首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (−)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1,2-monooxygenase activity, a cofactor-independent limonene-1,2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S,4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R,4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In the presence of coenzyme A and ATP this acid is converted further, and this finding, together with the high levels of isocitrate lyase activity in extracts of limonene-grown cells, suggests that further degradation takes place via the β-oxidation pathway.  相似文献   

2.
Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (-)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1, 2-monooxygenase activity, a cofactor-independent limonene-1, 2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S, 4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R, 4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In the presence of coenzyme A and ATP this acid is converted further, and this finding, together with the high levels of isocitrate lyase activity in extracts of limonene-grown cells, suggests that further degradation takes place via the beta-oxidation pathway.  相似文献   

3.
1,2-Bis(methylthiomethyl)ferrocene (3) was oxidized by Corynebacterium equi IFO 3730 to give monosulfoxide 4 in two diastereomeric forms with (1S,2R,SS) and (1S,2R,RS) configurations in a ratio of 4:1, while 1,1′-bis(methylthiomethyl)ferrocene (5) was oxidized by Penicillium frequentans IFO 5692 to (R)-monosulfoxide 6 and then preferentially to (R,R)-bissulfoxide 7. Thus, the bacterial monooxygenase generated specific planar chirality in the metallocenic monosulfoxide, and the fungal enzyme formed C2 symmetry in the bissulfoxide.  相似文献   

4.
An epoxide hydrolase from Rhodococcus erythropolis DCL14 catalyzes the hydrolysis of limonene-1,2-epoxide to limonene-1,2-diol. The enzyme is induced when R. erythropolis is grown on monoterpenes, reflecting its role in the limonene degradation pathway of this microorganism. Limonene-1,2-epoxide hydrolase was purified to homogeneity. It is a monomeric cytoplasmic enzyme of 17 kDa, and its N-terminal amino acid sequence was determined. No cofactor was required for activity of this colorless enzyme. Maximal enzyme activity was measured at pH 7 and 50°C. None of the tested inhibitors or metal ions inhibited limonene-1,2-epoxide hydrolase activity. Limonene-1,2-epoxide hydrolase has a narrow substrate range. Of the compounds tested, only limonene-1,2-epoxide, 1-methylcyclohexene oxide, cyclohexene oxide, and indene oxide were substrates. This report shows that limonene-1,2-epoxide hydrolase belongs to a new class of epoxide hydrolases based on (i) its low molecular mass, (ii) the absence of any significant homology between the partial amino acid sequence of limonene-1,2-epoxide hydrolase and amino acid sequences of known epoxide hydrolases, (iii) its pH profile, and (iv) the inability of 2-bromo-4′-nitroacetophenone, diethylpyrocarbonate, 4-fluorochalcone oxide, and 1,10-phenanthroline to inhibit limonene-1,2-epoxide hydrolase activity.Epoxides are highly reactive compounds which readily react with numerous biological compounds, including proteins and nucleic acids. Consequently, epoxides are cytotoxic, mutagenic, and potentially carcinogenic, and there is considerable interest in biological degradation mechanisms for these compounds.In bacteria, epoxides are formed during the metabolism of alkenes (23) and halohydrins (15, 26, 34, 49). Enzymes belonging to a large number of enzyme classes, including dehydrogenases (17), lyases (21), carboxylases (1, 43), glutathione S-transferases (6, 8), isomerases (24), and hydrolases (7, 19, 44), are involved in the microbial degradation of epoxides.Epoxide hydrolases are enzymes catalyzing the addition of water to epoxides forming the corresponding diol. This group of enzymes has been extensively studied in mammals, while only limited information is available on bacterial epoxide hydrolases. Three functions for epoxide hydrolases are recognized (42). In bacteria, epoxide hydrolases are involved in the degradation of several hydrocarbons, including 1,3-dihalo-2-propanol (34), 2,3-dihalo-1-propanol (15, 26), epichlorohydrin (46), propylene oxide (16), 9,10-epoxy fatty acids (30, 36), trans-2,3-epoxysuccinate (2), and cyclohexene oxide (14). Other epoxide hydrolases, such as microsomal and cytosolic epoxide hydrolase from mammals (for reviews, see references 4, 8, and 44), are involved in the detoxification of epoxides formed due to the action of P-450-dependent monooxygenases (8). Epoxide hydrolases are also involved in biosynthesis of hormones, such as leukotrienes and juvenile hormone (40, 45), and plant cuticular elements (11). Remarkably, the bacterial and eukaryotic epoxide hydrolases described so far form a homogeneous group of enzymes belonging to the α/β-hydrolase fold superfamily (10, 38).Rhodococcus erythropolis DCL14, a gram-positive bacterium, is able to grow on both (+)- and (−)-limonene as the sole source of carbon and energy (47). Cells grown on limonene contained a novel epoxide hydrolase that does not belong to the α/β-hydrolase fold superfamily. This limonene-1,2-epoxide hydrolase converts limonene-1,2-epoxide to limonene-1,2-diol (p-menth-8-ene-1,2-diol [Fig. 1]). In this report, we describe the purification and characterization of this enzyme and show that limonene-1,2-epoxide hydrolase belongs to a novel class of epoxide hydrolases. Open in a separate windowFIG. 1Reaction catalyzed by limonene-1,2-epoxide hydrolase.  相似文献   

