首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
植物的繁殖体总是面临来自各类生物(如昆虫、脊椎动物、真菌)的捕食风险。因动物捕食引起的种子死亡率影响植物的适合度、种群动态、群落结构和物种多样性的保持。种子被捕食的时间和强度成为植物生活史中发芽速度、地下种子库等特征的主要选择压力,而种子大小、生境类型等因素也影响动物对植物种子的捕食。捕食者饱和现象被认为是植物和种子捕食者之间的高度协同进化作用的结果,是限制动物破坏种子、提高被扩散种子存活率的一种选择压力。大部分群落中的大多数植物种子被动物扩散。种子扩散影响种子密度、种子被捕食率、病原体攻击率、种子与母树的距离、种子到达的生境类型以及建成的植株将与何种植物竞争,从而影响种子和幼苗的存活,最终影响母树及后代植物的适合度。种子被动物扩散后的分布一般遵循负指数分布曲线,大多数种子并没有扩散到离母树很远的地方。捕食风险、生境类型、植被盖度均影响动物对种子的扩散。植物结实的季节和果实损耗的过程也体现了其对扩散机会的适应。许多动物有贮藏植物种子的行为。动物贮藏植物繁殖体的行为,一方面调节食物的时空分布,提高了贮食动物在食物缺乏期的生存概率;另一方面也为种子萌发提供了适宜条件,促进了植物的扩散。于是,植物与贮食动物形成了一种协同进化关系,这种关系可能是自然界互惠关系(mutualism)的一种。影响幼苗存活和建成的因子包括种子贮蒇点的微生境、湿度、坡向、坡度、林冠盖度等。许多果食性动物吃掉果肉后,再将完好的种子反刍或排泄出来。种子经动物消化道处理后,发芽率常有所提高。  相似文献   

2.
Seed dispersal is an ecological process crucial for forest regeneration and recruitment. To date, most studies on frugivore seed dispersal have used the seed dispersal effectiveness framework and have documented seed-handling mechanisms, dispersal distances and the effect of seed handling on germination. In contrast, there has been no exploration of “disperser reliability” which is essential to determine if a frugivore is an effective disperser only in particular regions/years/seasons or across a range of spatio-temporal scales. In this paper, we propose a practical framework to assess the spatial reliability of frugivores as seed dispersers. We suggest that a frugivore genus would be a reliable disperser of certain plant families/genera if: (a) fruits of these plant families/genera are represented in the diets of most of the species of that frugivore, (b) these are consumed by the frugivore genus across different kinds of habitats, and (c) these fruits feature among the yearly staples and preferred fruits in the diets of the frugivore genus. Using this framework, we reviewed frugivory by the genus Macaca across Asia to assess its spatial reliability as seed dispersers. We found that the macaques dispersed the seeds of 11 plant families and five plant genera including at least 82 species across habitats. Differences in fruit consumption/preference between different groups of macaques were driven by variation in plant community composition across habitats. We posit that it is essential to maintain viable populations of macaques across their range and keep human interventions at a minimum to ensure that they continue to reliably disperse the seeds of a broad range of plant species in the Anthropocene. We further suggest that this framework be used for assessing the spatial reliability of other taxonomic groups as seed dispersers.  相似文献   

3.
Spatial genetic structure (SGS) of plants mainly depends on the effective population size and gene dispersal. Maternally inherited loci are expected to have higher genetic differentiation between populations and more intensive SGS within populations than biparentally inherited loci because of smaller effective population sizes and fewer opportunities of gene dispersal in the maternally inherited loci. We investigated biparentally inherited nuclear genotypes and maternally inherited chloroplast haplotypes of microsatellites in 17 tree populations of three wild cherry species under different conditions of tree distribution and seed dispersal. As expected, interpopulation genetic differentiation was 6–9 times higher in chloroplast haplotypes than in nuclear genotypes. This difference indicated that pollen flow 4–7 times exceeded seed flow between populations. However, no difference between nuclear and chloroplast loci was detected in within‐population SGS intensity due to their substantial variation among the populations. The SGS intensity tended to increase as trees became more aggregated, suggesting that tree aggregation biased pollen and seed dispersal distances toward shorter. The loss of effective seed dispersers, Asian black bears, did not affect the SGS intensity probably because of mitigation of the bear loss by other vertebrate dispersers and too few tree generations after the bear loss to alter SGS. The findings suggest that SGS is more variable in smaller spatial scales due to various ecological factors in local populations.  相似文献   

