal excitatory cell 3 (DE-3) and ventral excitatory cell 4 (VE-4). We found a significant difference in the shape of PIR responses expressed by these two cell types in normal saline, with DE-3 exhibiting a larger prolonged component. Exposing motor neurons to serotonin eliminated this difference. Cs+ had no effect on PIR, suggesting that Ih plays no role. PIR was suppressed completely when low Na+ solution was combined with Ca2+ -channel blockers. Our data support the hypothesis that PIR in swim motor neurons is produced by a combination of low-threshold Na+ and Ca2+ currents that begin to activate near –60 mV.  相似文献   

2.
The goal of these experiments was to test the hypothesis that serotonin (5-HT) is involved in facilitation of the shortening reflex in the leech Hirudo medicinalis. For this reason, we have used the toxin 5-hydroxytryptamine (5,7-DHT) to deplete serotonin from the nervous systems of intact leeches and have assessed the effect on early facilitation, dishabituation, and sensitization of the touch-elicited shortening reflex using behavioral procedures previously developed in our lab (Boulis and Sahley, 1988). We find that 5,7-DHT lesions completely attenuate early facilitation and sensitization but only reduce dishabituation of the touch-elicited shortening reflex. Histological analyses of the ganglia from these leeches using glyoxilic acid staining procedures revealed an absence of staining in the Retzius cell of experimental leeches. All other serotonin-containing neurons showed glyoxilic acid staining comparable to that observed in the control leeches.  相似文献   

3.
The modifying effect of adding serotonin to the intra- and extracellular environment on the inward currents generated by the cell following intracellular application of acetylcholine was shown during studies on unidentified isolatedLimnaea stagnalis neurons using techniques of intracellular perfusion and voltage clamping. Serotonin inhibited response to achetylcholine in both cases in most of the test neurons. Serotonin intensified this response when applied to the intracellular environment and produced the opposite effect of reducing the amplitude of inward acetylcholine currents when administered extracellularly. Cyproheptadine, the serotonin receptor blocker, inhibited the enhancing effect of serotonin produced by adding this neurotransmitter to the intracellular fluid, but mimicked the inhibitory effects of serotonin on response to acetylcholine, whether added to the intra- or extracellular environment. Findings would suggest the presence of intracellular serotonin receptors in the mollusk neurons; one of their possible functions could be controlling the sensitivity of the cell surface cholinoreceptors.N. K. Koltsov Institute of Developmental Biology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 326–332, May–June, 1986.  相似文献   

4.
 Simple exposure to repeatitive stimulation is known to induce short-term learning effects across a wide range of species. These effects can be both suppressive and facilitatory depending on stimulus conditions: repeatitive presentation of a weak stimulus decreases the strength of the response (habituation), whereas presentation of a tonic stimulus following a series of weak stimuli transiently increases the response strength (dishabituation). Although these phenomena have been comprehensively characterized at both behavioral and cellular levels, most existing models of nonassociative learning focus exclusively on the suppressive or facilitatory changes in response, and do not attempt to relate cellular events to behavior. I propose here a feedforward model of habituation effects that explains both suppressive and facilitatory changes in response relying on the interaction between excitatory and inhibitory processes that develop in parallel on two different timescales. The model's properties are used to explain the rate sensitivity property of habituation and recovery and stimulus dishabituation. Received: 1 June 2001 / Accepted in revised form: 4 December 2001  相似文献   

5.
Voluntary movements in animals are often episodic, with abrupt onset and termination. Elevated neuronal excitation is required to drive the neuronal circuits underlying such movements; however, the mechanisms that sustain this increased excitation are largely unknown. In the medicinal leech, an identified cascade of excitation has been traced from mechanosensory neurons to the swim oscillator circuit. Although this cascade explains the initiation of excitatory drive (and hence swim initiation), it cannot account for the prolonged excitation (10–100 s) that underlies swim episodes. We present results of physiological and theoretical investigations into the mechanisms that maintain swimming activity in the leech. Although intrasegmental mechanisms can prolong stimulus-evoked excitation for more than one second, maintained excitation and sustained swimming activity requires chains of several ganglia. Experimental and modeling studies suggest that mutually excitatory intersegmental interactions can drive bouts of swimming activity in leeches. Our model neuronal circuits, which incorporated mutually excitatory neurons whose activity was limited by impulse adaptation, also replicated the following major experimental findings: (1) swimming can be initiated and terminated by a single neuron, (2) swim duration decreases with experimental reduction in nerve cord length, and (3) swim duration decreases as the interval between swim episodes is reduced.  相似文献   

