首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
An elevated atmospheric CO2 concentration ([CO2]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open‐air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor‐pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m2 m?2, can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2] and 1.17 at elevated [CO2]. This study provides the first direct measurement of the effects of elevated [CO2] on rice canopy evapotranspiration under open‐air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields.  相似文献   

2.
The response of adaxial and abaxial stomatal conductance in Rumex obtusifolius to growth at elevated atmospheric concentrations of CO2 (250 μmol mol?1 above ambient) was investigated over two growing seasons. The conductance of both the adaxial and abaxial leaf surfaces was found to be reduced by elevated concentrations of CO2. Elevated CO2 caused a much greater reduction in conductance for the adaxial surface than for the abaxial surface. The absence of effects upon stomatal density indicated that the reductions were probably the result of changes in stomatal aperture. Partitioning of gas exchange between the leaf surfaces revealed that increased concentrations of CO2 caused increased rates of photosynthesis only via the abaxial surface. Additionally, leaf thickness was found to increase during growth at elevated concentrations of CO2. The tendency for these amphistomatous leaves to develop a distribution of conductance approaching that of hypostomatous leaves clearly reduced their maximum photosynthetic potential. This conclusion was supported by measurements of stomatal limitation, which showed greater values for the adaxial surfaces, and greater values at elevated CO2. This reduction in photosynthesis may in part be caused by higher diffusive limitations imposed because of increased leaf thickness. In an uncoupled canopy, asymmetrical stomatal responses of the kind identified here may appreciably reduce transpiration. Species which show symmetrical responses are less likely to show reduced transpirational rates, and a redistribution of water loss between species may occur. The implications of asymmetrical stomatal responses for photosynthesis and canopy transpiration are discussed.  相似文献   

3.
The interactive effects of increased carbon dioxide (CO2) concentration and ultraviolet-B (UV-B, 280–320 nm) radiation on Acacia karroo Hayne, a C3 tree, and Themeda triandra Forsk., a C4 grass, were investigated. We tested the hypothesis that A. karroo would show greater CO2-induced growth stimulation than T. triandra, which would partially explain current encroachment of A. karroo into C4 grasslands, but that increased UV-B could mitigate this advantage. Seedlings were grown in open-top chambers in a greenhouse in ambient (360 μmol mol-1) and elevated (650 μmol mol-1) CO2, combined with ambient (1.56 to 8.66 kJ m-2 day-1) or increased (2.22 to 11.93 kJ m-2 day-1) biologically effective (weighted) UV-B irradiances. After 30 weeks, elevated CO2 had no effect on biomass of A. karroo, despite increased net CO2 assimilation rates. Interaction between UV-B and CO2 on stomatal conductance was found, with conductances decreasing only where elevated CO2 and UV-B were supplied separately. Increases in water use efficiencies, foliar starch concentrations, root nodule numbers and total nodule mass were measured in elevated CO2. Elevated UV-B caused only an increase in foliar carbon concentrations. In T. triandra, net CO2 assimilation rates were unaffected in elevated CO2, but stomatal conductances and foliar nitrogen concentrations decreased, and water use efficiencies increased. Biomass of all vegetative fractions, particularly leaf sheaths, was increased in elevated CO2. and was accompanied by increased leaf blade lengths and individual leaf and leaf sheath masses. However, tiller numbers were reduced in elevated CO2. Significantly moderating effects of elevated UV-B were apparent only in individual masses of leaf blades and sheaths, and in total sheath and shoot biomass. The direct CO2-induced growth responses of the species therefore do not support the hypothesis of CO2-driven woody encroachment of C4 grasslands. Rather, differential changes in resource use efficiency between grass and woody species, or morphological responses of grass species, could alter the competitive balance. Increased UV-B radiation is unlikely to substantially alter the CO2 response of these species.  相似文献   