4.
Most tropical plants produce fleshy fruits that are dispersed primarily by vertebrate frugivores. Behavioral disparities among vertebrate seed dispersers could influence patterns of seed distribution and thus forest structure. This study investigated the relative importance of arboreal seed dispersers and seed predators on the initial stage of forest organization–seed deposition. We asked the following questions: (1) To what degree do arboreal seed dispersers influence the species richness and abundance of the seed rain? and (2) Based on the plant species and strata of the forest for which they provide dispersal services, do arboreal seed dispersers represent similar or distinct functional groups? To answer these questions, seed rain was sampled for 12 months in the Dja Reserve, Cameroon. Seed traps representing five percent of the crown area were erected below the canopies of 90 trees belonging to nine focal tree species: 3 dispersed by monkeys, 3 dispersed by large frugivorous birds, and 3 wind‐dispersed species. Seeds disseminated by arboreal seed dispersers accounted for ca 12 percent of the seeds and 68 percent of the seed species identified in seed traps. Monkeys dispersed more than twice the number of seed species than large frugivorous birds, but birds dispersed more individual seeds. We identified two distinct functional dispersal groups, one composed of large frugivorous birds and one composed of monkeys, drop dispersers, and seed predators. These groups dispersed plants found in different canopy strata and exhibited low overlap in the seed species they disseminated. We conclude it is unlikely that seed dispersal services provided by monkeys could be compensated for by frugivorous birds in the event of their extirpation from Afrotropical forests.  相似文献   

5.
Seed dispersal by animals is a complex phenomenon, characterized by multiple mechanisms and variable outcomes. Most researchers approach this complexity by analysing context‐dependency in seed dispersal and investigating extrinsic factors that might influence interactions between plants and seed dispersers. Intrinsic traits of seed dispersers provide an alternative way of making sense of the enormous variation in seed fates. I review causes of intraspecific variability in frugivorous and granivorous animals, discuss their effects on seed dispersal, and outline likely consequences for plant populations and communities. Sources of individual variation in seed‐dispersing animals include sexual dimorphism, changes associated with growth and ageing, individual specialization, and animal personalities. Sexual dimorphism of seed‐dispersing animals influences seed fate through diverse mechanisms that range from effects caused by sex‐specific differences in body size, to influences of male versus female cognitive functions. These differences affect the type of seed treatment (e.g. dispersal versus predation), the number of dispersed seeds, distance of seed dispersal, and likelihood that seeds are left in favourable sites for seeds or seedlings. The best‐documented consequences of individual differences associated with growth and ageing involve quantity of dispersed seeds and the quality of seed treatment in the mouth and gut. Individual specialization on different resources affects the number of dispersed plant species, and therefore the connectivity and architecture of seed‐dispersal networks. Animal personalities might play an important role in shaping interactions between plants and dispersers of their seeds, yet their potential in this regard remains overlooked. In general, intraspecific variation in seed‐dispersing animals often influences plants through effects of these individual differences on the movement ecology of the dispersers. Two conditions are necessary for individual variation to exert a strong influence on seed dispersal. First, the individual differences in traits should translate into differences in crucial characteristics of seed dispersal. Second, individual variation is more likely to be important when the proportions of particular types of individuals fluctuate strongly in a population or vary across space; when proportions are static, it is less likely that intraspecific differences will be responsible for changes in the dynamics and outcomes of plant–animal interactions. In conclusion, focusing on variation among foraging animals rather than on species averages might bring new, mechanistic insights to the phenomenon of seed dispersal. While this shift in perspective is unlikely to replace the traditional approach (based on the assumption that all important variation occurs among species), it provides a complementary alternative to decipher the enormous variation observed in animal‐mediated seed dispersal.  相似文献   

