首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Post-translational modifications are essential for the proper function of many proteins in the cell. The attachment of an isoprenoid lipid (a process termed prenylation) by protein farnesyltransferase (FTase) or geranylgeranyltransferase type I (GGTase-I) is essential for the function of many signal transduction proteins involved in growth, differentiation, and oncogenesis. FTase and GGTase-I (also called the CaaX prenyltransferases) recognize protein substrates with a C-terminal tetrapeptide recognition motif called the Ca1a2X box. These enzymes possess distinct but overlapping protein substrate specificity that is determined primarily by the sequence identity of the Ca1a2X motif. To determine how the identity of the Ca1a2X motif residues and sequence upstream of this motif affect substrate binding, we have solved crystal structures of FTase and GGTase-I complexed with a total of eight cognate and cross-reactive substrate peptides, including those derived from the C termini of the oncoproteins K-Ras4B, H-Ras and TC21. These structures suggest that all peptide substrates adopt a common binding mode in the FTase and GGTase-I active site. Unexpectedly, while the X residue of the Ca1a2X motif binds in the same location for all GGTase-I substrates, the X residue of FTase substrates can bind in one of two different sites. Together, these structures outline a series of rules that govern substrate peptide selectivity; these rules were utilized to classify known protein substrates of CaaX prenyltransferases and to generate a list of hypothetical substrates within the human genome.  相似文献   

2.
Two protein prenyltransferase enzymes, farnesyltransferase (FTase) and geranylgeranyltransferase-I (GGTase-I), catalyze the covalent attachment of a farnesyl or geranylgeranyl lipid group to the cysteine of a CaaX sequence (cysteine [C], two aliphatic amino acids [aa], and any amino acid [X]. In vitro studies reported here confirm previous reports that CaaX proteins with a C-terminal serine are farnesylated by FTase and those with a C-terminal leucine are geranylgeranylated by GGTase-I. In addition, we found that FTase can farnesylate CaaX proteins with a C-terminal leucine and can transfer a geranylgeranyl group to some CaaX proteins. Genetic data indicate that FTase and GGTase-I have the same substrate preferences in vivo as in vitro and also show that each enzyme can prenylate some of the preferred substrates of the other enzyme in vivo. Specifically, the viability of yeast cells lacking FTase is due to prenylation of Ras proteins by GGTase-I. Although this GGTase-I dependent prenylation of Ras is sufficient for growth, it is not sufficient for mutationally activated Ras proteins to exert deleterious effects on growth. The dependence of the activated Ras phenotype on FTase can be bypassed by replacing the C-terminal serine with leucine. This altered form of Ras appears to be prenylated by both GGTase-I and FTase, since it produces an activated phenotype in a strain lacking either FTase or GGTase-I. Yeast cells can grow in the absence of GGTase-I as long as two essential substrates are overexpressed, but their growth is slow. Such strains are dependent on FTase for viability and are able to grow faster when FTase is overproduced, suggesting that FTase can prenylate the essential substrates of GGTase-I when they are overproduced.  相似文献   

3.
More than 100 proteins necessary for eukaryotic cell growth, differentiation, and morphology require posttranslational modification by the covalent attachment of an isoprenoid lipid (prenylation). Prenylated proteins include members of the Ras, Rab, and Rho families, lamins, CENPE and CENPF, and the gamma subunit of many small heterotrimeric G proteins. This modification is catalyzed by the protein prenyltransferases: protein farnesyltransferase (FTase), protein geranylgeranyltransferase type I (GGTase-I), and GGTase-II (or RabGGTase). In this review, we examine the structural biology of FTase and GGTase-I (the CaaX prenyltransferases) to establish a framework for understanding the molecular basis of substrate specificity and mechanism. These enzymes have been identified in a number of species, including mammals, fungi, plants, and protists. Prenyltransferase structures include complexes that represent the major steps along the reaction path, as well as a number of complexes with clinically relevant inhibitors. Such complexes may assist in the design of inhibitors that could lead to treatments for cancer, viral infection, and a number of deadly parasitic diseases.  相似文献   