4.
Achieving higher canopy photosynthesis rates is one of the keys to increasing future crop production; however, this typically requires additional water inputs because of increased water loss through the stomata. Lowland rice canopies presently consume a large amount of water, and any further increase in water usage may significantly impact local water resources. This situation is further complicated by changing the environmental conditions such as rising atmospheric CO2 concentration ([CO2]). Here, we modeled and compared evapotranspiration of fully developed rice canopies of a high‐yielding rice cultivar (Oryza sativa L. cv. Takanari) with a common cultivar (cv. Koshihikari) under ambient and elevated [CO2] (A‐CO2 and E‐CO2, respectively) via leaf ecophysiological parameters derived from a free‐air CO2 enrichment (FACE) experiment. Takanari had 4%–5% higher evapotranspiration than Koshihikari under both A‐CO2 and E‐CO2, and E‐CO2 decreased evapotranspiration of both varieties by 4%–6%. Therefore, if Takanari was cultivated under future [CO2] conditions, the cost for water could be maintained at the same level as for cultivating Koshihikari at current [CO2] with an increase in canopy photosynthesis by 36%. Sensitivity analyses determined that stomatal conductance was a significant physiological factor responsible for the greater canopy photosynthesis in Takanari over Koshihikari. Takanari had 30%–40% higher stomatal conductance than Koshihikari; however, the presence of high aerodynamic resistance in the natural field and lower canopy temperature of Takanari than Koshihikari resulted in the small difference in evapotranspiration. Despite the small difference in evapotranspiration between varieties, the model simulations showed that Takanari clearly decreased canopy and air temperatures within the planetary boundary layer compared to Koshihikari. Our results indicate that lowland rice varieties characterized by high‐stomatal conductance can play a key role in enhancing productivity and moderating heat‐induced damage to grain quality in the coming decades, without significantly increasing crop water use.  相似文献   

5.
Native tallgrass prairie in NE Kansas was exposed to elevated (twice ambient) or ambient atmospheric CO2 levels in open-top chambers. Within chambers or in adjacent unchambered plots, the dominant C4 grass, Andropogon gerardii, was subjected to fluctuations in sunlight similar to that produced by clouds or within canopy shading (full sun > 1500 μmol m−2 s−1 versus 350 μmol m−2 s−1 shade) and responses in gas exchange were measured. These field experiments demonstrated that stomatal conductance in A. gerardii achieved new steady state levels more rapidly after abrupt changes in sunlight at elevated CO2 when compared to plants at ambient CO2. This was due primarily to the 50% reduction in stomatal conductance at elevated CO2, but was also a result of more rapid stomatal responses. Time constants describing stomatal responses were significantly reduced (29–33%) at elevated CO2. As a result, water loss was decreased by as much as 57% (6.5% due to more rapid stomatal responses). Concurrent increases in leaf xylem pressure potential during periods of sunlight variability provided additional evidence that more rapid stomatal responses at elevated CO2 enhanced plant water status. CO2-induced alterations in the kinetics of stomatal responses to variable sunlight will likely enhance direct effects of elevated CO2 on plant water relations in all ecosystems.  相似文献   

6.
Globally increasing atmospheric CO2 concentrations are known to affect many aspects of plant physiology and development; however, little attention has been given to leaf and canopy optical properties. Three tropical trees in the Leguminosae, an important canopy tree family in many tropical forests, responded similarly to an experimental doubling of CO2 partial pressure with a 9–23% increase in spectral leaf reflectance to light in the visible (400–700 nm) waveband. Decreased leaf chlorophyll content under elevated CO2 may explain part of the observed increase in reflectance. However, analyses that statistically corrected for chlorophyll content effects on reflectance still indicated a significant CO2 effect. This results, in conjunction with the spectral pattern of the response, suggests that the primary mechanism is increased optical masking of chlorophyll under elevated CO2. The magnitude of the increase in leaf reflectance is sufficient to suggest that increased canopy reflectance of tropical forests (and possibly other terrestrial ecosystems) may be an important negative feedback in the response of global net radiative climate forcing to increasing atmospheric CO2.  相似文献   

7.
Alfalfa and orchard grass crops were grown at ambient and twice ambient carbon dioxide concentrations in field plots for several years in Beltsville, MD, using semi-open chambers. Canopy conductances throughout many days were determined from water vapour exchange measurements, and indicated significant reductions in canopy conductance to water vapour at elevated carbon dioxide in both species. However, recognizing that the artificial ventilation in the chambers made direct comparisons of evapotranspiration rates questionable, we used a soil–vegetation–atmosphere model to determine what field-scale evapotranspiration rates would have been with natural ventilation. Unlike the 'omega' approach, the model used allowed feedbacks between the canopy and the atmosphere, such that, for example, canopy conductance responses affected profiles of temperature and water vapour. Simulations indicated that although canopy conductances were lower at elevated carbon dioxide by as much as 20% in alfalfa and 60% in orchard grass, evapotranspiration rates never differed by more than 3% in alfalfa or 8% in orchard grass. Daily totals of evapotranspiration were only 1–2% lower at elevated carbon dioxide in alfalfa, and 2–5% lower in orchard grass. The results are partly explained by the fact that aerodynamic conductances to water vapour were generally smaller than the stomatal conductance, and also by canopy–atmosphere feedback processes which largely compensated for the lower conductance at elevated carbon dioxide by increasing the gradient for evaporation.  相似文献   

