首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In order to determine the importance of benthic protozoa as consumers of bacteria, grazing rates have been measured by using monodispersed fluorescently labeled bacteria (FLB). However, high percentages of nongrazing benthic protists are reported in the literature. These are related to serious problems of the monodispersed FLB method. We describe a new method using 5-(4,6-dichlorotriazin-2-yl)-aminofluorescein (DTAF)-stained sediment to measure in situ bacterivory by benthic protists. This method is compared with the monodispersed FLB technique. Our estimates of benthic bacterivory range from 61 to 73 bacteria protist-1 h-1 and are about twofold higher than the results of the monodispersed FLB method. The number of nongrazing protists after incubation for 15 min with DTAF-stained sediment is in agreement with theoretical expectation. We also tested the relative affinity for FLB of protists and discuss the results with respect to a grazing model.  相似文献   

2.
We have developed a procedure for preparing monodispersed, fluorescently labeled bacteria (FLB), which may be used to measure virtually instantaneous rates of protozoan bacterivory in natural waters. FLB can be prepared both from natural bacterioplankton assemblages and from clonal isolates and can be stored in frozen suspension or freeze-dried without apparent loss of fluorescence intensity. They are not toxic to protozoa and can be metabolized to support bacterivorous protozoan growth rates equal to those on the same strain of unstained, viable bacteria. In experiments comparing uptake of FLB with uptake of fluorescent latex microspheres by protozoan assemblages in a salt marsh tidal creek, we found that both pelagic oligotrichous ciliates and phagotrophic flagellates ingested FLB with a frequency 4- to 10-fold greater than they ingested the microspheres. Consequently, it appears that the use of latex microspheres leads to underestimation of protozoan bacterivory and that the FLB technique is superior for estimating instantaneous rates of in situ protozoan grazing on bacterioplankton.  相似文献   

3.
In activated sludge, protozoa feed on free-swimming bacteria and suspended particles, inducing flocculation and increasing the turnover rate of nutrients. In this study, the effect of protozoan grazing on nitrification rates under various conditions in municipal activated sludge batch reactors was examined, as was the spatial distribution of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) within the activated sludge. The reactors were monitored for ammonia, nitrite, nitrate, and total nitrogen concentrations, and bacterial numbers in the presence and absence of cycloheximide (a protozoan inhibitor), allylthiourea (an inhibitor of ammonia oxidation), and EDTA (a deflocculating agent). The accumulations of nitrate, nitrite, and ammonia were lower in batches without than with protozoa grazing. Inhibition of ammonia oxidation also decreased the amount of nitrite and nitrate accumulation. Inhibiting protozoan grazing along with ammonia oxidation further decreased the amounts of nitrite and nitrate accumulated. Induction of deflocculation led to high nitrate accumulation, indicating high levels of nitrification; this effect was lessened in the absence of protozoan grazing. Using fluorescent in situ hybridization and confocal laser scanning microscopy, AOB and NOB were found clustered within the floc, and inhibiting the protozoa, inhibiting ammonia oxidation, or inducing flocculation did not appear to lower the number of AOB and NOB present or affect their position within the floc. These results suggest that the AOB and NOB are present but less active in the absence of protozoa.  相似文献   

4.
An automated modification of the most-probable-number (MPN) technique has been developed for enumeration of phagotrophic protozoa. The method is based on detection of prey depletion in micro titre plates rather than on presence of protozoa. A transconjugant Pseudomonas fluorescens DR54 labelled with a luxAB gene cassette was constructed, and used as growth medium for the protozoa in the micro titre plates. The transconjugant produced high amounts of luciferase which was stable and allowed detection for at least 8 weeks. Dilution series of protozoan cultures and soil suspensions were inoculated into micro titre plates amended with a suspension of the transconjugant. After 45 days measurement of light emission allowed detection of individual wells in the titre plates, where protozoan grazing had removed the inoculated bacteria.  相似文献   