6.
The nematode Caenorhabditis elegans has complex, naturally variable behavioral responses to environmental oxygen, food, and other animals. C. elegans detects oxygen through soluble guanylate cyclase homologs (sGCs) and responds to it differently depending on the activity of the neuropeptide receptor NPR-1: npr-1(lf) and naturally isolated npr-1(215F) animals avoid high oxygen and aggregate in the presence of food; npr-1(215V) animals do not. We show here that hyperoxia avoidance integrates food with npr-1 activity through neuromodulation of a distributed oxygen-sensing network. Hyperoxia avoidance is stimulated by sGC-expressing oxygen-sensing neurons, nociceptive neurons, and ADF sensory neurons. In npr-1(215V) animals, the switch from weak aerotaxis on food to strong aerotaxis in its absence requires close regulation of the neurotransmitter serotonin in the ADF neurons; high levels of ADF serotonin promote hyperoxia avoidance. In npr-1(lf) animals, food regulation is masked by increased activity of the oxygen-sensing neurons. Hyperoxia avoidance is also regulated by the neuronal TGF-β homolog DAF-7, a secreted mediator of crowding and stress responses. DAF-7 inhibits serotonin synthesis in ADF, suggesting that ADF serotonin is a convergence point for regulation of hyperoxia avoidance. Coalitions of neurons that promote and repress hyperoxia avoidance generate a subtle and flexible response to environmental oxygen.  相似文献   

7.
The effects of serotonin on the electrical properties of swim-gating neurons (cell 204) were examined in leech (Hirudo medicinalis) nerve cords. Exposure to serotonin decreased the threshold current required to elicit swim episodes by prolonged depolarization of an individual cell 204 in isolated nerve cords. This effect was correlated with a more rapid depolarization and an increased impulse frequency of cell 204 in the first second of stimulation. In normal leech saline, brief depolarizing current pulses (1 s) injected into cell 204 failed to elicit swim episodes. Following exposure to serotonin, however, identical pulses consistently evoked swim episodes. Thus, serotonin appears to transform cell 204 from a gating to a trigger cell.Serotonin had little effect on the steady-state currentvoltage relation of cell 204. However, serotonin altered the membrane potential trajectories in response to injected current pulses and increased the amplitude of rebound responses occurring at the offset of current pulses. These changes suggest that serotonin modulates one or more voltage dependent conductances in cell 204, resulting in a more rapid depolarization and greater firing rate in response to injected currents. Thus, modulation of intrinsic ionic conductances in cell 204 may account in part for the increased probability of swimming behavior induced by serotonin in intact leeches.Abbreviations AHP afterhyperpolarizing potential - DCC discontinuous current clamp - DP dorsal posterior nerve - G2 segmental ganglion 2 - PIR postinhibitory rebound - RMP resting membrane potential  相似文献   

8.
A member of the GGNG peptide family was isolated from Hirudo nipponia (leech). GGNG peptides had only been isolated previously from earthworms. The C-terminus structure of the leech peptide, LEP (leech excitatory peptide), was –Gly–Gly–Asn–amide, while that of the earthworm peptides, EEP (earthworm excitatory peptide), was –Gly–Gly–Asn–Gly. LEP exerted 1000-fold more potent activities on leech gut than did EEP-2. On the other hand, EEP-2 was 1000-fold more potent than LEP on the crop-gizzard of the earthworm. Analog peptides of LEP and EEP-2 were synthesized, and the myoactive potency of each analog on the leech and earthworm tissues was compared.  相似文献   

9.
Expression of swimming in the medicinal leech (Hirudo medicinalis) is modulated by serotonin, a naturally occurring neurohormone. Exogenous application of serotonin engenders spontaneous swimming activity in nerve-cord preparations. We examined whether this activity is due to enhanced participation of swim motor neurons (MNs) in generating the swimming rhythm. We found that depolarizing current injections into MNs during fictive swimming are more effective in shifting cycle phase in nerve cords following serotonin exposure. In such preparations, the dynamics of membrane potential excursions following current injection into neuronal somata are substantially altered. We observed: 1) a delayed outward rectification (relaxation) during depolarizing current injection, most marked in inhibitory MNs; and 2) in excitor MNs, an enhancement of postinhibitory rebound (PIR) and afterhyperpolarizing potentials (AHPs) following hyperpolarizing and depolarizing current pulses, respectively. In contrast, we found little alteration in MN properties in leech nerve cords depleted of amines. We propose that enhanced expression of swimming activity in leeches exposed to elevated serotonin is due, partly, to enhancement of relaxation, PIR and AHP in MNs. We believe that as a consequence of alterations in cellular properties and synaptic interactions (subsequent paper) by serotonin, MNs are reconfigured to more effectively participate in generating and expressing the leech swimming rhythm.Abbreviations AHP Afterhyperpolarizing potential - DCC Discontinuous current clamp - DE Dorsal excitor motor neuron - DI Dorsal inhibitor motor neuron - IPSP Inhibitory postsynaptic potential - MN Motor neuron - PIR Postinhibitory rebound - VE Ventral excitor motor neuron - VI Ventral inhibitor motor neuron  相似文献   