6.
The idiosyncratic behaviours of seed dispersers are important contributors to plant spatial associations and genetic structures. In this study, we used a combination of field, molecular and spatial studies to examine the connections between seed dispersal and the spatial and genetic structures of a dominant neotropical palm Attalea phalerata. Field observation and genetic parentage analysis both indicated that the majority of A. phalerata seeds were dispersed locally over short distances (<30 m from the maternal tree). Spatial and genetic structures between adults and seedlings were consistent with localized and short-distance seed dispersal. Dispersal contributed to spatial associations among maternal sibling seedlings and strong spatial and genetic structures in both seedlings dispersed near (<10 m) and away (>10 m) from maternal palms. Seedlings were also spatially aggregated with juveniles. These patterns are probably associated with the dispersal of seeds by rodents and the survival of recruits at specific microsites or neighbourhoods over successive fruiting periods. Our cross-cohort analyses found palms in older cohorts and cohort pairs were associated with a lower proportion of offspring and sibling neighbours and exhibited weaker spatial and genetic structures. Such patterns are consistent with increased distance- and density-dependent mortality over time among palms dispersed near maternal palms or siblings. The integrative approaches used for this study allowed us to infer the importance of seed dispersal activities in maintaining the aggregated distribution and significant genetic structures among A. phalerata palms. We further conclude that distance- and density-dependent mortality is a key postdispersal process regulating this palm population.  相似文献   

7.
动物传播者对植物更新的促进与限制   总被引:1,自引:0,他引:1  
李宁  王征  潘扬  白冰  鲁长虎 《应用生态学报》2012,23(9):2602-2608
在动物 植物的关系网络中,传播者对植物更新具有促进与限制两方面作用.本文从种群尺度总结了传播者取食、空间利用等行为对植物更新的影响;从群落尺度分析了多种传播者传播有效性对植物更新的促进与限制.传播者对食物的处理方式决定了种子的命运,且具有明显的种间差异;植物在传播者食谱中的地位亦决定其更新的成败,成为动物偏好的食物可助其摆脱森林破碎化等不利事件的影响.动物的空间行为可导致种子命运发生改变.传播者移动距离能否逃逸同种成树对种子的距离限制,影响种子的更新命运;动物偏好的适宜生境与适于植物萌发生境的空间一致性程度影响传播者传播的成效.有效传播者的非冗余性促使种子传播网络更稳定,利于植物更新;无效传播直接限制植物更新,但为其他植物定殖提供了可用空间.今后应将传播者行为融入植物种群更新研究,而从生态系统服务角度揭示传播者在植被恢复的作用应是未来恢复生态学研究的重点.  相似文献   

8.
The study of the spatial distribution of relatives in a population under contrasted environmental conditions provides critical insights into the flexibility of dispersal behaviour and the role of environmental conditions in shaping population relatedness and social structure. Yet few studies have evaluated the effects of fluctuating environmental conditions on relatedness structure of solitary species in the wild. The aim of this study was to determine the impact of interannual variations in environmental conditions on the spatial distribution of relatives [spatial genetic structure (SGS)] and dispersal patterns of a wild population of eastern chipmunks (Tamias striatus), a solitary rodent of North America. Eastern chipmunks depend on the seed of masting trees for reproduction and survival. Here, we combined the analysis of the SGS of adults with direct estimates of juvenile dispersal distance during six contrasted years with different dispersal seasons, population sizes and seed production. We found that environmental conditions influences the dispersal distances of juveniles and that male juveniles dispersed farther than females. The extent of the SGS of adult females varied between years and matched the variation in environmental conditions. In contrast, the SGS of males did not vary between years. We also found a difference in SGS between males and females that was consistent with male‐biased dispersal. This study suggests that both the dispersal behaviour and the relatedness structure in a population of a solitary species can be relatively labile and change according to environmental conditions.  相似文献   

9.
Fine-scale genetic structuring is influenced by a variety of ecological factors and can directly affect the evolutionary dynamics of plant populations by influencing effective population size and patterns of viability selection. In many plant species, genetic structuring within populations may result from highly localized patterns of seed dispersal around maternal plants or by the correlated dispersal and recruitment of siblings from the same fruit. This fine-scale genetic structuring may be enhanced if female parents vary significantly in their reproductive success. To test these hypotheses, we used genetic data from 17 allozyme loci and a maximum-likelihood, ‘maternity-analysis’ model to estimate individual female fertilities for maternal trees across a large number of naturally established seedlings and saplings in two populations of Gleditsia triacanthos L. (Leguminosae). Maximum-likelihood fertility estimates showed that the three highest fertility females accounted for 58% of the 313 progeny at the first site and 46% of the 651 progeny at the second site, whereas 18 of 35 and 16 of 34 females, respectively, had fertility estimates that did not exceed 1%. Additional analyses of the second site found individual female fertility to vary significantly both within and among juvenile age classes. Female fertility at the first site was weakly correlated with maternal tree size and spatial location relative to the open, old-field portions of the population, where the great majority of seedlings and saplings were growing, but no such correlations were found at the second site. Estimates of realized seed dispersal distances indicated that dispersal was highly localized at the first site, but was nearly random at the second site, possibly reflecting differences between the two sites in the behaviour of animal dispersers. The combined estimates of seed dispersal patterns and fertility variation are sufficient to explain previously described patterns of significant fine-scale spatial genetic structure in these two populations. In general, our results demonstrate that effective seed dispersal distributions may vary significantly from population to population of a species due to the unpredictable behaviour of secondary dispersers. Consequently, the effects of seed dispersal on realized fine-scale genetic structure may also be relatively unpredictable.  相似文献   