5.
Xanthobacter sp. C20 was isolated from sediment of the river Rhine using cyclohexane as sole source of carbon and energy. Xanthobacter sp. C20 converted both enantiomers of limonene quantitatively into limonene-8,9-epoxide, a not previously described bioconversion product of limonene. With (4R)-limonene, (4R,8R)-limonene-8, 9-epoxide was formed as the only reaction product, while (4S)-limonene was converted into a (78:22) mixture of (4S,8R)- and (4S,8S)-limonene-8,9-epoxide. Cytochrome P-450 was shown to be induced concomitantly with limonene bioconversion activity following growth of Xanthobacter sp. C20 on cyclohexane. Maximal limonene bioconversion rate was observed at an initial substrate concentration of 12 mM. The amount of limonene-8,9-epoxide formed, up to 0.8 g l(-1), was limited by a strong product inhibition.  相似文献   

6.
Enantio-convergent hydrolysis of racemic styrene oxides was achieved to prepare enantiopure (R)-phenyl-1,2-ethanediol by using two recombinant epoxide hydrolases (EHs) of a bacterium, Caulobacter crescentus, and a marine fish, Mugil cephalus. The recombinant C. crescentus EH primarily attacked the benzylic carbon of (S)-styrene oxide, while the M. cephalus EH preferentially attacked the terminal carbon of (R)-styrene oxide, thus leading to the formation of (R)-phenyl-1,2-ethanediol as the main product. (R)-Phenyl-1,2-ethanediol was obtained with 90% enantiomeric excess and yield as high as 94% from 50 mM racemic styrene oxides in a one-pot process.  相似文献   

7.
Previously, we reported that ten strains belonging to Erythrobacter showed epoxide hydrolase (EHase) activities toward various epoxide substrates. Three genes encoding putative EHases were identified by analyzing open reading frames of Erythrobacter litoralis HTCC2594. Despite low similarities to reported EHases, the phylogenetic analysis of the three genes showed that eeh1 was similar to microsomal EHase, while eeh2 and eeh3 could be grouped with soluble EHases. The three EHase genes were cloned, and the recombinant proteins (rEEH1, rEEH2, and rEEH3) were purified. The functionality of purified proteins was proved by hydrolytic activities toward styrene oxide. EEH1 preferentially hydrolyzed (R)-styrene oxide, whereas EEH3 preferred to hydrolyze (S)-styrene oxide, representing enantioselective hydrolysis of styrene oxide. On the other hand, EEH2 could hydrolyze (R)- and (S)-styrene oxide at an equal rate. The optimal pH and temperature for the EHases occurred largely at neutral pHs and 40–55 °C. The substrate selectivity of rEEH1, rEEH2, and rEEH3 toward various epoxide substrates were also investigated. This is the first representation that a strict marine microorganism possessed three EHases with different enantioselectivity toward styrene oxide.  相似文献   

8.
Two new carotenoids, sapotexanthin 5,6-epoxide and sapotexanthin 5,8-epoxide, have been isolated from the ripe fruits of red mamey (Pouteria sapota). Sapotexanthin 5,6-epoxide was also prepared by partial synthesis via epoxidation of sapotexanthin, and the (5R,6S) and (5S,6R) stereoisomers were identified by high-performance liquid chromatography–electronic circular dichroism (HPLC-ECD) analysis. Spectroscopic data of the natural and semisynthetic derivatives obtained by acid-catalyzed rearrangement of cryptocapsin 5,8-epoxide stereoisomers were compared for structural elucidation.  相似文献   