5.
The Great Oxidation Event resulted in integration of soft metals in a wide range of biochemical processes including, in our opinion, killing of bacteria by protozoa. Compared to pressure from anthropologic copper contamination, little is known on impacts of protozoan predation on maintenance of copper resistance determinants in bacteria. To evaluate the role of copper and other soft metals in predatory mechanisms of protozoa, we examined survival of bacteria mutated in different transition metal efflux or uptake systems in the social amoeba Dictyostelium discoideum. Our data demonstrated a strong correlation between the presence of copper/zinc efflux as well as iron/manganese uptake, and bacterial survival in amoebae. The growth of protozoa, in turn, was dependent on bacterial copper sensitivity. The phagocytosis of bacteria induced upregulation of Dictyostelium genes encoding the copper uptake transporter p80 and a triad of Cu(I)‐translocating PIB‐type ATPases. Accumulated Cu(I) in Dictyostelium was monitored using a copper biosensor bacterial strain. Altogether, our data demonstrate that Cu(I) is ultimately involved in protozoan predation of bacteria, supporting our hypothesis that protozoan grazing selected for the presence of copper resistance determinants for about two billion years.  相似文献   

6.
Body-size spectrum has proved to be a highly informative indicator to summarize the functional structure of a community at taxon-free resolution. In this study, an approach based on body-size spectrum of protozoan communities was used to detect the defense of microalgae against protozoan grazing. The biofilm-dwelling protozoan communities were used as a test predator system, and two algal species, Chlorella sp. and Nannochloropsis oceanica, were employed as test microalgae. A nine-day bioassay test was carried out by exposing biofilm-dwelling protozoan communities to a gradient of concentrations 100 (control), 104, 105, 106, and 107 cell ml−1 of both microalgae, respectively. Results showed that both algal species represented strong defense effects on the test predator system at different levels of concentration. The body-size distinctness of the protozoan assemblages showed a sharp decrease at high concentration level more than 106 cell ml−1 in both algal treatments. Based on the paired body-size distinctness indices of the protozoa, ellipse tests demonstrated that the body-size spectrum showed an increasing trend of departure from the expected pattern with increasing concentrations of both test algae. Thus, it is suggested that the body-size spectrum of protozoa may be used as a useful indicator to identify the defense of microalgae against protozoan grazing.  相似文献   

7.
To elucidate bacterial population dynamics in an aquifer, we attempted to reveal the impact of protozoan grazing on bacterial productivity and community structure by an in situ incubation experiment using a diffusion chamber. The abundance and vertical distribution of bacteria and protozoa in the aquifer were revealed using wells that were drilled in a sedimentary rock system in Itako, Ibaraki, Japan. The water column in the wells possessed aerobic and anaerobic layers. Active bacterial populations under the grazing pressure of protozoa were revealed through in situ incubation with grazer eliminating experiment by the filtration. On August 19, 2003, the total number of bacteria (TDC) decreased from 1.5 × 106 cells ml? 1 at 2.2 m depth to 3.0 × 105 cells ml? 1 at 10 m depth. The relative contribution of the domain Bacteria to TDC ranged between 63% and 84%. Protozoa existed at a density of 4.2 × 104 to 1.9 × 105 cells ml? 1 in both aerobic and microaerobic conditions. A grazing elimination experiment in situ for 6 days brought about clearly different bacterial community profiles between the 2.2 m and 10 m samples. The bacterial composition of the initial community was predominantly β- and γ -proteobacteria at 2.2 m, while at 10 m β-, α - and γ -proteobacteria represented 56%, 26% and 13% of the community, respectively. The distribution of bacterial abundance, community composition and growth rates in the subsurface were influenced by grazing as well as by geochemical factors (dissolved oxygen and concentrations of organic carbon, methane and sulfate). Results of the in situ incubation experiment suggested that protozoan grazing contributes significantly to bacterial population dynamics.  相似文献   