4.
Terry KL  Casey PJ  Beese LS 《Biochemistry》2006,45(32):9746-9755
Posttranslational modifications are essential for the proper function of a number of proteins in the cell. One such modification, the covalent attachment of a single isoprenoid lipid (prenylation), is carried out by the CaaX prenyltransferases, protein farnesyltransferase (FTase) and protein geranylgeranyltransferase type-I (GGTase-I). Substrate proteins of these two enzymes are involved in a variety of cellular functions but are largely associated with signal transduction. These modified proteins include members of the Ras superfamily, heterotrimeric G-proteins, centromeric proteins, and a number of proteins involved in nuclear integrity. Although FTase and GGTase-I are highly homologous, they are quite selective for their substrates, particularly for their isoprenoid diphosphate substrates, FPP and GGPP, respectively. Here, we present both crystallographic and kinetic analyses of mutants designed to explore this isoprenoid specificity and demonstrate that this specificity is dependent upon two enzyme residues in the beta subunits of the enzymes, W102beta and Y365beta in FTase (T49beta and F324beta, respectively, in GGTase-I).  相似文献   

5.
Inhibiting protein prenylation is an attractive means to modulate cellular processes controlled by a variety of signaling proteins, including oncogenic proteins such as Ras and Rho GTPases. The largest class of prenylated proteins contain a so-called CaaX motif at their carboxyl termini and are subject to a maturation process initiated by the attachment of an isoprenoid lipid by either protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I (GGTase-I). Inhibitors of FTase, termed FTIs, have been the subject of intensive development in the past decade and have shown efficacy in clinical trials. Although GGTase-I inhibitors (GGTIs) have received less attention, accumulating evidence suggests GGTIs may augment therapies using FTIs and could be useful to treat a myriad of additional disease states. Here we describe the characterization of a selective, highly potent, and cell-active GGTase-I inhibitor, GGTI-DU40. Kinetic analysis revealed that inhibition by GGTI-DU40 is competitive with the protein substrate and uncompetitive with the isoprenoid substrate; the Ki for the inhibition is 0.8 nM. GGTI-DU40 is highly selective for GGTase-I both in vitro and in living cells. Studies indicate GGTI-DU40 blocks prenylation of a number of geranylgeranylated CaaX proteins. Treatment of MDA-MB-231 breast cancer cells with GGTI-DU40 inhibited thrombin-induced cell rounding via a process that involves inhibition of Rho proteins without significantly effecting parallel mobilization of calcium via Gbetagamma. These studies establish GGTI-DU40 as a prime tool for interrogating biologies associated with protein geranylgeranylation and define a novel structure for this emerging class of experimental therapeutics.  相似文献   

6.
Sequence dependence of protein isoprenylation   总被引:38,自引:0,他引:38  
Several proteins have been shown to be post-translationally modified on a specific C-terminal cysteine residue by either of two isoprenoid biosynthetic pathway metabolites, farnesyl diphosphate or geranylgeranyl diphosphate. Three enzymes responsible for protein isoprenylation were resolved chromatographically from the cytosolic fraction of bovine brain: a farnesyl-protein transferase (FTase), which modified the cell-transforming Ras protein, and two geranyl-geranyl-protein transferases, one (GGTase-I) which modified a chimeric Ras having the C-terminal amino acid sequence of the gamma-6 subunit of heterotrimeric GTP-binding proteins, and the other (GGTase-II) which modified the Saccharomyces cerevisiae secretory GTPase protein YPT1. In a S. cerevisiae strain lacking FTase activity (ram1), both GGTases were detected at wild-type levels. In a ram2 S. cerevisiae strain devoid of FTase activity, GGTase-I activity was reduced by 67%, suggesting that GGTase-I and FTase activities derive from different enzymes but may share a common genetic feature. For the FTase and the GGTase-I activities, the C-terminal amino acid sequence of the protein substrate, the CAAX box, appeared to contain all the critical determinants for interaction with the transferase. In fact, tetrapeptides with amino acid sequences identical to the C-terminal sequences of the protein substrates for FTase or GGTase-I competed for protein isoprenylation by acting as alternative substrates. Changes in the CAAX amino acid sequence of protein substrates markedly altered their ability to serve as substrates for both FTase and GGTase-I. In addition, it appeared that FTase and GGTase-I had complementary affinities for CAAX protein substrates; that is, CAAX proteins that were good substrates for FTase were, in general, poor substrates for GGTase-I, and vice versa. In particular, a leucine residue at the C terminus influenced whether a CAAX protein was either farnesylated or geranylgeranylated preferentially. The YPT1 C terminus peptide, TGGGCC, did not compete or serve as a substrate for GGTase-II, indicating that the interaction between GGTase-II and YPT1 appeared to depend on more than the 6 C-terminal residues of the protein substrate sequence. These results identify three different isoprenyl-protein transferases that are each selective for their isoprenoid and protein substrates.  相似文献   

