首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
本文对我国云南南部的白须长臂猿(H.leucogenys)染色体的G带、C带、晚复制带及Ag-NORs进行了较为详细的研究。它的2n=52,核型公式为44(M或SM)+6(A),XY(M,A)。C带表明一些染色体着丝点C带弱化;有的染色体出现插入的和端位的C带;X染色体两臂有端位C带,Y染色体是C带阳性和晚复制的。Ag-NORs的数目,雌体有4个,雄体有5个,Y染色体上具NOR。本文对白颊长臂猿与其它长臂猿间的亲缘关系、核型进化的可能途径进行了讨论。  相似文献   

2.
自从1949年Barr等发现异染色质小体后,许多学者对雌性哺乳动物间期细胞核中的异染色质结构进行了研究。Ohno等证实,这种性染色质是从一条X染色体衍生而来的。1961年Lyon首先提出了至今仍被广泛接受的“单个活化X染色体”的假说,认为在胚胎发育的早期,正常哺乳动物的雌体中的两条X染色体在遗传上是活化的。但发育  相似文献   

3.
哺乳动物性别分化调控的分子机制的研究特别是性别分化的层次调控、剂量补偿和性染色体进化这三个领域,已取得快速进展。已经发现Y染色体性别决定区基因(SRY)、X染色体DSS-AHC决定区基因1(DAX-1)、甾类生成因子1基因(SF1)和Wilms瘤抑制基因(WT-1)等与哺乳动物性别决定有关。SRY启动睾丸分化,但胚胎发育成雄性的其余步骤由事丸分泌的激素控制。DAX-1且编码一种女性特异功能的蛋白质,它在男性中被SRY所抑制。SF-1和WT-1在SRY开启之前作用于性腺和肾上腺发育的启动。哺乳动物通过随机失活雌性两条X染色体中的一条来使X连锁的基因在两性间的表达水平达到平衡(剂量补偿)。X染色体失活由X染色体失活中心(XIC)控制。失活的X染色体专一转录基因(XIST)是XIC的强烈候选者,它可能参与X失活的启动。对有袋目和单孔目动物性染色体的研究为我们提供了其进化的信息。有证据支持性染色体起源于一对同源常染色体,而SRY的祖先基因可能是SOX-3。  相似文献   

4.
星豹蛛Pardos astigera染色体组型分析   总被引:2,自引:0,他引:2  
杨震玲  王秀珍 《蛛形学报》1996,5(2):145-148
首次报告星豹蛛的染色体形态结构,数目和性染色体组成,实验结果表明,星豹蛛染色体数目为:雄体2n=28,雌体2n=30,性别决定机制属于X1X2O型,X1为全部染色体中最长的,X2为全部染色体中最短的,全部染色体均为端着丝粒,这个结论可以被C-带标本所证实,且C-带带纹大小及染色深浅均无明显差异,G-带处理得到了稳定的,有重复性的带纹。  相似文献   

5.
SOX基因家族的研究现状   总被引:5,自引:2,他引:3  
常重杰  周荣家  余其兴 《遗传》2000,22(1):51-53
SOX基因家族是一个新发现的基因家族,其主要特征是具有一个保守基序———HMG -box,可以和DNA进行序列特异性的结合。该家族的第一个成员是哺乳动物的性别决定基因SRY/Sry。由于SOX基因在胚胎发育及性别分化过程中可能起着重要的作用,对其研究进展十分迅速。本文根据现有资料总结了有关方面的研究成果。1SOX基因的发现人类中存在一些性反转患者 (XX男性或XY女性 ),其性别表型与其性染色体组成不一致。详尽分析其染色体结构,发现前者大多获得了一段Y片段;后者往往失去了一段Y染色体片段,由于不同患者…  相似文献   

6.
用ASG法对三叶木通(Akebia trifoliata)根、茎尖细胞进行染色体制片,探讨其染色体组型。结果表明:三叶木通核型为2n=2X=16=10M+2SM+2ST+2T,X=8;2B类型,第2号染色体上有一对随体。三叶木通细胞中存在有混倍性现象,实生苗中2n=4X=32的四倍性细胞占7.9%;秋水仙素诱变苗、根茎占31.8%~37.9%。  相似文献   