8.
Bacterial decomposition of organic matter is frequently enhanced when protozoa are present. Various mechanisms have been proposed to account for this phenomenon, including effects associated with grazing by protozoa (such as increased recycling of limiting nutrients, removal of senescent cells, or reduction of competition among bacteria) and indirect effects of grazers (such as excretion of bacterial growth factors). Few studies have examined the role of protozoa in bacterial degradation of xenobiotic compounds in sediment containing a natural community of microbes. The effect of protozoa on mineralization of naphthalene was investigated in this study. Laboratory experiments were conducted using field-contaminated estuarine sediment, with the indigenous microbial populations. Mineralization of naphthalene was up to four times greater in treatments with actively grazing protozoa than in treatments containing the grazing inhibitor cytochalasin B. Control experiments confirmed that the grazing inhibitor was not toxic to ciliates but did prevent them from grazing. The grazing inhibitor did not affect growth rates of a mixed culture of sediment bacteria or a pure polycyclic-aromatic-hydrocarbon-degrading strain. Once grazing had been inhibited, supplementing treatments with inorganic N and P, glucose, or additional protozoa failed to stimulate naphthalene mineralization. Naphthalene-degrading bacteria were four to nine times less abundant when protozoan grazing was suppressed. We suggest that protozoa enhance naphthalene mineralization by selectively grazing on those sediment bacteria that ordinarily would outcompete naphthalene-degrading bacteria.  相似文献   

9.
Recent technological advances have led to the discovery that free-living, planktonic protozoa are ubiquitous in nature and appear to be important components of pelagic food webs (e.g., fluorescent straining, flow cytometry). Despite this, limited information exists tying their seasonality to rate processes that drive succession patterns. The abundance, and seasonal growth and grazing loss of an entire protozoan assemblage were evaluated in Lake Michigan. The protozoan assemblage was species-rich (100 taxa) and abundant throughout the year in Lake Michigan. Nano-sized protozoa (Hnano and Pnano, <20 μm in size) ranged in abundance from 102 to 103 cells ml−1, while micro-protozoa (Hmicro and Pmico, >20 and <200 μm in size) ranged in abundance from 4 to 17 cells ml−1. The biomass of Hnano and Hmicro by itself represented more than 70–80% of crustacean zooplankton biomass, while Pnano and Pmicro constituted nearly 50% of phytoplankton biomass. Protozoa exhibited growth rates comparable to other components of the plankton in Lake Michigan, and some populations grew at rates similar to maximum rates determined in the laboratory (rates of 1–2 day−1). Overall, it appears that macro-zooplankton predation is a major loss factor counter-balancing growth with only small differences between the two rate processes (<0.1 day−1). Discrepancies between growth and grazing loss in the spring were likely attributed to sedimentation losses for larger species of tintinnids and dinoflagellates (Codonella, Tintinnidium, and Gymnodinium) that can account for their occurrence in the deep chlorophyll layer. In the summer, carnivory among similar sized species (Chromulina and small ciliates) may be additional loss factors impinging on the protozoan assemblage.  相似文献   

10.
Hydrolysis of an artificial fluorogenic substrate, 4-methylumbelliferyl-beta-N-acetylglucosaminide, has been studied in a monoculture predator-prey system with either a flagellate (Bodo saltans) or a ciliate (Cyclidium sp.) fed upon pure bacterial culture (Aeromonas hydrophila or Alcaligenes xylosoxidans). Aeromonas hydrophila produced a low-affinity beta-N-acetylglucosaminidase-like enzyme (K(m), >100 mumol liter) but Alcaligenes xylosoxidans did not. Inoculation of both bacterial strains with bacterivorous protozoa induced the occurrence of another, high-affinity, beta-N-acetylglucosaminidase-like enzyme (K(m), <0.5 mumol liter). The latter enzyme showed significant, close correlations with total grazing rates of both B. saltans (r = 0.96) and Cyclidium sp. (r = 0.89) estimated by using uptake of fluorescently labelled bacteria. Further significant correlations between several protozoan parameters and kinetic parameters of this enzyme suggest its likely protozoan origin. If both types of enzyme occurred together, they could be satisfactorily distinguished by using kinetic data analysis. Hence, measurements of beta-N-acetylglucosaminidase-like activities might be promising to use to improve estimations of protozoan bacterivory.  相似文献   