7.
Protein geranylgeranyltransferase type-I (GGTase-I), one of two CaaX prenyltransferases, is an essential enzyme in eukaryotes. GGTase-I catalyzes C-terminal lipidation of >100 proteins, including many GTP- binding regulatory proteins. We present the first structural information for mammalian GGTase-I, including a series of substrate and product complexes that delineate the path of the chemical reaction. These structures reveal that all protein prenyltransferases share a common reaction mechanism and identify specific residues that play a dominant role in determining prenyl group specificity. This hypothesis was confirmed by converting farnesyltransferase (15-C prenyl substrate) into GGTase-I (20-C prenyl substrate) with a single point mutation. GGTase-I discriminates against farnesyl diphosphate (FPP) at the product turnover step through the inability of a 15-C FPP to displace the 20-C prenyl-peptide product. Understanding these key features of specificity is expected to contribute to optimization of anti-cancer and anti-parasite drugs.  相似文献   

8.
Roskoski R  Ritchie PA 《Biochemistry》2001,40(31):9329-9335
Protein farnesyltransferase (FTase) and protein geranylgeranyltransferase-I (GGTase-I) catalyze the prenylation of proteins with a carboxy-terminal tetrapeptide sequence called a CaaX box, where C refers to cysteine, "a" refers to an aliphatic residue, and X typically refers to methionine, serine, or glutamine (FTase), or to leucine (GGTase-I). Marsters and co-workers [(1994) Bioorg. Med. Chem. 2, 949--957] developed inhibitors of FTase with cysteine and methionine attached to an inner hydrophobic benzodiazepine scaffold. We found that the most potent of these compounds (BZA-2B) resulted in the time-dependent inhibition of FTase. The K(i) of BZA-2B for FTase, which is the dissociation constant of the initial complex, was 79 +/- 13 nM, and the K(i)*, which is the overall dissociation of inhibitor for all enzyme forms, was 0.91 +/- 0.12 nM. The first-order rate constant for the conversion of the initial complex to the final complex was 1.4 +/- 0.2 min(-1), and that for the reverse process was 0.016 +/- 0.002 min(-1). The latter rate constant corresponds to a half-life of the final complex of 45 min. Our experiments favor the notion that the inhibitor binds to the FTase--farnesyl diphosphate complex which then undergoes an isomerization to form a tighter FTase*--farnesyl diphosphate--BZA2-B complex. Diazepam, a compound with a benzodiazepine nucleus but lacking amino acid extensions, was a weak (K(i) = 870 microM) but not time-dependent inhibitor of FTase. Cys-Val-Phe-Met and Cys-4-aminobenzoyl-Met were instantaneous and not time-dependent inhibitors of FTase. Furthermore, BZA-4B, with a leucine specificity determinant, was a classical competitive inhibitor of GGTase-I and not a time-dependent inhibitor.  相似文献   

