首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
DNA strand transfer protein alpha (STP alpha) from meiotic Saccharomyces cerevisiae cells promotes homologous pairing of DNA without any nucleotide cofactor in the presence of yeast single-stranded DNA binding protein. This gene (DNA strand transferase 1, DST1) encodes a 309-amino-acid protein with a predicted molecular mass of 34,800 Da. The STP alpha protein level is constant in both mitotic and meiotic cells, but during meiosis the polypeptide is activated by an unknown mechanism, resulting in a large increase in its specific activity. A dst1::URA3/dst1::URA3 mutant grows normally in mitotic media; however, meiotic cells exhibit a greatly reduced induction of both DNA strand transfer activity and intragenic recombination between his1 heteroalleles. Spore viability is normal. These results suggest that DST1 is required for much of the observed induction of homologous recombination in S. cerevisiae during meiosis but not for normal sporulation.  相似文献   

2.
J Engebrecht  S Masse  L Davis  K Rose  T Kessel 《Genetics》1998,148(2):581-598
A screen was designed to identify Saccharomyces cerevisiae mutants that were defective in meiosis yet proficient for meiotic ectopic recombination in the return-to-growth protocol. Seven mutants alleles were isolated; two are important for chromosome synapsis (RED1, MEK1) and five function independently of recombination (SPO14, GSG1, SPOT8/MUM2, 3, 4). Similar to the spoT8-1 mutant, mum2 deletion strains do not undergo premeiotic DNA synthesis, arrest prior to the first meiotic division and fail to sporulate. Surprisingly, although DNA replication does not occur, mum2 mutants are induced for high levels of ectopic recombination. gsg1 diploids are reduced in their ability to complete premeiotic DNA synthesis and the meiotic divisions, and a small percentage of cells produce spores. mum3 mutants sporulate poorly and the spores produced are inviable. Finally, mum4-1 mutants produce inviable spores. The meiotic/sporulation defects of gsg1, mum2, and mum3 are not relieved by spo11 or spo13 mutations, indicating that the mutant defects are not dependent on the initiation of recombination or completion of both meiotic divisions. In contrast, the spore inviability of the mum4-1 mutant is rescued by the spo13 mutation. The mum4-1 spo13 mutant undergoes a single, predominantly equational division, suggesting that MUM4 functions at or prior to the first meiotic division. Although recombination is variably affected in the gsg1 and mum mutants, we hypothesize that these mutants define genes important for aspects of meiosis not directly related to recombination.  相似文献   

3.
Recombinationless meiosis in Saccharomyces cerevisiae.   总被引:38,自引:11,他引:27       下载免费PDF全文
We have utilized the single equational meiotic division conferred by the spo13-1 mutation of Saccharomyces cerevisiae (S. Klapholtz and R. E. Esposito, Genetics 96:589-611, 1980) as a technique to study the genetic control of meiotic recombination and to analyze the meiotic effects of several radiation-sensitive mutations (rad6-1, rad50-1, and rad52-1) which have been reported to reduce meiotic recombination (Game et al., Genetics 94:51-68, 1980); Prakash et al., Genetics 94:31-50, 1980). The spo13-1 mutation eliminates the meiosis I reductional segregation, but does not significantly affect other meiotic events (including recombination). Because of the unique meiosis it confers, the spo13-1 mutation provides an opportunity to recover viable meiotic products in a Rec- background. In contrast to the single rad50-1 mutant, we found that the double rad50-1 spo13-1 mutant produced viable ascospores after meiosis and sporulation. These spores were nonrecombinant: meiotic crossing-over was reduced at least 150-fold, and no increase in meiotic gene conversion was observed over mitotic background levels. The rad50-1 mutation did not, however, confer a Rec- phenotype in mitosis; rather, it increased both spontaneous crossing-over and gene conversion. The spore inviability conferred by the single rad6-1 and rad52-1 mutations was not eliminated by the presence of the spo13-1 mutation. Thus, only the rad50 gene has been unambiguously identified by analysis of viable meiotic ascospores as a component of the meiotic recombination system.  相似文献   