8.
9.
Growth at elevated CO2 often decreases photosynthetic capacity (acclimation) and leaf N concentrations. Lower-shaded canopy leaves may undergo both CO2 and shade acclimation. The relationship of acclimatory responses of flag and lower-shaded canopy leaves of wheat (Triticum aestivum L.) to the N content, and possible factors affecting N gain and distribution within the plant were investigated in a wheat crop growing in field chambers set at ambient (360 μmol mol−1) and elevated (700 μmol mol−1) CO2, and with two amounts of N fertilizer (none and 70 kg ha−1 applied on 30 April). Photosynthesis, stomatal conductance and transpiration at a common measurement CO2, chlorophyll and Rubisco levels of upper-sunlit (flag) and lower-shaded canopy leaves were significantly lower in elevated relative to ambient CO2-grown plants. Both whole shoot N and leaf N per unit area decreased at elevated CO2, and leaf N declined with canopy position. Acclimatory responses to elevated CO2 were enhanced in N-deficient plants. With N supply, the acclimatory responses were less pronounced in lower canopy leaves relative to the flag leaf. Additional N did not increase the fraction of shoot N allocated to the flag and penultimate leaves. The decrease in photosynthetic capacity in both upper-sunlit and lower-shaded leaves in elevated CO2 was associated with a decrease in N contents in above-ground organs and with lower N partitioning to leaves. A single relationship of N per unit leaf area to the transpiration rate accounted for a significant fraction of the variation among sun-lit and shaded leaves, growth CO2 level and N supply. We conclude that reduced stomatal conductance and transpiration can decrease plant N, leading to acclimation to CO2 enrichment.  相似文献   

10.
Scaling CO2-photosynthesis relationships from the leaf to the canopy   总被引:11,自引:0,他引:11  
Responses of individual leaves to short-term changes in CO2 partial pressure have been relatively well studied. Whole-plant and plant community responses to elevated CO2 are less well understood and scaling up from leaves to canopies will be complicated if feedbacks at the small scale differ from feedbacks at the large scale. Mathematical models of leaf, canopy, and ecosystem processes are important tools in the study of effects on plants and ecosystems of global environmental change, and in particular increasing atmospheric CO2, and might be used to scale from leaves to canopies. Models are also important in assessing effects of the biosphere on the atmosphere. Presently, multilayer and big leaf models of canopy photosynthesis and energy exchange exist. Big leaf models — which are advocated here as being applicable to the evaluation of impacts of global change on the biosphere — simplify much of the underlying leaf-level physics, physiology, and biochemistry, yet can retain the important features of plant-environment interactions with respect to leaf CO2 exchange processes and are able to make useful, quantitative predictions of canopy and community responses to environmental change. The basis of some big leaf models of photosynthesis, including a new model described herein, is that photosynthetic capacity and activity are scaled vertically within a canopy (by plants themselves) to match approximately the vertical profile of PPFD. The new big leaf model combines physically based models of leaf and canopy level transport processes with a biochemically based model of CO2 assimilation. Predictions made by the model are consistent with canopy CO2 exchange measurements, although a need exists for further testing of this and other canopy physiology models with independent measurements of canopy mass and energy exchange at the time scale of 1 h or less.Abbreviations LAI leaf area index - NIR near infrared (700–3000 nm) radiation - PAR photosynthetically active (400–700 nm) radiation - PI photosynthetic irradiance (400–700 nm) - PPFD photosynthetic photon flux area density (400–700 nm) - PS I Photosystem I - PS II Photosystem II - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuP2 ribulose-1,5-bisphosphate  相似文献   