11.
The dynamics of protozoa were investigated during two cruises in the Indian sector of the Southern Ocean: the early spring ANTARES 3 cruise (28 September to 8 November 1995) and the late summer ANTARES 2 cruise (6 February to 8 March 1994). Biomass and feeding activity of protozoa were measured as well as the biomass of their potential prey – bacteria and phototrophic flagellates – along the 62°E meridian. The sampling grid extended from the Polar Frontal region to the Coastal and Continental Shelf Zone in late summer and to the ice edge in spring, crossing the Antarctic Divergence. Protozoan biomass, although low in absolute terms, contributed 30% and 20% to the total microbial biomass (bacteria, phytoplankton and protozoa) in early spring and late summer, respectively. Nanoprotozoa dominated the total protozoan biomass. The geographical and seasonal distribution of protozoan biomass was correlated with that of phototrophic flagellates. However, bacterial and phototrophic flagellate biomass were inversely correlated. Phototrophic flagellates dominated in the Sea Ice Zone whereas bacteria were predominant at the end of summer in the Polar Frontal region and Coastal and Continental Shelf Zone. Furthermore, bacteria were the most important component of the microbial community (57% of the total microbial biomass) in late summer. Phototrophic flagellates were ingested by both nano-and microprotozoa. In contrast, bacteria were only ingested by nanoprotozoa. Protozoa controlled up to 90% of the daily bacterial production over the period examined. The spring daily protozoan ingestion controlled more than 100% of daily phototrophic flagellate production. This control was less strong at the end of summer when protozoan grazing controlled 42% of the daily phototrophic flagellate production. Accepted: 30 October 1999  相似文献   

12.
Summary Protozooplankton were sampled in the iceedge zone of the Weddell Sea during the austral spring of 1983 and the austral autumn of 1986. Protozooplankton biomass was dominated by flagellates and ciliates. Other protozoa and micrometazoa contributed a relatively small fraction to the heterotrophic biomass. During both cruises protozoan biomass, chlorophyll a concentrations, phytoplankton production and bacterial biomass and production were low at ice covered stations. During the spring cruise, protozooplankton, phytoplankton, and bacterioplankton reached high concentrations in a welldeveloped ice edge bloom 100 km north of the receding ice edge. During the autumn cruise, the highest concentrations of biomass were in open water well-separated from the ice edge. Integrated protozoan biomass was <12% of the biomass of phytoplankton during the spring cruise and in the autumn the percentages at some stations were >20%. Bacterial biomass exceeded protozooplankton biomass at ice covered stations but in open water stations during the fall cruise, protozooplankton biomass reached twice that of bacteria in the upper 100m of the water column. The biomass of different protozoan groups was positively correlated with primary production, chlorophyll a concentrations and bacterial production and biomass, suggesting that the protozoan abundances were largely controlled by prey availability and productivity. Population grazing rates calculated from clearance rates in the literature indicated that protozooplankton were capable of consuming significant portions of the daily phyto- and bacterioplankton production.  相似文献   