7.
大熊猫染色体腹复制带研究   总被引:2,自引:2,他引:0  
以培养的大熊猫外周血淋巴细胞为实验材料,在细胞培养终止前4h加入BrdU(终浓度为10μg/ml培养基),对复制的染色体DNA进行BrdU标记。掺入BrdU的染以体吖啶橙(0.05%)处理、紫外光照射、Giemsa染色后,可在染色体上获得清晰的复制带纹。根据众多分裂相所显示的不同复制带型,可初步确定大熊猫每一染色体独特的晚复制带纹。在雌性个体的两个X染色体中,一条X染色体复制明显落后于另一X染色体  相似文献   

8.
对美味猕猴桃同一雌株叶原生质体再生植株进行了形态学、细胞学以及育性特性的比较研究,确认该体细胞无性系性别性状发生变异。其中60%雄性再生植株退化的雌蕊仍保留不同程度的雌性化特征,但雌性全不育;小孢子则能发育成有功能的雄配子体,但有一定的功能缺陷。再生雌株中P1组群性状特征与母株相似;P2组群花发育畸形,导致雌性不育或育性极差。细胞学研究表明,小孢子母细胞减数分裂时染色体异常行为对小孢子发生的影响不能决定其性别类型;雌株类型小孢子败育过程有受基因调控的细胞学特征。认为雌株和雄株小孢子的发育受控于不同的基因体系,具性别的特异性。再生植株性别性状发生变异可能是性别控制基因或染色体发生结构性变异所致。母株染色体上累积的结构性变异与该遗传基础具易变性密切有关。  相似文献   

9.
剂量补偿是使X连锁基因的表达水平在两性间达到平衡的过程。生物界实现剂量补偿的策略有很多种,真兽亚纲哺乳动物是随机失活雌性的一条X染色体。X失活开始于XIC,然后传播到整条染色体。XIST基因定位于XIC中,参与X失活的启动,可能是X失活决定基因。最近在人和小鼠中发现了逃避X失活的基因。探讨这些基因逃避X失活的机制有助于理解X染色体失活是如何对基因表达进行调控的。人和小鼠中有一些基因的X失活状态不同,提示了性染色体的持续不断的进化改变 。  相似文献   

10.
西农莎能山羊间性遗传机制研究   总被引:3,自引:0,他引:3  
詹铁生  刘景喜 《遗传学报》1994,21(5):356-361
本文从解剖学、组织学、细胞遗传学及遗传学方面对西农药莎能山羊的间性个性进行了研究。发现从雌性假间性到性逆转雄性的一系列类型的间性,全部是遗传雌性(60,XX),核型正常。这些间性个体完全受基因作用,使雌性转化,引起性别异常,因而间性基因是雄性化基因,位于常染色体,属隐性遗传。  相似文献   

11.
Both mouse and man have the common XX/XY sex chromosome mechanism. The X chromosome is of original size (5-6% of female haploid set) and the Y is one of the smallest chromosomes of the complement. But there are species, belonging to a variety of orders, with composite sex chromosomes and multiple sex chromosome systems: XX/XY1Y2 and X1X1X2X2/X1X2Y. The original X or the Y, respectively, have been translocated on to an autosome. The sex chromosomes of these species segregate regularly at meiosis; two kinds of sperm and one kind of egg are produced and the sex ratio is the normal 1:1. Individuals with deviating sex chromosome constitutions (XXY, XYY, XO or XXX) have been found in at least 16 mammalian species other than man. The phenotypic manifestations of these deviating constitutions are briefly discussed. In the dog, pig, goat and mouse exceptional XX males and in the horse XY females attract attention. Certain rodents have complicated mechanisms for sex determination: Ellobius lutescens and Tokudaia osimensis have XO males and females. Both sexes of Microtus oregoni are gonosomic mosaics (male OY/XY, female XX/XO). The wood lemming, Myopus schisticolor, the collared lemming, Dirostonyx torquatus, and perhaps also one or two species of the genus Akodon have XX and XY females and XY males. The XX, X*X and X*Y females of Myopus and Dicrostonyx are discussed in some detail. The wood lemming has proved to be a favourable natural model for studies in sex determination, because a large variety of sex chromosome aneuploids are born relatively frequently. The dosage model for sex determination is not supported by the wood lemming data. For male development, genes on both the X and the Y chromosomes are necessary.  相似文献   