4.
Conditional Mutants of Meiosis in Yeast   总被引:20,自引:9,他引:11       下载免费PDF全文
Three temperature-sensitive mutants, spo1-1, spo2-1, and spo3-1, were characterized with respect to their behavior in sporulation medium at a restrictive temperature. The time of expression of the functions defective in the mutants was determined by temperature-shift experiments during the sporulation process. In addition, each mutant was examined for the following: (i) its ability to undergo the nuclear divisions of meiosis; (ii) deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein synthesis; (iii) protein turnover; and (iv) colony-forming ability after exposure to sporulation medium. Mutant spo1-1 is defective in a function which confers a temperature-sensitive period which extends over 32% of the sporulation cycle. The temperature-sensitive period of mutant spo2-1 occupies 34% of the cycle, whereas the temperature-sensitive period of mutant spo3-1 extends over 2% of the sporulation cycle. Cytological evidence indicates that all three mutants initiate but do not complete the meiotic nuclear divisions. The DNA content of sporulation cultures of mutants spo1-1 and spo3-1 did not increase to the wild-type level; DNA synthesis in spo2-1 was normal. All three strains exhibit a loss of colony-forming ability during incubation in sporulation medium at the restrictive temperature. RNA and protein synthesis and protein turnover occur in the mutants.  相似文献   

5.
M. Ajimura  S. H. Leem    H. Ogawa 《Genetics》1993,133(1):51-66
Mutants defective in meiotic recombination were isolated from a disomic haploid strain of Saccharomyces cerevisiae by examining recombination within the leu2 and his4 heteroalleles located on chromosome III. The mutants were classified into two new complementation groups (MRE2 and MRE11) and eight previously identified groups, which include SPO11, HOP1, REC114, MRE4/MEK1 and genes in the RAD52 epistasis group. All of the mutants, in which the mutations in the new complementation groups are homozygous and diploid, can undergo premeiotic DNA synthesis and produce spores. The spores are, however, not viable. The mre2 and mre11 mutants produce viable spores in a spo13 background, in which meiosis I is bypassed, suggesting that these mutants are blocked at an early step in meiotic recombination. The mre2 mutant does not exhibit any unusual phenotype during mitosis and it is, thus, considered to have a mutation in a meiosis-specific gene. By contrast, the mre11 mutant is sensitive to damage to DNA by methyl methanesulfonate and exhibits a hyperrecombination phenotype in mitosis. Among six alleles of HOP1 that were isolated, an unusual pattern of intragenic complementation was observed.  相似文献   

6.
Mutations in the REM1 gene of Saccharomyces cerevisiae confer a semidominant hyper-recombination and hypermutable phenotype upon mitotic cells ( GOLIN and ESPOSITO 1977). These effects have not been observed in meiosis. We have examined the interactions of rem1 mutations with rad6-1, rad50 -1, rad52-1 or spo11 -1 mutations in order to understand the basis of the rem1 hyper-rec phenotype. The rad mutations have pleiotropic phenotypes; spo11 is only defective in sporulation and meiosis. The RAD6, RAD50 and SPO11 genes are not required for spontaneous mitotic recombination; mutations in the RAD52 gene cause a general spontaneous mitotic Rec- phenotype. Mutations in RAD50 , RAD52 or SPO11 eliminate meiotic recombination, and mutations in RAD6 prevent spore formation. Evidence for the involvement of RAD6 in meiotic recombination is less clear. Mutations in all three RAD genes confer sensitivity to X rays; the RAD6 gene is also required for UV damage repair. To test whether any of these functions might be involved in the hyper-rec phenotype conferred by rem1 mutations, double mutants were constructed. Double mutants of rem1 spo11 were viable and demonstrated rem1 levels of mitotic recombination, suggesting that the normal meiotic recombination system is not involved in producing the rem1 phenotype. The rem1 rad6 double mutant was also viable and had rem1 levels of mitotic recombination. Neither rem1 rad50 nor rem1 rad52 double mutants were viable. This suggests that rem1 causes its hyper-rec phenotype because it creates lesions in the DNA that are repaired using a recombination-repair system involving RAD50 and RAD52.  相似文献   