9.
Compounds based on the pyrroloquinoxaline system can interact with serotonin 5‐HT3, cannabinoid CB1, and μ‐opioid receptors. Herein, a chiral pool synthesis of diastereomerically and enantiomerically pure bromolactam (S,R,R,R)‐ 14A is presented. Introduction of the cyclohexenyl ring at the N‐atom of (S)‐proline derivatives 8 or methyl (S)‐pyroglutamate ( 12 ) led to the N‐cyclohexenyl substituted pyrrolidine derivatives 4 and 13 , respectively. All attempts to cyclize the (S)‐proline derivatives 4 with a basic pyrrolidine N‐atom via [3 + 2] cycloaddition, aziridination, or bromolactamization failed. Fast aromatization occurred during treatment of cyclohexenamines under halolactamization conditions. In contrast, reaction of a 1:1 mixture of diastereomeric pyroglutamates (S,R)‐ 13bA and (S,S)‐ 13bB with LiOtBu and NBS provided the tricyclic bromolactam (S,R,R,R)‐ 14A with high diastereoselectivity from (S,R)‐ 13bA , but did not transform the diastereomer (S,S)‐ 13bB . The different behavior of the diastereomeric pyroglutamates (S,R)‐ 13bA and (S,S)‐ 13bB is explained by different energetically favored conformations. Chirality 26:793–800, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
(1R,2S)-1-(3′-Chloro-4′-methoxyphenyl)-1,2- propanediol (Trametol, 3), a metabolite of the fungus Trametes sp. IVP-F640 and Bjerkandera sp. BOS55, was synthesized by employing Sharpless asymmetric dihydroxylation as the key step. Similarly, the (1R,2S)-isomer of 1-(3′,5′-dichloro-4′-methoxyphenyl)-1,2-propanediol (4), another metabolite of Bjerkandera sp. BOS55, was synthesized by asymmetric dihydroxylation.  相似文献   

11.
The optical resolution of (R,S)‐propranolol by the diastereomeric crystallization method was successfully performed using dehydroabietic acid (DHAA) as the resolving agent in methanol. The three important parameters: DHAA amount, solvent (methanol) amount, and crystallization temperature of diastereomeric salts were optimized employing the response surface methodology (RSM). When maintaining a lower limit of 95% for the purity of (S)‐propranolol, the optimal resolution conditions were a DHAA/(R,S)‐propranolol molar ratio of 1.1, solvent/(R,S)‐propranolol ratio of 16.2 mL.g‐1, and crystallization temperature of –5 °C. The desired (S)‐propranolol was prepared with 94.8% optical purity and 72.2% yield under the optimal conditions. Chirality 27:131–136, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Two diastereomeric series of hybrid γ,γ-peptides derived from conveniently protected derivatives of (1R,2S)- and (1S,2R)-3-amino-2,2-dimethylcyclobutane-1-carboxylic acid and cis-4-amino-l-proline joined in alternation have efficiently been prepared through convergent synthesis. High-resolution NMR experiments show that these compounds present defined conformations in solution affording very compact structures as the result of intra and inter residue hydrogen-bonded ring formation. (R,S)-cyclobutane containing peptides adopt more twisted conformations than (S,R) diastereomers. In addition, all these γ-peptides have high tendency to aggregation providing vesicles of nanometric size, which were stable when allowed to stand for several days, as verified by transmission electron microscopy.  相似文献   

13.
A general synthetic method for Fmoc-protected monomers of all four diastereomeric aminoethyl peptide nucleic acid (aepPNA) has been developed. The key reaction is the coupling of nucleobase-modified proline derivatives and Fmoc-protected aminoacetaldehyde by reductive alkylation. Oligomerization of the aepPNAs up to 10mer was achieved by Fmoc-solid phase peptide synthesis methodology. Preliminary binding studies of these aepPNA oligomers with nucleic acids suggested that the “cis-” homothymine aepPNA decamers with (2′R,4′R) and (2′S,4′S) configurations can bind, albeit with slow kinetics, to their complementary RNA [poly(adenylic acid)] but not to the complementary DNA [poly(deoxyadenylic acid)]. On the other hand, the trans homothymine aepPNA decamers with (2′R,4′S) and (2′S,4′R) configurations failed to form stable hybrid with poly(adenylic acid) and poly(deoxyadenylic acid). No hybrid formation could be observed between a mixed-base (2′R,4′R)-aepPNA decamer with DNA and RNA in both antiparallel and parallel orientations.  相似文献   