12.
Zhu B  Gao H  Wang H  Gao J  Zhang Y  Dong Y  Hou J  Nan X 《Hereditas》2003,139(2):90-95
Here we describe our comparative studies on two types of X chromosomes, namely X(M) and X(SM,) of the mandarin vole (Microtus mandarinus). By chromosome G- and C-banding analysis, we have found that two different types of X chromosomes exist in mandarin voles. The two types of X chromosomes present two different G- and C-banding patterns: the X(M) chromosome is a longer metacentric X chromosome which is C-band negative; and the X(SM) is a shorter submetacentric X chromosome which has one C-band at the centromere and another one at the middle part of the short arm. The X(SM) has 6 G-bands including one on the kinetochore, one in the middle of the short arm, and four on the long arm. The X(M) has 7 G-bands including one on the kinetochore, two on the short arm, and four on the long arm. We have further found that female voles can be grouped into three types based on the composition of the X chromosome but the male voles have only one type. The three female groups are: (1) female voles (X(M)X(SM)), in which the two X chromosomes are different, the longer one is metacentric and the shorter is submetacentric; (2) female vole (X(SM)X(SM)), in which the two X chromosomes are both submetacentric; (3) female vole (X(M)O), in which there is only one X chromosome that is metacentric. Surprisingly, we have never found female voles with X(M)X(M), females with X(SM)O or males with X(M)Y. We hypothesize that the X(SM) chromosome is derived from the X(M) through its breakage and re-joining. The paper also discusses the formation of X(M)O females.  相似文献   

13.
Zhu B  Dong Y  Gao J  Li P  Pang Y  Liu H  Chen H 《Hereditas》2006,143(2006):130-137
Here we describe our studies on Microtus mandarinus faeceus of Jiangyan in Jiangsu province of China. By karyotype and G-banding analysis we have found variation in chromosome number and polymorphisms of the X chromosome and the second pair of autosomes of the subspecies. Chromosome number of the subspecies is 2n=47-50. The subspecies has three kinds of chromosomal sex: XX, XO and XY, among which one of the X chromosomes is subtelocentric (X(ST)) and the other is metacentric (X(M)). After comparing karyotypes of different subspecies, we found the specific cytogenetic characteristics of Microtus mandarinus, that is they have three kinds of chromosomal sex: XX, XO and XY; X chromosomes are heteromorphic; the chromosome number of female individuals are one less than male individuals; chromosome number of XX individuals are equal to that of XO ones. We hypothesize that Robertsonian translocation is the main reason of the polymorphism of the second pair of autosomes and variety of chromosome number, and it also causes the chromosome number evolution in different subspecies of Microtus mandarinus.  相似文献   

14.
15.
David H. Carr 《CMAJ》1963,88(9):456-461
When human chromosome anomalies were first described in 1959, it appeared that specific abnormalities might be correlated with specific syndromes. Mongolism and the D and E syndromes are examples of specific syndromes associated with the presence of an extra autosome. Klinefelter''s syndrome may be associated with a variety of different sex chromosome anomalies including XXY, XXYY, XXXY and XXXXY. The lastnamed variant is the only one that frequently presents features distinguishing it from the others. An XO sex chromosome complex is found in many women with gonadal dysgenesis. However, a variety of mosaicisms have been described in association with this condition, including XO/XX, XO/XXX, XO/XX/XXX, XO/XY and XO/XYY. Extra X chromosomes in phenotypical females do not seem to impair fertility or be consistently associated with congenital anomalies. Two families are described in which chromosome anomalies were found, but the association with defects was irregular. In one family the abnormality involved one of the number 16 chromosomes and in the other it involved one of the small acrocentric chromosomes.  相似文献   