13.
The influence of grazing by a mixed assemblage of soil protozoa (seven flagellates and one amoeba) on bacterial community structure was studied in soil microcosms amended with a particulate resource (sterile wheat roots) or a soluble resource (a solution of various organic compounds). Sterilized soil was reinoculated with mixed soil bacteria (obtained by filtering and dilution) or with bacteria and protozoa. Denaturing gradient gel electrophoresis (DGGE) of PCR amplifications of 16S rRNA gene fragments, as well as community level physiological profiling (Biolog plates), suggested that the mixed protozoan community had significant effects on the bacterial community structure. Excising and sequencing of bands from the DGGE gels indicated that high-G+C gram-positive bacteria closely related to Arthrobacter spp. were favored by grazing, whereas the excised bands that decreased in intensity were related to gram-negative bacteria. The percentages of intensity found in bands related to high G+C gram positives increased from 4.5 and 12.6% in the ungrazed microcosms amended with roots and nutrient solution, respectively, to 19.3 and 32.9% in the grazed microcosms. Protozoa reduced the average bacterial cell size in microcosms amended with nutrient solution but not in the treatment amended with roots. Hence, size-selective feeding may explain some but not all of the changes in bacterial community structure. Five different protozoan isolates (Acanthamoeba sp., two species of Cercomonas, Thaumatomonas sp., and Spumella sp.) had different effects on the bacterial communities. This suggests that the composition of protozoan communities is important for the effect of protozoan grazing on bacterial communities.  相似文献   

14.
The influence of the toluene concentration on predation of toluene-degrading bacteria by the protozoa Tetrahymena pyriformis was investigated in suspended batch cultures continuously aerated with toluene-contaminated air. At gas phase concentrations of 0.035 to 0.74 g m–3, toluene did not significantly affected protozoan activity and the final bacteria concentration was reduced by growing protozoa by 98 to 99.9% compared to protozoa-free controls. As the toluene concentration was increased to 1.16–1.33 g m–3, the reduction of the bacteria cell concentration was 80%. At 3.35 g toluene m–3, growth of T. pyriformis was completely inhibited. Overall, the results presented herein demonstrate that protozoa grazing on bacteria play a major role in controlling bacterial cell concentration, but that the toxicity of the treated pollutants to the protozoa is an important factor that needs to be taken into account in biological treatment processes.  相似文献   

15.
Vibrio parahaemolyticus is a food-borne pathogen that naturally inhabits both marine and estuarine environments. Free-living protozoa exist in similar aquatic environments and function to control bacterial numbers by grazing on free-living bacteria. Protozoa also play an important role in the survival and spread of some pathogenic species of bacteria. We investigated the interaction between the protozoan Acanthamoeba castellanii and the bacterium Vibrio parahaemolyticus. We found that Acanthamoeba castellanii does not prey on Vibrio parahaemolyticus but instead secretes a factor that promotes the survival of Vibrio parahaemolyticus in coculture. These studies suggest that protozoa may provide a survival advantage to an extracellular pathogen in the environment.  相似文献   

16.
Microbes in the environment are profoundly affected by chemical and physical heterogeneities occurring on a spatial scale of millimeters to micrometers. Physical refuges are critical for maintaining stable bacterial populations in the presence of high predation pressure by protozoa. The effects of microscale heterogeneity, however, are difficult to replicate and observe using conventional experimental techniques. The objective of this research was to investigate the effect of spatial constraints on the mobility of six species of marine protozoa. Microfluidic devices were created with small channels similar in size to pore spaces in soil or sediment systems. Individuals from each species of protozoa tested were able to rapidly discover and move within these channels. The time required for locating the channel entrance from the source well increased with protozoan size and decreased with channel height. Protozoa of every species were able to pass constrictions with dimensions equal to or smaller than the individual's unconstrained cross-sectional area. Channel geometry was also an important factor affecting protozoan mobility. Linear rates of motion for various species of protozoa varied by channel size. In relatively wide channels, typical rates of motion were 300 to 500 microm s(-1) (or about 1 m per hour). As the channel dimensions decreased, however, motilities slowed more than an order of magnitude to 20 microm s(-1). Protozoa were consistently observed to exhibit several strategies for successfully traversing channel reductions. The empirical results and qualitative observations resulting from this research help define the physical limitations on protozoan grazing, a critical process affecting microbes in the environment.  相似文献   

