首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Elevated carbon dioxide does not affect average canopy stomatal conductance of Pinus taeda L.
Authors:Diane E Pataki  Ram Oren  David T Tissue
Institution:(1) Nicholas School of the Environment, Duke University, Durham, NC 27708, USA, US;(2) Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA, US
Abstract:While photosynthetic responses of C3 plants to elevated CO2 are fairly well documented, whole-plant water use under such conditions has been less intensively studied. Woody species, in particular, have exhibited highly variable stomatal responses to high CO2 as determined by leaf-level measurements. In this study, sap flux of Pinus taeda L. saplings was periodically monitored during the 4th year of an open-top chamber CO2 fumigation experiment. Water use per unit sapwood area did not differ between treatments. Furthermore, the ratio of leaf area to sapwood area did not change under high CO2, so that average canopy stomatal conductance (on a unit leaf area basis) remained unaffected by the CO2 treatment. Thus, the only effect of high CO2 was to increase whole-plant water use by increasing sapling leaf area and associated conducting sapwood area. Such an effect may not directly translate to forest-level responses as the feedback effects of higher leaf area at the canopy scale cannot be incorporated in a chamber study. These feedbacks include the potential effect of higher leaf area index on rainfall and light interception, both of which may reduce average stomatal conductance in intact forest canopies. Received: 13 March 1998 / Accepted: 8 July 1998
Keywords:Pinus taeda  Stomatal conductance  Elevated CO2  Whole-plant water use
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号