9.
Protein farnesyltransferase (FTase) inhibitors, generally called "FTIs," block the farnesylation of prelamin A, inhibiting the biogenesis of mature lamin A and leading to an accumulation of prelamin A within cells. A recent report found that a GGTI, an inhibitor of protein geranylgeranyltransferase-I (GGTase-I), caused an exaggerated accumulation of prelamin A in the presence of low amounts of an FTI. This finding was interpreted as indicating that prelamin A can be alternately prenylated by GGTase-I and that inhibiting both protein prenyltransferases leads to more prelamin A accumulation than blocking FTase alone. Here, we tested an alternative hypothesis-GGTIs are not specific for GGTase-I, and they lead to prelamin A accumulation by inhibiting ZMPSTE24 (a zinc metalloprotease that converts farnesyl-prelamin A to mature lamin A). In our studies, commonly used GGTIs caused prelamin A accumulation in human fibroblasts, but the prelamin A in GGTI-treated cells exhibited a more rapid electrophoretic mobility than prelamin A from FTI-treated cells. The latter finding suggested that the prelamin A in GGTI-treated cells might be farnesylated (which would be consistent with the notion that GGTIs inhibit ZMPSTE24). Indeed, metabolic labeling studies revealed that the prelamin A in GGTI-treated fibroblasts is farnesylated. Moreover, biochemical assays of ZMPSTE24 activity showed that ZMPSTE24 is potently inhibited by a GGTI. Our studies show that GGTIs inhibit ZMPSTE24, leading to an accumulation of farnesyl-prelamin A. Thus, caution is required when interpreting the effects of GGTIs on prelamin A processing.  相似文献   

10.
Reid TS  Long SB  Beese LS 《Biochemistry》2004,43(28):9000-9008
Many signal transduction proteins that control growth, differentiation, and transformation, including Ras GTPase family members, require the covalent attachment of a lipid group by protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type-I (GGTase-I) for proper function and for the transforming activity of oncogenic mutants. FTase inhibitors are a new class of potential cancer therapeutics under evaluation in human clinical trials. Here, we present crystal structures of the clinical candidate L-778,123 complexed with mammalian FTase and complexed with the related GGTase-I enzyme. Although FTase and GGTase-I have very similar active sites, L-778,123 adopts different binding modes in the two enzymes; in FTase, L-778,123 is competitive with the protein substrate, whereas in GGTase-I, L-778,123 is competitive with the lipid substrate and inhibitor binding is synergized by tetrahedral anions. A comparison of these complexes reveals that small differences in protein structure can dramatically affect inhibitor binding and selectivity. These structures should facilitate the design of more specific inhibitors toward FTase or GGTase-I. Finally, the binding of a drug and anion together could be applicable for developing new classes of inhibitors.  相似文献   

11.
Protein geranylgeranyltransferase-I (GGTase-I) catalyzes the transfer of a 20-carbon isoprenoid lipid to the sulfur of a cysteine residue located near the C terminus of numerous cellular proteins, including members of the Rho superfamily of small GTPases and other essential signal transduction proteins. In humans, GGTase-I and the homologous protein farnesyltransferase (FTase) are targets of anticancer therapeutics because of the role small GTPases play in oncogenesis. Protein prenyltransferases are also essential for many fungal and protozoan pathogens that infect humans, and have therefore become important targets for treating infectious diseases. Candida albicans, a causative agent of systemic fungal infections in immunocompromised individuals, is one pathogen for which protein prenylation is essential for survival. Here we present the crystal structure of GGTase-I from C. albicans (CaGGTase-I) in complex with its cognate lipid substrate, geranylgeranylpyrophosphate. This structure provides a high-resolution picture of a non-mammalian protein prenyltransferase. There are significant variations between species in critical areas of the active site, including the isoprenoid-binding pocket, as well as the putative product exit groove. These differences indicate the regions where specific protein prenyltransferase inhibitors with antifungal activity can be designed.  相似文献   