17.
Calcium movements across plasma membrane enriched vesicles isolated from canine gastric corpus smooth muscle were investigated. The ATP-dependent Ca2+ uptake increased with time up to 10 min. The uptake for the initial 2-min period was approximately linear with time. The apparent initial velocity of the ATP-dependent Ca2+ uptake increased monotonically with free Ca2+ concentration from 0.1 to 2 microM, and further increases in free Ca2+ concentration did not increase the Ca2+ uptake. The free Ca2+ dependence curve could be described with a Hill coefficient of approximately 1.0 and Km of 0.85 +/- 0.01 microM for free Ca2+ concentration. Passive Ca2+ uptake (reaction time = 1 h) also increased with increasing free Ca2+ concentrations from 0.02 to 4.0 mM. Dilution of loaded vesicles in isotonic media containing EGTA led to initial rapid loss (less than 1 min) followed by a slower release which showed simple exponential decay. The t 1/2 values of the slower Ca2+ loss from these vesicles were 16.1 +/- 0.9 min (actively loaded n = 5) and 18.4 +/- 0.9 min (passively loaded n = 3), respectively. Dilution in isotonic medium containing both EGTA and A23187 released all the sequestered Ca2+ from these loaded vesicles.  相似文献   

18.
Bacterial mortality was studied using two complementary methods between 2002 and 2004 in the two main basins (north and south) of Lake Tanganyika. The disappearance of radioactivity from the DNA of natural assemblages of bacteria previously labeled with tritiated thymidine was used to estimate the mortality due to grazing by predators (72%) and due to the cell lysis (28%). Measurements of ingestion rate of bacteria by protozoa using fluorescent micro-particles yielded protozoan grazing rates similar to those provided by the thymidine method, and showed that heterotrophic nano-flagellates were responsible for most of the grazing pressure on the bacterial community of the pelagic zone (92-99%). Bacterial cell lysis was the second process involved in bacterial mortality, ranking before ciliate grazing. Overall, bacterial mortality was balanced with bacterial production. With regard to the assessment of the trophic role of bacteria, it was estimated that c. 5-8% of the organic carbon taken up by bacteria was converted into protozoan biomass and was thus available for metazoans.  相似文献   