10.
Rhythmic animal movements originate in CNS oscillator circuits; however, sensory inputs play an important role in shaping motor output. Our recent studies demonstrated that leeches with severed nerve cords swim with excellent coordination between the two ends, indicating that sensory inputs are sufficient for maintaining intersegmental coordination. In this study, we examined the neuronal substrates that underlie intersegmental coordination via sensory mechanisms. Among the identified sensory neurons in the leech, we found the ventral stretch receptor (VSR) to be the best candidate for our study because of its sensitivity to tension in longitudinal muscle. Our experiments demonstrate that (1) the membrane potential of the VSR is depolarized during swimming and oscillates with an amplitude of 1.5–5.0 mV, (2) rhythmic currents injected into the VSR can entrain ongoing swimming over a large frequency range (0.9–1.8 Hz), and (3) large current pulses injected into the VSR shift the phase of the swimming rhythm. These results suggest that VSRs play an important role in generating and modulating the swim rhythm. We propose that coordinated swimming in leech preparations with severed nerve cords results from mutual entrainment between the two ends of the leech mediated by stretch receptors.  相似文献   

11.
Closely related species can exhibit different behaviours despite homologous neural substrates. The nudibranch molluscs Tritonia diomedea and Melibe leonina swim differently, yet their nervous systems contain homologous serotonergic neurons. In Tritonia, the dorsal swim interneurons (DSIs) are members of the swim central pattern generator (CPG) and their neurotransmitter serotonin is both necessary and sufficient to elicit a swim motor pattern. Here it is shown that the DSI homologues in Melibe, the cerebral serotonergic posterior-A neurons (CeSP-As), are extrinsic to the swim CPG, and that neither the CeSP-As nor their neurotransmitter serotonin is necessary for swim motor pattern initiation, which occurred when the CeSP-As were inactive. Furthermore, the serotonin antagonist methysergide blocked the effects of both the serotonin and CeSP-As but did not prevent the production of a swim motor pattern. However, the CeSP-As and serotonin could influence the Melibe swim circuit; depolarization of a cerebral serotonergic posterior-A was sufficient to initiate a swim motor pattern and hyperpolarization of a CeSP-A temporarily halted an ongoing swim motor pattern. Serotonin itself was sufficient to initiate a swim motor pattern or make an ongoing swim motor pattern more regular. Thus, evolution of species-specific behaviour involved alterations in the functions of identified homologous neurons and their neurotransmitter.  相似文献   

12.
Leech blood apparently contains considerably less chloride than generally used in physiological experi ments. Instead of 85–130 mM Cl used in experimental salines, leech blood contains around 40 mM Cl and up to 45 mM organic anions, in particular malate. We have reinvestigated the distribution of Cl across the cell membrane of identified glial cells and neurones in the central nervous system of the leech Hirudo medicinalis L., using double-barrelled Cl- and pH-selective micro electrodes, in a conventional leech saline, and in a saline with a low Cl concentration (40 mM), containing 40 mM malate. The interference of anions other than Clto the response of the ion-selective microelectrodes was estimated in Cl-free salines (Cl replaced by malate and/or gluconate). The results show that the absolute intracellu lar Cl activities (aCli) in glial cells and neurones, but not the electrochemical gradients of Cl across the glial and the neuronal cell membranes, are altered in the low Cl, malate-based saline. In Retzius neurones, aCli is lower than expected from electrochemical equilibrium, while in pressure neurones and in neuropil glial cells, aCli is distributed close to its equilibrium in both salines, re spectively. The steady-state intracellular pH values in the glial cells and Retzius neurones are little affected (0.1 pH units) in the low Cl, malate-based saline.  相似文献   