12.
Reid TS  Beese LS 《Biochemistry》2004,43(22):6877-6884
The search for new cancer therapeutics has identified protein farnesyltransferase (FTase) as a promising drug target. This enzyme attaches isoprenoid lipids to signal transduction proteins involved in growth and differentiation. The two FTase inhibitors (FTIs), R115777 (tipifarnib/Zarnestra) and BMS-214662, have undergone evaluation as cancer therapeutics in phase I and II clinical trials. R115777 has been evaluated in phase III clinical trials and shows indications for the treatment of blood and breast malignancies. Here we present crystal structures of R115777 and BMS-214662 complexed with mammalian FTase. These structures illustrate the molecular mechanism of inhibition and selectivity toward FTase over the related enzyme, protein geranylgeranyltransferase type I (GGTase-I). These results, combined with previous biochemical and structural analyses, identify features of FTase that could be exploited to modulate inhibitor potency and specificity and should aid in the continued development of FTIs as therapeutics for the treatment of cancer and parasitic infections.  相似文献   

13.
Hartman HL  Hicks KA  Fierke CA 《Biochemistry》2005,44(46):15314-15324
Protein farnesyltransferase (FTase) and protein geranylgeranyltransferase type I (GGTase I) catalyze the attachment of lipid groups from farnesyl diphosphate and geranylgeranyl diphosphate, respectively, to a cysteine near the C-terminus of protein substrates. FTase and GGTase I modify several important signaling and regulatory proteins with C-terminal CaaX sequences ("C" refers to the cysteine residue that becomes prenylated, "a" refers to any aliphatic amino acid, and "X" refers to any amino acid). In the CaaX paradigm, the C-terminal X-residue of the protein/peptide confers specificity for FTase or GGTase I. However, some proteins, such as K-Ras, RhoB, and TC21, are substrates for both FTase and GGTase I. Here we demonstrate that the C-terminal amino acid affects the binding affinity of K-Ras4B-derived hexapeptides (TKCVIX) to FTase and GGTase I modestly. In contrast, reactivity, as indicated by transient and steady-state kinetics, varies significantly and correlates with hydrophobicity, volume, and structure of the C-terminal amino acid. The reactivity of FTase decreases as the hydrophobicity of the C-terminal amino acid increases whereas the reactivity of GGTase I increases with the hydrophobicity of the X-group. Therefore, the hydrophobicity, as well as the structure of the X-group, determines whether peptides are specific for farnesylation, geranylgeranylation, or dual prenylation.  相似文献   

14.
We assessed the roles of insulin receptor substrate-1 (IRS-1) and Shc in insulin action on farnesyltransferase (FTase) and geranylgeranyltransferase I (GGTase I) using Chinese hamster ovary (CHO) cells that overexpress wild-type human insulin receptors (CHO-hIR-WT) or mutant insulin receptors lacking the NPEY domain (CHO-DeltaNPEY) or 3T3-L1 fibroblasts transfected with adenoviruses that express the PTB or SAIN domain of IRS-1 and Shc, the pleckstrin homology (PH) domain of IRS-1, or the Src homology 2 (SH2) domain of Shc. Insulin promoted phosphorylation of the alpha-subunit of FTase and GGTase I in CHO-hIR-WT cells, but was without effect in CHO-DeltaNPEY cells. Insulin increased FTase and GGTase I activities and the amounts of prenylated Ras and RhoA proteins in CHO-hIR-WT (but not CHO-DeltaNPEY) cells. Overexpression of the PTB or SAIN domain of IRS-1 (which blocked both IRS-1 and Shc signaling) prevented insulin-stimulated phosphorylation of the FTase and GGTase I alpha-subunit activation of FTase and GGTase I and subsequent increases in prenylated Ras and RhoA proteins. In contrast, overexpression of the IRS-1 PH domain, which impairs IRS-1 (but not Shc) signaling, did not alter insulin action on the prenyltransferases, but completely inhibited the insulin effect on the phosphorylation of IRS-1 and on the activation of phosphatidylinositol 3-kinase and Akt. Finally, overexpression of the Shc SH2 domain completely blocked the insulin effect on FTase and GGTase I activities without interfering with insulin signaling to MAPK. These data suggest that insulin signaling from its receptor to the prenyltransferases FTase and GGTase I is mediated by the Shc pathway, but not the IRS-1/phosphatidylinositol 3-kinase pathway. Shc-mediated insulin signaling to MAPK may be necessary (but not sufficient) for activation of prenyltransferase activity. An additional pathway involving the Shc SH2 domain may be necessary to mediate the insulin effect on FTase and GGTase I.  相似文献   