19.
《L' Année biologique》1998,37(3):117-161
The maintenance of the quality of water from the outlet of the treatment plant to the consumer tap is a major concern of water distributors. From a biological point of view, this maintenance must be characterized by a stability of biological features, namely bacterial growth from biodegradable organic matter, and protozoan bacterivory which must be not detectable. However, drinking water distribution systems are continuously exposed to a flow of biodegradable organic matter, which can represent around 20–30 % of the total dissolved organic carbon, and a flow of allochthonous microorganisms (bacteria, fungi, protozoa…), coming from the water treatment plant but also from incidents (breaks/repairs) on the distribution network itself. Apart from these microorganisms (heterotrophic bacteria in particular) can grow in this ultra-oligotrophic environment and colonize the all drinking water distribution system. The highest density of microorganisms occurs on the surface of pipewalls where they are organized in microcolonies (biofilm) that are mixed with corrosion products and inorganic precipitates. Five groups of organisms have been identified in distribution networks, in both the water phase and the biofilm: bacterial cells, protozoa, yeast, fungi and algae. The majority of these organisms are not pathogens, nevertheless potentially pathogen bacteria (Legionella…), fecal bacteria (coliforms, E. coli…), and pathogen protozoan cysts (Giardia intestinalis, Cryptosporidium parvum…) can transitorily find favorable conditions for their proliferation in the networks. Bacteria grow from the biodegradable fraction of dissolved organic matter while protozoa grow from dissolved organic matter, other protozoa but especially from bacterial prey items. The protozoan bacterivory was extensively studied in marine aquatic environments and in rivers, lakes,… but very rarely in drinking water distribution networks. Actually, proofs of the protozoan grazing on fixed and free-living bacterial cells were given by photography or film of biofilms accumulation on coupons that were previously immersed in potable water or by direct microscopic observation of bacteria in food vacuole of protozoa from potable water. A single and recent study has estimated protozoan bacterivory rate from laboratory experiences using fluorescent markers. It appears that in an experimental distribution system fed with biologically treated water (ozone/filtration through granular activated carbon), only ciliates present in the biofilm have a measurable grazing activity, estimated at 2 bacteria·ciliate−1·h−1 on average.Bacterial dynamics in drinking water distribution systems is complex and related to different parameters, like the biodegradable fraction of dissolved organic carbon, the presence of a residual of disinfectant, the nature and the state of pipewalls, the relative biomass of free and fixed bacterial, and grazing impact.The preservation of the biological stability of potable water during its storage in reservoir or its transport through the distribution systems can be achieved by (a) the use of chemical disinfectants (in particular by addition of chlorine) which is the widely used technique, or (b) the use of new techniques such as nanofiltration that can eliminate bacteria and significantly decrease the concentrations of organic matter at the inlet of the distribution network and in the potable water.
  • (a)The use of oxidant, usually chlorine, induces a number of problems, in particular the development of oxidation by-products like trihalomethans (THM), among which some are recognized as carcinogenic products for animals. In addition, chlorine added at the outlet of treatment plant is consumed in the network and the maintenance of a residual of chlorine along an entire distribution network would need high concentrations of chlorine at the outlet of the treatment plant. This may be incompatible with standards for both residual chlorine and its by-products. Nevertheless, chlorine has a disinfectant effect on planctonic bacteria, if considering that only around 10 % of free bacterial cells are living cells, i.e. are able of respiratory oxidation. However, some studies show that bacteria fixed on granular activated carbon particles can be resistant to chlorine, as well as bacteria in aggregates. Thus, the addition of chlorine in potable water does not inhibit the formation of a biofilm at the surface of pipewalls. In the same way, protozoa transported by potable water can resist to chlorine.
  • (b)The above disadvantages permitted the development of membrane filtration techniques like the nanofiltration, which is at the junction between reverse osmosis and ultrafiltration, and which seems to be an interesting alternative to conventional treatments because it presents the advantage to (i) decrease very strongly the concentrations of dissolved organic carbon (on average 90 % for DOC (Dissolved Organic Carbon) and 99 % for BDOC (Biodegradable Dissolved Organic Carbon)), (ii) to remove a very high proportion of almost the entire microorganisms (99 %), precursors of chlorination by-products, and micropollutans, (iii) to decrease the musty flavor of water (2-fold) and (iv) to produce a water that needs low concentration of chlorine.
  相似文献   

20.
Although the impact of acidification on planktonic grazer food webs has been extensively studied, little is known about microbial food webs either in the water column or in the sediments. Protozoon-bacterium interactions were investigated in a chronically acidified (acid mine drainage) portion of a lake in Virginia. We determined the distribution, abundance, apparent specific grazing rate, and growth rate of protozoa over a pH range of 3.6 to 6.5. Protozoan abundance was lower at the most acidified site, while abundance, in general, was high compared with other systems. Specific grazing rates were uncorrelated with pH and ranged between 0.02 and 0.23 h-1, values similar to those in unacidified systems. The protozoan community from an acidified station was not better adapted (P = 0.95) to low-pH conditions than a community from an unacidified site (multivariate analysis of variance on growth rates for each community incubated at pHs 4, 5, and 6). Both communities had significantly lower (P < 0.05) growth rates at pHs 4 and 5 than at pH 6. Reduced protozoan growth rates coupled with high grazing rates and relatively higher bacterial yields (ratio of bacterial-protozoan standing stock) at low pH indicate reduced net protozoan growth efficiency and a metabolic cost of acidification to the protozoan community. However, the presence of an abundant, neutrophilic protozoan community and high bacterial grazing rates indicates that acidification of Lake Anna has not inhibited the bacterium-protozoon link of the sediment microbial food web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号