13.
The goal of these experiments was to test the hypothesis that serotonin (5-HT) is involved in facilitation of the shortening reflex in the leech Hirudo medicinalis. For this reason, we have used the toxin 5-hydroxytryptamine (5,7-DHT) to deplete serotonin from the nervous systems of intact leeches and have assessed the effect on early facilitation, dishabituation, and sensitization of the touch-elicited shortening reflex using behavioral procedures previously developed in our lab (Boulis and Sahley, 1988). We find that 5,7-DHT lesions completely attenuate early facilitation and sensitization but only reduce dishabituation of the touch-elicited shortening reflex. Histological analyses of the ganglia from these leeches using glyoxilic acid staining procedures revealed an absence of staining in the Retzius cell of experimental leeches. All other serotonin-containing neurons showed glyoxilic acid staining comparable to that observed in the control leeches.  相似文献   

14.
Focally treating the head brain of the medicinal leech Hirudo medicinalis with various biogenic amines affected the initiation, termination and maintenance of fictive swimming (i.e., the neural correlate of swimming). Application of serotonin to saline surrounding only the head brain inhibited fictive swimming, whereas removing serotonin induced swimming. This contrasts sharply with previous observations that serotonin applied to the nerve cord induces swimming. Although application of octopamine to the brain activated swimming, a mixture of octopamine and serotonin inhibited swimming. Subsequent removal of this mixture from the brain activated robust swimming and was more potent for activating swimming than either the removal of serotonin or the application of octopamine. Swim episodes induced by brain-specific manipulations of octopamine had more swim bursts per episode than those induced by serotonin. These brain-specific effects of the amines on fictive swimming are probably due to the modulation of higher-order circuits that control locomotion in the leech. We observed that serotonin or a mixture of serotonin and octopamine hyperpolarized an identified descending brain interneuron known as Tr2. Removal of the mixture caused Tr2 to exhibit membrane potential depolarizations that correlated in time with the expression of swim episodes.  相似文献   

15.
The neurotransmitter serotonin (5-HT) plays an important role in a number of behaviors inAplysia californica some of which have been shown to vary with age. We were thus interested in examining the age-dependence of 5-HT inA. californica. Because animals of the same age can have very different weights, and weight alone is reliably known for wild-caught animals, we also examined the variation of 5-HT with weight. Serotonin was measured in the ring and abdominal ganglia combined, in lab-reared animals from 3 to 12 months post-hatch across a wide weight range. Serotonin increased rapidly from 4 to 6 months, and more slowly from 6 to 13 months. Serotonin scaled by soluble ganglion protein increased from 3 to 6–7 months, reached a maximum, and then decreased again. Serotonin, but not scaled 5-HT, increased significantly with weight across the whole weight range. Animals of the same weight, but different ages, had different 5-HT levels, as did young animals of the same age but different weight. Serotonin varied significantly with both age and weight, with the age-dependence being the more significant.  相似文献   

16.
The nematode Caenorhabditis elegans has complex, naturally variable behavioral responses to environmental oxygen, food, and other animals. C. elegans detects oxygen through soluble guanylate cyclase homologs (sGCs) and responds to it differently depending on the activity of the neuropeptide receptor NPR-1: npr-1(lf) and naturally isolated npr-1(215F) animals avoid high oxygen and aggregate in the presence of food; npr-1(215V) animals do not. We show here that hyperoxia avoidance integrates food with npr-1 activity through neuromodulation of a distributed oxygen-sensing network. Hyperoxia avoidance is stimulated by sGC-expressing oxygen-sensing neurons, nociceptive neurons, and ADF sensory neurons. In npr-1(215V) animals, the switch from weak aerotaxis on food to strong aerotaxis in its absence requires close regulation of the neurotransmitter serotonin in the ADF neurons; high levels of ADF serotonin promote hyperoxia avoidance. In npr-1(lf) animals, food regulation is masked by increased activity of the oxygen-sensing neurons. Hyperoxia avoidance is also regulated by the neuronal TGF-β homolog DAF-7, a secreted mediator of crowding and stress responses. DAF-7 inhibits serotonin synthesis in ADF, suggesting that ADF serotonin is a convergence point for regulation of hyperoxia avoidance. Coalitions of neurons that promote and repress hyperoxia avoidance generate a subtle and flexible response to environmental oxygen.  相似文献   