15.
Farnesyl-protein transferase (FTase) purified from rat or bovine brain is an alpha/beta heterodimer, comprised of subunits having relative molecular masses of approximately 47 (alpha) and 45 kDa (beta). In the yeast Saccharomyces cerevisiae, two unlinked genes, RAM1/DPR1 (RAM1) and RAM2, are required for FTase activity. To explore the relationship between the mammalian and yeast enzymes, we initiated cloning and immunological analyses. cDNA clones encoding the 329-amino acid COOH-terminal domain of bovine FTase alpha-subunit were isolated. Comparison of the amino acid sequences deduced from the alpha-subunit cDNA and the RAM2 gene revealed 30% identity and 58% similarity, suggesting that the RAM2 gene product encodes a subunit for the yeast FTase analogous to the bovine FTase alpha-subunit. Antisera raised against the RAM1 gene product reacted specifically with the beta-subunit of bovine FTase, suggesting that the RAM1 gene product is analogous to the bovine FTase beta-subunit. Whereas a ram1 mutation specifically inhibits FTase, mutations in the CDC43 and BET2 genes, both of which are homologous to RAM1, specifically inhibit geranylgeranyl-protein transferase (GGTase) type I and GGTase-II, respectively. In contrast, a ram2 mutation impairs both FTase and GGTase-I, but has little effect on GGTase-II. Antisera that specifically recognized the bovine FTase alpha-subunit precipitated both bovine FTase and GGTase-I activity, but not GGTase-II activity. Together, these results indicate that for both yeast and mammalian cells, FTase, GGTase-I, and GGTase-II are comprised of different but homologous beta-subunits and that the alpha-subunits of FTase and GGTase-I share common features not shared by GGTase-II.  相似文献   

16.
To evaluate the ability of an insect cell-free protein synthesis system to carry out proper protein prenylation, several CAIX (X indicates any C-terminal amino acid) sequences were introduced into the C-terminus of truncated human gelsolin (tGelsolin). Tryptic digests of these mutant proteins were analyzed by MALDI-TOF MS and MALDI-quadrupole-IT-TOF MS. The results indicated that the insect cell-free protein synthesis system possesses both farnesyltransferase (FTase) and geranylgeranyltransferase (GGTase) I, as is the case of the rabbit reticulocyte lysate system. The C-terminal amino acid sequence requirements for protein prenylation in this system showed high similarity to those observed in rat prenyltransferases. In the case of rhoC, which is a natural geranylgeranylated protein, it was found that it could serve as a substrate for both prenyltransferases in the presence of either farnesyl or geranylgeranyl pyrophosphate, whereas geranylgeranylation was only observed when both prenyl pyrophosphates were added to the in vitro translation reaction mixture. Thus, a combination of the cell-free protein synthesis system with MS is an effective strategy to analyze protein prenylation.  相似文献   

17.
Proper cellular localization is required for the function of many proteins. The CaaX prenyltransferases (where CaaX indicates a cysteine followed by two aliphatic amino acids and a variable amino acid) direct the subcellular localization of a large group of proteins by catalyzing the attachment of hydrophobic isoprenoid moieties onto C-terminal CaaX motifs, thus facilitating membrane association. This group of enzymes includes farnesyltransferase (Ftase) and geranylgeranyltransferase-I (Ggtase-1). Classically, the variable (X) amino acid determines whether a protein will be an Ftase or Ggtase-I substrate, with Ggtase-I substrates often containing CaaL motifs. In this study, we identify the gene encoding the β subunit of Ggtase-I (CDC43) and demonstrate that Ggtase-mediated activity is not essential. However, Cryptococcus neoformans CDC43 is important for thermotolerance, morphogenesis, and virulence. We find that Ggtase-I function is required for full membrane localization of Rho10 and the two Cdc42 paralogs (Cdc42 and Cdc420). Interestingly, the related Rac and Ras proteins are not mislocalized in the cdc43Δ mutant even though they contain similar CaaL motifs. Additionally, the membrane localization of each of these GTPases is dependent on the prenylation of the CaaX cysteine. These results indicate that C. neoformans CaaX prenyltransferases may recognize their substrates in a unique manner from existing models of prenyltransferase specificity. It also suggests that the C. neoformans Ftase, which has been shown to be more important for C. neoformans proliferation and viability, may be the primary prenyltransferase for proteins that are typically geranylgeranylated in other species.  相似文献   