16.
The karyotype of Mastophorus muris (Gmelin, 1790) comprises four pairs of small autosomal chromosomes and two larger sex X chromosomes in females or one X chromosome in males (2n = 8 + XX/XO). All pairs of chromosomes possess rather uniform morphology without distinct primary or secondary constrictions. No heterochromatin bands were found by C-banding analysis. The absolute chromosome length ranges from 4.02 to 2.24 microns. The mean total length of the haploid complement is 14.34 microns. The course of gametogenesis represents a typical pattern common in the order Spirurida. The recently available karyotypes of spirurid nematodes have been reviewed.  相似文献   

17.
Mice of the XO genotype with a paternally derived X chromosome (XpO) have placental hyperplasia in late pregnancy, although in early pregnancy the ectoplacental cone, a placental precursor, is smaller in XpO mice than in their XX sibs. This early size deficiency of the ectoplacental cone is apparently a consequence of Xp imprinting, because XmO embryos (with a maternally derived X chromosome) are unaffected. In the present study we sought to establish whether XpO placental hyperplasia in late pregnancy is also a consequence of Xp imprinting. Placental weight data were first collected from litters that included XpO or XmO fetuses and XX controls. Comparison of XO placentae with XX placentae showed that XpO and XmO placentae are hyperplastic. This finding suggested that the hyperplasia might be an X dosage effect, and this hypothesis was supported by the finding that XY male fetuses from the same crosses also had larger placentae than their XX sibs. Further analysis of a range of sex-chromosome variant genotypes, including XmYSry-negative females and XXSry transgenic males, showed that mouse fetuses with one X chromosome consistently had larger placentae than littermates with two X chromosomes, independent of their gonadal/androgen status.  相似文献   

18.
The activities of glucose-6-phosphate dehydrogenase (G6PD) and lactate dehydrogenase (LDH) have been assayed in mouse oocytes at several stages of follicle development isolated from XX and XO female mice. Throughout the entire growth period the activity of G6PD was proportional to the number of X chromosomes present in the oocyte, whereas no difference in LDH activity was detected between XX and XO oocytes. It is concluded, therefore, that both X chromosomes are functional throughout oogenesis.  相似文献   

19.
In certain extraembryonic tissues of normal female mouse conceptuses, X-chromosome-dosage compensation is achieved by preferential inactivation of the paternally derived X. Diploid parthenogenones have two maternally derived X chromosomes, hence this mechanism cannot operate. To examine whether this contributes to the inviability of parthenogenones, XO and XX parthenogenetic eggs were constructed by pronuclear transplantation and their development assessed after transfer to pseudopregnant recipients. In one series of experiments, the frequency of postimplantation development of XO parthenogenones was much higher than that of their XX counterparts. This result is consistent with the possibility that two maternally derived X chromosomes can contribute to parthenogenetic inviability at or very soon after implantation. However, both XO and XX parthenogenones showed similar developmental abnormalities at the postimplantation stage, demonstrating that parthenogenetic inviability is ultimately determined by the possession of two sets of maternally derived autosomes.  相似文献   

20.
LeMaire-Adkins R  Hunt PA 《Genetics》2000,156(2):775-783
A fundamental principle of Mendelian inheritance is random segregation of alleles to progeny; however, examples of distorted transmission either of specific alleles or of whole chromosomes have been described in a variety of species. In humans and mice, a distortion in chromosome transmission is often associated with a chromosome abnormality. One such example is the fertile XO female mouse. A transmission distortion effect that results in an excess of XX over XO daughters among the progeny of XO females has been recognized for nearly four decades. Utilizing contemporary methodology that combines immunofluorescence, FISH, and three-dimensional confocal microscopy, we have readdressed the meiotic segregation behavior of the single X chromosome in oocytes from XO females produced on two different inbred backgrounds. Our studies demonstrate that segregation of the univalent X chromosome at the first meiotic division is nonrandom, with preferential retention of the X chromosome in the oocyte in approximately 60% of cells. We propose that this deviation from Mendelian expectations is facilitated by a spindle-mediated mechanism. This mechanism, which appears to be a general feature of the female meiotic process, has implications for the frequency of nondisjunction in our species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号