7.
8.
The RAD52 and RAD50 genes have previously been shown to be required for normal meiotic recombination and for various types of recombination occurring in mitotic cells. Recent evidence suggests that rad52 mutants might be defective in an intermediate recombination step; we therefore examined recombination during meiosis in several rad52 mutants at several different loci and in genetic backgrounds that yield efficient sporulation and synchronous meiosis. Similar to previous reports, spores from rad52 diploids are inviable and meiotic recombination is greatly reduced by rad52 mutations. However, intragenic recombinants were detected when cells were plated on selective media during meiosis; rad52 mutants experience induction of recombination between homologues under these special conditions. The frequencies of recombination at four loci were considerably greater than the mitotic controls; however, they were still at least 20 times lower than corresponding Rad+ strains. The prototrophs induced by meiosis in rad52 mutants were not typical meiotic recombinants because incubation in nutrient-rich medium before plating to selective medium resulted in the complete loss of recombinants. We propose that previously observed single-strand breaks that accumulate in rad52 mutants may be associated with recombinational intermediates that are resolved when cells are returned to selective mitotic media and that the meiosis-induced recombination in rad52 cells does not involve double-strand breaks.  相似文献   

9.
We have developed a method by which the extent of physical exchange of DNA molecules can be determined throughout meiosis in the yeast Saccharomyces cerevisiae. We have used this technique to analyze the effect of five meiosis-defective mutations (rad6, rad50, rad52, rad57 and spo11) on the physical exchange of DNA molecules. In the same experiments, we have also measured other meiotic parameters, such as premeiotic DNA synthesis, commitment to intragenic recombination, haploidization, ascus formation, and viability. rad50 and spo11 diploids make an undetectable amount of physically recombined DNA and less than 1% of wild-type levels of viable intragenic recombinants. In contrast, diploids homozygous for rad52, rad6 or rad57 all yield significant amounts of novel restriction fragments which arise by recombination. rad57 diploids make nearly wild-type levels of the recombined restriction fragments, although they produce less than 10% of the wild-type levels of viable intragenic recombinants. rad52 strains are also capable of a significant (33%) amount of exchange of DNA molecules, but make less than 1% of wild-type levels of viable intragenic recombinants. rad6 diploids are also capable of undergoing a high level of exchange, as measured by the appearance of the recombined restriction fragment. In addition, rad6 diploids show an unusual allele- or locus-specific variability in the level of viable intragenic recombinants produced. Although rad6 diploids produce no viable spores, they are able to complete a significant amount of haploidization upon return to vegetative growth conditions.  相似文献   

10.
P. Zhao  E. Kafer 《Genetics》1992,130(4):717-728
Methyl methane-sulfonate (MMS)-sensitive, radiation-induced mutants of Aspergillus were shown to define nine new DNA repair genes, musK to musS. To test mus mutations for effects on mitotic recombination, intergenic crossing over was assayed between color markers and their centromeres, and intragenic recombination between two distinguishable adE alleles. Of eight mutants analyzed, four showed significant deviations from mus+ controls in both tests. Two mutations, musK and musL, reduced recombination, while musN and musQ caused increases. In contrast, musO diploids produced significantly higher levels only for intragenic recombination. Effects were relatively small, but averages between hypo- and hyperrec mus differed 15-20-fold. In musL diploids, most of the rare color segregants resulted from mitotic malsegregation rather than intergenic crossing over. This indicates that the musL gene product is required for recombination and that DNA lesions lead to chromosome loss when it is deficient. In addition, analysis of the genotypes of intragenic (ad+) recombinants showed that the musL mutation specifically reduced single allele conversion but increased complex conversion types (especially recombinants homozygous for ad+). Similar analysis revealed differences between the effects of two hyperrec mutations; musN apparently caused high levels solely of mitotic crossing over, while musQ increased various conversion types but not reciprocal crossovers. These results suggest that mitotic gene conversion and crossing over, while generally associated, are affected differentially in some of the mus strains of Aspergillus nidulans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号