17.
In vivo microdialysis was used to determine the effect of diazepam, flumazenil and FG-7142 upon the biogenic amine response to acute and repeated swim stress in the medial prefrontal cortex of the rat. Acute swim stress increased norepinephrine levels, although dopamine and serotonin levels remained stable. Upon re-exposure to swim stress twenty-four hours later, sustained increases (200–300% of baseline) in all three biogenic amines were detected. This enhanced response to re-stress was not seen in rats pretreated with either a benzodiazepine agonist (diazepam, 2 mg/kg), an antagonist (flumazenil, 10 mg/kg), or an inverse agonist (FG-7142, 10 mg/kg) given prior to the first swim stress. Therefore, the sensitization of biogenic amine response to re-stress may be prevented by compounds which differ in their activity at the benzodiazepine receptor.  相似文献   

18.
Synopsis Buoyancy was measured on eight species of estuarine fishes that were caught in 1 m depth or less. Mean buoyancies of the physoclists Fundulus heteroclitus, F. majalis, Cyprinodon variegatus and Leiostomus xanthurus were similar and ranged from –6.5 to –18.0 kiloPascals below atmospheric pressure at sea level. Menidia menidia and Pomatomus saltatrix measured –36.6 and –46.1 kPa, respectively. Two physostomes, Brevoortia tyrannus and Anchoa mitchilli, measured + 2.9 and –23.5 kPa, respectively, but the latter probably releases air when handled.The four most buoyant physoclist species live near the bottom in areas that receive daily tide induced currents. Negative buoyancy probably functions in them as in stream dwelling minnows and salmonids, which respond to currents by decreasing their buoyancy. The pronounced negative buoyancy of M. menidia may be a response to a preference for habitat where the currents are stronger, P. saltatrix, which can secrete gas into the swim bladder at the fastest rate known for any fish, combines high secretion (and resorption) rates with marked negative buoyancy. This enables it to quickly change depths over a wide vertical range, without overexpanding the swim bladder to cause positive buoyancy.  相似文献   

19.
Summary 1. The molecular and behavioral pharmacology of DOV 102,677 is characterized.2. This characterization was performed using radioligand binding and neurotransmitter uptake assays targeting the monoamine neurotransmitter receptors. In addition, the effects of DOV 102,677 on extracellular neurotransmitter levels were investigated using in vivo microdialysis. Finally, the effects of DOV 102,677 in the forced swim test, locomotor function, and response to prepulse inhibition was investigated.3. DOV 102,677 is a novel, “triple” uptake inhibitor that suppresses [3H]dopamine (DA), [3H]norepinephrine (NE) and [3H]serotonin (5-HT) uptake by recombinant human transporters with IC50 values of 129, 103 and 133 nM, respectively. Radioligand binding to the dopamine (DAT), norepinephrine (NET), and serotonin (SERT) transporters is inhibited with k i values of 222, 1030, and 740 nM, respectively. DOV 102,677 (20 mg/kg IP) increased extracellular levels of DA and 5-HT in the prefrontal cortex to 320 and 280% above baseline 100 min after administration. DA levels were stably increased for the duration (240 min) of the study, but serotonin levels declined to baseline by 200 min after administration. NE levels increased linearly to a maximum of 348% at 240 min post-dosing. Consistent with these increases in NE levels, the density of β-adrenoceptors was selectively decreased in the cortex of rats treated with DOV 102,677 (20 mg/kg per day, PO, 35 days).4. DOV 102,677 dose-dependently reduced the amount of time spent immobile by rats in the forced swim test, a model predictive of antidepressant activity, with a minimum effective dose (MED) of 20 mg/kg and a maximal efficacy comparable to imipramine. This decrease in immobility time did not appear to result from increased motor activity. Further, DOV 102,677 was as effective as methylphenidate in reducing the amplitude of the startle response in juvenile mice, without notably altering motor activity.5. In summary, DOV 102,677 is an orally active, “balanced” inhibitor of DAT, NET and SERT with therapeutic versatility in treating neuropsychiatric disorders beyond depression.  相似文献   

20.
Four types of responses to iontophoretic application of serotonin were found in neurons of the ventral aspect of the visceral ganglion ofHelix pomatia. The responses differed in size, duration, latent periods, habituation to serotonin, and response to the action of serotonin antagonists (D-tubocurarine, tryptamine, neostigmine). Each type of response was evidently connected with a particular type of serotonin receptor. A scheme of distribution of the different types of serotonin receptors in the neurons of this region is drawn up.Institute of Psychiatry, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 10, No. 3, pp. 300–305, May–June, 1978.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号