10.
Seed dispersal by animals is a complex process involving several distinct stages: fruit removal by frugivores, seed delivery in different microhabitats, seed germination, seedling establishment, and adult recruitment. Nevertheless, studies conducted until now have provided scarce information concerning the sequence of stages in a plant's life cycle in its entirety. The main objective of this study was to evaluate the immediate consequences of frugivore activity for Eugenia umbelliflora (Myrtaceae) early recruitment by measuring the relative importance of each fruit‐eating bird species on the establishment of new seedlings in scrub and low restinga vegetation in the Atlantic rainforest, Brazil. We conducted focal tree observations on E. umbelliflora trees recording birds' feeding behaviour and post‐feeding movements. We also recorded the fate of dispersed seeds in scrub and low restinga vegetation. We recorded 17 bird species interacting with fruits in 55 h of observation. Only 30% of the handled fruits were successfully removed. From 108 post flight movements of exit from the fruiting trees, 30.6% were to scrub and 69.4% to low restinga forest. Proportion of seed germination was higher in low restinga than in the scrub vegetation. Incorporating the probabilities of seeds' removal, deposition, and germination in both sites, we found that the relative importance of each frugivorous bird as seed dispersers varies largely among species. Turdus amaurochalinus and Turdus rufiventris were the best dispersers, together representing almost 12% probability of seed germination following removal. Our results show the importance of assessing the overall consequence of seed dispersal within the framework of disperser effectiveness, providing a more comprehensive and realistic evaluation of the relative importance of different seed dispersers on plant population dynamics.  相似文献   

11.
Pollination and seed dispersal determine the spatial pattern of gene flow in plant populations and, for those species relying on pollinators and frugivores as dispersal vectors, animal activity plays a key role in determining this spatial pattern. For these plant species, reported dispersal patterns are dominated by short-distance movements with a significant amount of immigration. However, the contribution of seed and pollen to the overall contemporary gene immigration is still poorly documented for most plant populations. In this study we investigated pollination and seed dispersal at two spatial scales in a local population of Prunus mahaleb (L.), a species pollinated by insects and dispersed by frugivorous vertebrates. First, we dissected the relative contribution of pollen and seed dispersal to gene immigration from other parts of the metapopulation. We found high levels of gene immigration (18.50%), due to frequent long distance seed dispersal events. Second, we assessed the distance and directionality for pollen and seed dispersal events within the local population. Pollen and seed movement patterns were non-random, with skewed distance distributions: pollen tended moved up to 548 m along an axis approaching the N-S direction, and seeds were dispersed up to 990 m, frequently along the SW and SE axes. Animal-mediated dispersal contributed significantly towards gene immigration into the local population and had a markedly nonrandom pattern within the local population. Our data suggest that animals can impose distinct spatial signatures in contemporary gene flow, with the potential to induce significant genetic structure at a local level.  相似文献   

12.
Ellen Andresen 《Biotropica》2002,34(2):261-272
The effectiveness of a seed disperser depends on the quantity and quality of dispersal. The quality of dispersal depends in large part on factors that affect the post–dispersal fate of seeds, and yet this aspect of dispersal quality is rarely assessed. In the particular case of seed dispersal through endozoochory, the defecation pattern produced has the potential of affecting the fate of dispersed seeds and consequently, dispersal quality and effectiveness. In this study, I assessed the effects of dung presence and dung/seed densities on seed predation by rodents and secondary dispersal by dung beetles. In particular, I compared seed fates in clumped defecation patterns, as those produced by howler monkeys, with seed fates in scattered defecation patterns, as those produced by other frugivores. I also determined the prevalence of red howler monkeys (Alouatta seniculus) as seed dispersers at the plant community level in Central Amazonia by determining the number of species they dispersed in a 25–month period. I found that dung presence and amount affected rodent and dung beetle behavior. Seed predation rates were higher when dung was present, and when it was in higher densities. The same number of seeds was buried by dung beedes, in dumped versus scattered defecation patterns, but more seeds were buried when they were inside large dung–piles versus small piles. Seed density had no effect on rodent or dung beetle behavior. Results indicate that caution should be taken when categorizing an animal as a high or low quality seed disperser before carefully examining the factors that affect the fate of dispersed seeds. Red howler monkeys dispersed the seeds of 137 species during the study period, which is the highest yet reported number for an Alouatta species, and should thus be considered highly prevalent seed dispersers at the plant community level in Central Amazonian terra firme rain forests.  相似文献   