11.
Although there is a great deal of information concerning responses to increases in atmospheric CO2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO2. In this study, we analyze the responses of net primary production (NPP) to doubled CO2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which influences NPP. In TEM, the NPP response to doubled CO2 is controlled by increased carboxylation which is modified by canopy conductance and the degree to which nitrogen constraints cause down-regulation of photosynthesis. The implementation of these different mechanisms has consequences for the spatial pattern of NPP responses, and represents, in part, conceptual uncertainty about controls over NPP responses. Progress in reducing these uncertainties requires research focused at the ecosystem level to understand how interactions between the carbon, nitrogen, and water cycles influence the response of NPP to elevated atmospheric CO2. Received: 13 December 1996 / Accepted: 20 November 1997  相似文献   

12.
We examined the effects of atmospheric vapor pressure deficit (VPD) and soil moisture stress (SMS) on leaf‐ and stand‐level CO2 exchange in model 3‐year‐old coppiced cottonwood (Populus deltoides Bartr.) plantations using the large‐scale, controlled environments of the Biosphere 2 Laboratory. A short‐term experiment was imposed on top of continuing, long‐term CO2 treatments (43 and 120 Pa), at the end of the growing season. For the experiment, the plantations were exposed for 6–14 days to low and high VPD (0.6 and 2.5 kPa) at low and high volumetric soil moisture contents (25–39%). When system gross CO2 assimilation was corrected for leaf area, system net CO2 exchange (SNCE), integrated daily SNCE, and system respiration increased in response to elevated CO2. The increases were mainly as a result of the larger leaf area developed during growth at high CO2, before the short‐term experiment; the observed decline in responses to SMS and high VPD treatments was partly because of leaf area reduction. Elevated CO2 ameliorated the gas exchange consequences of water stress at the stand level, in all treatments. The initial slope of light response curves of stand photosynthesis (efficiency of light use by the stand) increased in response to elevated CO2 under all treatments. Leaf‐level net CO2 assimilation rate and apparent quantum efficiency were consistently higher, and stomatal conductance and transpiration were significantly lower, under high CO2 in all soil moisture and VPD combinations (except for conductance and transpiration in high soil moisture, low VPD). Comparisons of leaf‐ and stand‐level gross CO2 exchange indicated that the limitation of assimilation because of canopy light environment (in well‐irrigated stands; ratio of leaf : stand=3.2–3.5) switched to a predominantly individual leaf limitation (because of stomatal closure) in response to water stress (leaf : stand=0.8–1.3). These observations enabled a good prediction of whole stand assimilation from leaf‐level data under water‐stressed conditions; the predictive ability was less under well‐watered conditions. The data also demonstrated the need for a better understanding of the relationship between leaf water potential, leaf abscission, and stand LAI.  相似文献   

13.
While photosynthetic responses of C3 plants to elevated CO2 are fairly well documented, whole-plant water use under such conditions has been less intensively studied. Woody species, in particular, have exhibited highly variable stomatal responses to high CO2 as determined by leaf-level measurements. In this study, sap flux of Pinus taeda L. saplings was periodically monitored during the 4th year of an open-top chamber CO2 fumigation experiment. Water use per unit sapwood area did not differ between treatments. Furthermore, the ratio of leaf area to sapwood area did not change under high CO2, so that average canopy stomatal conductance (on a unit leaf area basis) remained unaffected by the CO2 treatment. Thus, the only effect of high CO2 was to increase whole-plant water use by increasing sapling leaf area and associated conducting sapwood area. Such an effect may not directly translate to forest-level responses as the feedback effects of higher leaf area at the canopy scale cannot be incorporated in a chamber study. These feedbacks include the potential effect of higher leaf area index on rainfall and light interception, both of which may reduce average stomatal conductance in intact forest canopies. Received: 13 March 1998 / Accepted: 8 July 1998  相似文献   