18.
Proteins terminating with a CAAX motif, such as the Ras proteins and the nuclear lamins, undergo post-translational modification of a C-terminal cysteine with an isoprenyl lipid via a process called protein prenylation. After prenylation, the last three residues of CAAX proteins are clipped off by Rce1, an integral membrane endoprotease of the endoplasmic reticulum. Prenylation is crucial to the function of many CAAX proteins, but the physiologic significance of endoproteolytic processing has remained obscure. To address this issue, we used Cre/loxP recombination techniques to create mice lacking Rce1 in the heart, an organ where Rce1 is expressed at particularly high levels. The hearts from heart-specific Rce1 knockout mice manifested reduced levels of both the Rce1 mRNA and CAAX endoprotease activity, and the hearts manifested an accumulation of CAAX protein substrates. The heart-specific Rce1 knockout mice initially appeared healthy but died starting at 3-5 months of age. By 10 months of age, approximately 70% of the mice had died. Pathological studies revealed that the heart-specific Rce1 knockout mice had a dilated cardiomyopathy. By contrast, liver-specific Rce1 knockout mice appeared healthy, had normal transaminase levels, and had normal liver histology. These studies indicate that the endoproteolytic processing of CAAX proteins is essential for cardiac function but is less important for the liver.  相似文献   

19.
Isoprenoids and prenylated proteins have been implicated in the pathophysiology of Alzheimer disease (AD), including amyloid-β precursor protein metabolism, Tau phosphorylation, synaptic plasticity, and neuroinflammation. However, little is known about the relative importance of the two protein prenyltransferases, farnesyltransferase (FT) and geranylgeranyltransferase-1 (GGT), in the pathogenesis of AD. In this study, we defined the impact of deleting one copy of FT or GGT on the development of amyloid-β (Aβ)-associated neuropathology and learning/memory impairments in APPPS1 double transgenic mice, a well established model of AD. Heterozygous deletion of FT reduced Aβ deposition and neuroinflammation and rescued spatial learning and memory function in APPPS1 mice. Heterozygous deletion of GGT reduced the levels of Aβ and neuroinflammation but had no impact on learning and memory. These results document that farnesylation and geranylgeranylation play differential roles in AD pathogenesis and suggest that specific inhibition of protein farnesylation could be a potential strategy for effectively treating AD.  相似文献   

20.
Protein prenyltransferases   总被引:1,自引:0,他引:1  
Three different protein prenyltransferases (farnesyltransferase and geranylgeranyltransferases I and II) catalyze the attachment of prenyl lipid anchors 15 or 20 carbons long to the carboxyl termini of a variety of eukaryotic proteins. Farnesyltransferase and geranylgeranyltransferase I both recognize a 'Ca1a2X' motif on their protein substrates; geranylgeranyltransferase II recognizes a different, non-CaaX motif. Each enzyme has two subunits. The genes encoding CaaX protein prenyltransferases are considerably longer than those encoding non-CaaX subunits, as a result of longer introns. Alternative splice forms are predicted to occur, but the extent to which each splice form is translated and the functions of the different resulting isoforms remain to be established. Farnesyltransferase-inhibitor drugs have been developed as anti-cancer agents and may also be able to treat several other diseases. The effects of these inhibitors are complicated, however, by the overlapping substrate specificities of geranylgeranyltransferase I and farnesyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号