13.
Large frugivores play an important role as seed dispersers and their extinction may affect plant regeneration. The consequences of such extinctions depend on the likelihood of other species being functionally redundant and on how post‐dispersal events are affected. We assess the functional redundancy of two seed dispersers of the Atlantic Forest, the muriqui (Brachyteles arachnoides) and the tapir (Tapirus terrestris) through the comparison of their seed dispersal quality, taking into account post‐dispersal events. We compare tapirs and muriquis for: (1) the dung beetle community associated with their feces; (2) the seed burial probability and burial depth by dung beetles; and (3) the seed mortality due to predators or other causes according to burial depth. We determine how seed burial affects seed dispersal effectiveness (SDE) and compare the dispersal quality of four plant species dispersed by these frugivores. Muriqui feces attract 16‐fold more dung beetles per gram of fecal matter and seeds experience 10.5‐fold more burial than seeds in tapir feces. In both feces types, seed mortality due to predation decreases with burial depth but seed mortality due to other causes increases. Total seed mortality differ within plant species according to the primary disperser. Therefore, the effect of seed burial on SDE varies according to the plant species, burial depth, and primary disperser. As tapirs and muriquis differently affect the seed fate, they are not functionally redundant. Since the effect of the primary disperser persists into the post‐dispersal events, we should consider the cascading effects of these processes when assessing functional redundancy.  相似文献   

14.
杂草种子传播研究进展   总被引:5,自引:1,他引:4  
李儒海  强胜 《生态学报》2007,27(12):5361-5370
种子传播将母株生殖周期的末端与它们后代种群的建立连结了起来,广泛认为,其对植被结构具有深刻的影响。种子传播的整个过程称为种子传播循环。研究表明,杂草种子传播的因子多种多样,包括仅依赖自身来完成的主动传播,以及依赖风、水、动物、人类等外界媒介的被动传播。其中,人类传播杂草种子是影响最广泛的一种,对现代植物的分布格局产生了深刻的影响。杂草种子的传播,对杂草种子库的数量和空间动态影响很大。研究种子传播的主要方法有荧光染料标记法、放射性同位素标记法、稳定同位素分析、分子遗传标记等。结合近几年国内外的研究进展,作者就杂草种子传播对种子库数量和空间动态影响的精确直接研究、杂草种子传播的过程及传播后的命运、杂草种子适应传播的机理、生态控草措施研究、外来杂草入侵蔓延与其种子传播的关系等方面提出了展望。  相似文献   

15.
Many plants rely on animals for seed dispersal, but are all individuals equally effective at dispersing seeds? If not, then the loss of certain individual dispersers from populations could have cascade effects on ecosystems. Despite the importance of seed dispersal for forest ecosystems, variation among individual dispersers and whether land‐use change interferes with this process remains untested. Through a large‐scale field experiment conducted on small mammal seed dispersers, we show that an individual's personality affects its choice of seeds, as well as how distant and where seeds are cached. We also show that anthropogenic habitat modifications shift the distribution of personalities within a population, by increasing the proportion of bold, active, and anxious individuals and in‐turn affecting the potential survival and dispersal of seeds. We demonstrate that preserving diverse personality types within a population is critical for maintaining the key ecosystem function of seed dispersal.  相似文献   