14.
Water relations of nutrient-poor calcareous grassland under long-term CO2 enrichment were investigated. Understanding CO2 effects on soil moisture is critical because productivity in these grasslands is water limited. In general, leaf conductance was reduced at elevated CO2, but responses strongly depended on date and species. Evapotranspiration (measured as H2O gas exchange) revealed only small, non-significant reductions at elevated CO2, indicating that leaf conductance effects were strongly buffered by leaf boundary layer and canopy conductance (leaf area index was not or only marginally increased under elevated CO2). However, these minute and non-significant responses of water vapour loss accumulated over time and resulted in significantly higher soil moisture in CO2-enriched plots (gravimetric spot measurements and continuous readings using a network of time-domain reflectometry probes). Differences strongly depended on date, with the smallest effects when soil moisture was very high (after heavy precipitation) and effects were largest at intermediate soil moisture. Elevated CO2 also affected diurnal soil moisture courses and rewetting of soils after precipitation. We conclude that ecosystem-level controls of the water balance (including soil feedbacks) overshadow by far the physiological effects observed at the leaf level. Indirect effects of CO2 enrichment mediated by trends in soil moisture will have far-ranging consequences on plant species composition, soil bacterial and faunal activity as well as on soil physical structure and may indirectly also affect hydrology and trace gas emissions and atmospheric chemistry. Received: 21 December 1997 / Accepted: 3 August 1998  相似文献   

15.

Background and Aims

Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status.

Methods

Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming.

Key results

In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility.

Conclusions

Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.  相似文献   

16.
The relative increase with elevated CO2 of canopy CO2 uptake rate (A), derived from continuous measurements during the day, was examined in full-cover vegetative Lolium perenne canopies after 17 days of regrowth. The stands were grown at ambient (358±50 mol mol-1) and increased (626±50 mol mol-1) CO2 concentration in sunlit growth chambers. Over the entire range of temperature and light conditions (which were strongly coupled and increased simultaneously), A was on average twice as large in high compared to ambient CO2. This response (called M=A in high CO2/A in ambient CO2) could not be explained by changes in canopy conductance for CO2 diffusion (GC). In spite of interaction and strong coupling between temperature and light intensity, there was evidence that temperature rather than light determined M. Further, high CO2 treatment was found to alleviate the afternoon depression in A observed in ambient CO2. A temperature optimum shift or/and a larger carbohydrate sink capacity through altered root/shoot ratio are proposed in explanation.Abbreviations A CO2 uptake rate - C350 ambient CO2 treatment - C600 elevated CO2 treatment - E canopy evapotranspiration rate - GC canopy conductance for CO2 diffusion - M high CO2 modification factor  相似文献   

17.
Atmospheric CO2 enrichment may stimulate plant growth directly through (1) enhanced photosynthesis or indirectly, through (2) reduced plant water consumption and hence slower soil moisture depletion, or the combination of both. Herein we describe gas exchange, plant biomass and species responses of five native or semi-native temperate and Mediterranean grasslands and three semi-arid systems to CO2 enrichment, with an emphasis on water relations. Increasing CO2 led to decreased leaf conductance for water vapor, improved plant water status, altered seasonal evapotranspiration dynamics, and in most cases, periodic increases in soil water content. The extent, timing and duration of these responses varied among ecosystems, species and years. Across the grasslands of the Kansas tallgrass prairie, Colorado shortgrass steppe and Swiss calcareous grassland, increases in aboveground biomass from CO2 enrichment were relatively greater in dry years. In contrast, CO2-induced aboveground biomass increases in the Texas C3/C4 grassland and the New Zealand pasture seemed little or only marginally influenced by yearly variation in soil water, while plant growth in the Mojave Desert was stimulated by CO2 in a relatively wet year. Mediterranean grasslands sometimes failed to respond to CO2-related increased late-season water, whereas semiarid Negev grassland assemblages profited. Vegetative and reproductive responses to CO2 were highly varied among species and ecosystems, and did not generally follow any predictable pattern in regard to functional groups. Results suggest that the indirect effects of CO2 on plant and soil water relations may contribute substantially to experimentally induced CO2-effects, and also reflect local humidity conditions. For landscape scale predictions, this analysis calls for a clear distinction between biomass responses due to direct CO2 effects on photosynthesis and those indirect CO2 effects via soil moisture as documented here.  相似文献   