16.
The abundance of large vertebrates is rapidly declining, particularly in the tropics where over-hunting has left many forests structurally intact but devoid of large animals. An urgent question then, is whether these 'empty' forests can sustain their biodiversity without large vertebrates. Here we examine the role of forest elephant ( Loxodonta africana cyclotis ) seed dispersal in maintaining the community structure of trees in the Ndoki Forest, northern Congo. Analysis of 855 elephant dung piles suggested that forest elephants disperse more intact seeds than any other species or genus of large vertebrate in African forests, while GPS telemetry data showed that forest elephants regularly disperse seeds over unprecedented distances compared to other dispersers. Our analysis of the spatial distribution of trees from a sample of 5667 individuals showed that dispersal mechanism was tightly correlated with the scale of spatial aggregation. Increasing amounts of elephant seed dispersal was associated with decreasing aggregation. At distances of<200 m, trees whose seeds are dispersed only by elephants were less aggregated than the random expectation, suggesting Janzen–Connell effects on seed/seedling mortality. At the landscape scale, seed dispersal mode predicted the rate at which local tree community similarity decayed in space. Our results suggest that the loss of forest elephants (and other large-bodied dispersers) may lead to a wave of recruitment failure among animal-dispersed tree species, and favor regeneration of the species-poor abiotically dispersed guild of trees.  相似文献   

17.
Seed dispersal is a central process in plant ecology with consequences for species composition and habitat structure. Some bird species are known to disperse the seeds they ingest, whereas others, termed ‘seed predators’, digest them and apparently play no part in dispersal, but it is not clear if these are discrete strategies or simply the ends of a continuum. We assessed dispersal effectiveness by combining analysis of faecal samples and bird density. The droppings of seed dispersers contained more entire seeds than those of typical seed predators, but over a quarter of the droppings of seed predators contained whole seeds. This effect was further magnified when bird density was taken into account, and was driven largely by one frequent interaction: the Chaffinch Fringilla coelebs, a typical seed predator and the most abundant bird species in the area and dispersed seeds of Leycesteria formosa, a non‐native plant with berry‐like fruits. These results suggest the existence of a continuum between seed predators and seed dispersers.  相似文献   

18.
Pre-dispersal seed predation by granivorous birds has potential to limit fruit removal and subsequent seed dispersal by legitimate avian seed dispersers in bird-dispersed plants, especially when the birds form flocks. We monitored pre-dispersal seed predation by the Japanese grosbeak, Eophona personata, of two bird-dispersed hackberry species (Cannabaceae), Celtis biondii (four trees) and Celtis sinensis (10 trees), for 3 years (2005, 2007 and 2008) in a fragmented forest in temperate Japan. Throughout the 3 years, predation was more intense on C. biondii, which, as a consequence, lost a larger part of its fruit crop. Grosbeaks preferred C. biondii seeds that had a comparatively lower energy content and lower hardness than C. sinensis, suggesting an association between seed hardness and selective foraging by grosbeaks. In C. biondii, intensive predation markedly reduced fruit duration and strongly limited fruit removal by seed dispersers, especially in 2007 and 2008. In C. sinensis, seed dispersers consumed fruits throughout the fruiting seasons in all 3 years. In C. biondii, variation in the timing of grosbeak migration among years was associated with annual variation in this bird's effects on fruit removal. Our results demonstrate that seed predation by flocks of granivorous birds can dramatically disrupt seed dispersal in fleshy-fruited plants and suggest the importance of understanding their flocking behaviour.  相似文献   

19.
20.
Throughout the tropics, mammalian seed dispersers are being driven to local extinction by intense hunting pressure, generating concern not only about the loss of these species, but also about the consequences for the plants they disperse. We compared two rain forest sites in Cameroon—one with heavy hunting pressure and one protected from hunting—to appraise the loss of mammalian seed dispersers and to assess the impact of this loss on seed removal and seed dispersal of Antrocaryon klaineanum (Anacardiaceae), a mammal-dispersed tree. Surveys of arboreal frugivores indicate that three of the five monkey species, as well as chimpanzee and gorilla, have been extirpated from the hunted forest. Diaspore counts underneath A. klaineanum adults (six trees per site) indicate that seed removal is severely reduced in the hunted forest. Finally, genetic maternity exclusion analysis (using 3–7 nuclear microsatellite loci) of maternally inherited endocarp tissue from diaspores collected under the canopies of 12 fruiting "mother" trees (six trees per site) revealed that seed dispersal in the hunted forest is also greatly reduced. In the hunted forest with reduced mammal dispersal agents, only 1 of the 53 assayed endocarps (2%) did not match the mother and was determined to be from a dispersed diaspore. By contrast, in the protected forest, 20 of the 48 assayed endocarps (42%) were from dispersed diaspores. This study provides strong evidence that loss of dispersal agents can lead to reduced seed removal and loss of seed dispersal, disrupting the seed dispersal cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号