18.
Acclimation of photosynthetic capacity to elevated CO2 involves a decrease of the leaf Rubisco content. In the present study, it was hypothesized that nitrogen uptake and partitioning within the leaf and among different aboveground organs affects the down-regulation of Rubisco. Given the interdependence of nitrogen and cytokinin signals at the whole plant level, it is also proposed that cytokinins affect the nitrogen economy of plants under elevated CO2, and therefore the acclimatory responses. Spring wheat received varying levels of nitrogen and cytokinin in field chambers with ambient (370 μmol mol−1) or elevated (700 μmol mol−1) atmospheric CO2. Gas exchange, Rubisco, soluble protein and nitrogen contents were determined in the top three leaves in the canopy, together with total nitrogen contents per shoot. Growth in elevated CO2 induced decreases in photosynthetic capacity only when nitrogen supply was low. However, the leaf contents of Rubisco, soluble protein and total nitrogen on an area basis declined in elevated CO2 regardless of nitrogen supply. Total nitrogen in the shoot was no lower in elevated than ambient CO2, but the fraction of this nitrogen located in flag and penultimate leaves was lower in elevated CO2. Decreased Rubisco: chlorophyll ratios accompanied losses of leaf Rubisco with CO2 enrichment. Cytokinin applications increased nitrogen content in all leaves and nitrogen allocation to senescing leaves, but decreased Rubisco contents in flag leaves at anthesis and in all leaves 20 days later, together with the amount of Rubisco relative to soluble protein in all leaves at both growth stages. The results suggest that down regulation of Rubisco in leaves at elevated CO2 is linked with decreased allocation of nitrogen to the younger leaves and that cytokinins cause a fractional decrease of Rubisco and therefore do not alleviate acclimation to elevated CO2.  相似文献   

19.
A model is presented which solves simultaneously for leaf-scale stomatal conductance, CO2 assimilation and the energy balance as a function of leaf position within canopies of well-watered vegetation. Fluxes and conductances were calculated separately for sunlit and shaded leaves. A linear dependence of photosynthetic capacity on leaf nitrogen content was assumed, while leaf nitrogen content and light intensity were assumed to decrease exponentially within canopies. Separate extinction coefficients were used for diffuse and direct beam radiation. An efficient Gaussian integration technique was used to compute fluxes and mean conductances for the canopy. The multilayer model synthesizes current knowledge of radiation penetration, leaf physiology and the physics of evaporation and provides insights into the response of whole canopies to multiple, interacting factors. The model was also used to explore sources of variation in the slopes of two simple parametric models (nitrogen- and light-use efficiency), and to set bounds on the magnitudes of the parameters. For canopies low in total N, daily assimilation rates are ~10% lower when leaf N is distributed uniformly than when the same total N is distributed according to the exponentially decreasing profile of absorbed radiation. However, gains are negligible for plants with high N concentrations. Canopy conductance, Gc should be calculated as Gc=Aσ(fslgsl+fshgsh), where Δ is leaf area index, fsi and fsh are the fractions of sunlit and shaded leaves at each level, and gsi and gsh are the corresponding stomatal conductances. Simple addition of conductances without this weighting causes errors in transpiration calculated using the ‘big-leaf’ version of the Penman-Monteith equation. Partitioning of available energy between sensible and latent heat is very responsive to the parameter describing the sensitivity of stomata to the atmospheric humidity deficit. This parameter also affects canopy conductance, but has a relatively small impact on canopy assimilation. Simple parametric models are useful for extrapolating understanding from small to large scales, but the complexity of real ecosystems is thus subsumed in unexplained variations in parameter values. Simulations with the multilayer model show that both nitrogen- and radiation-use efficiencies depend on plant nutritional status and the diffuse component of incident radiation, causing a 2- to 3-fold variation in these efficiencies.  相似文献   

20.
One-year-old plants of the CAM leaf succulent Agave vilmoriniana Berger were grown outdoors at Riverside, California. Potted plants were acclimated to CO2-enrichment (about 750 microliters per liter) by growth for 2 weeks in an open-top polyethylene chamber. Control plants were grown nearby where the ambient CO2 concentration was about 370 microliters per liter. When the plants were well watered, CO2-induced differences in stomatal conductances and CO2 assimilation rates over the entire 24-hour period were not large. There was a large nocturnal acidification in both CO2 treatments and insignificant differences in leaf chlorophyll content. Well watered plants maintained water potentials of −0.3 to −0.4 megapascals. When other plants were allowed to dry to water potentials of −1.2 to −1.7 megapascals, stomatal conductances and CO2 uptake rates were reduced in magnitude, with the biggest difference in Phase IV photosynthesis. The minor nocturnal response to CO2 by this species is interpreted to indicate saturated, or nearly saturated, phosphoenolpyruvate carboxylase activity at current atmospheric CO2 concentrations. CO2-enhanced diurnal activity of ribulose bisphosphate carboxylase activity remains a possibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号