14.
Within the framework of a large-scale screening carried out on 146 yeasts of environmental origin, 16 strains (11% of the total) exhibited the ability to biotransform (4S)-(+)-carvone. Such positive yeasts, belonging to 14 species of 6 genera (Candida, Cryptococcus, Hanseniaspora, Kluyveromyces, Pichia and Saccharomyces), were thus used under different physiological state (growing, resting and lyophilised cells). Yields (expressed as% of biotransformation) varied from 0.14 to 30.04%, in dependence of both the strain and the physiological state of the cells. Products obtained from reduction of (4S)-(+)-carvone were 1S,4S- and 1R,4S-dihydrocarvone, (1S,2S,4S)-, (1S,2R,4S)- and (1R,2S,4S)-dihydrocarveol. Only traces of (1R,2R,4S)-dihydrocarveol were observed in a few strains. As far as the stereoselectivity of the biocatalysis, with the sole exception of a few strains, the use of yeasts determined the prevalent accumulation of 1S,4S-isomers [(1S,4S)-dihydrocarvone + (1S,2S,4S)-dihydrocarveol + (1S,2R,4S)-dihydrocarveol].The addition of glucose (acting as auxiliary substrate for cofactor-recycling system) to lyophilised yeast cells determined a considerable increase of biocatalytic activity: in particular, two strains showed a surprising increase of the% of biotransformation of (4S)-(+)-carvone (to values >98%).  相似文献   

15.
(+)-Isopiperitenone (100 mg l–1) was converted into (4S,6R)-6-hydroxy- and (4S,8R)-8,9-epoxyisopiperitenone, aside from the already known (+)-7-hydroxyisopiperitenone, by suspension cell culture of Mentha piperita. As (–)-isopiperitenone was hydroxylated similarly, this implies that the hydroxylating enzyme(s) have a broad substrate stereospecificity in regards to the stereochemistry at C4. (–)-(4R)-Carvone was reduced by the Mentha cells both at carbonyl and C1-C6 double bond to give (1R,2S,4R)-neodihydrocarveol and (1R,2R,4R)-dihydrocarveol with the former being the major product. (+)-(4S)-Carvone had a similar reduction pattern, producing (1S,2R,4S)-neodihydrocarveol and (1S,4S)-dihydrocarvone. Formation of these compounds indicates that the peppermint cell culture cannot only hydroxylate the allylic position but also reduce the ,-unsaturated carbonyl system.  相似文献   

16.
Asymmetric hydrolysis of acetate (10) of (±)-t-2,t-4-dimethyl-r-l-cyclohexanol with Bacillus subtilis var. niger gave (?)-(lS,2S,4S)-2,4-dimethyl-l-cyclohexanol (6a) and (+)-(1R,2R,4R)-acetate (10b) with high optical purities. Optically pure (?) and (+)-alcohols (6a and 6b) were prepared via corresponding 3,5-dinitrobenzoates. Oxidation of alcohols (6a and 6b) with chromic acid gave optically pure (?)-(2S,4S) and (+)-(2R,4R)-2,4-dimethyl-l-cyclohexanones (2a and 2b), respectively.  相似文献   

17.
A family of titanium(IV) alkoxo compounds [{Ti(O‐i‐Pr)2(OR)2}2] 1–4 prepared by alcohol exchange of Ti(O‐i‐Pr)4 and a chiral higher‐boiling alcohol [ROH = 1,2:3,4‐di‐O‐isopropylidene‐α‐d ‐galactopyranose, 1,2:5,6‐di‐O‐isopropylidene‐α‐d ‐glucofuranose, (1R,2S,5R)‐(?)‐menthol, (1Sendo)‐(?)‐borneol, (1S,2R,5S)‐(+)‐menthol, and (+)‐borneol] has been tested to evaluate their catalytic activity and stereoselectivity in the asymmetric epoxidation of cinnamyl alcohol. © 2005 Wiley‐Liss, Inc. Chirality  相似文献   

18.
(S)-Styrene oxide and (R)-1,2-phenylethanediol are chiral aromatic molecular building blocks used commonly as precursors to pharmaceuticals and other specialty chemicals. Two pathways have been engineered in Escherichia coli for their individual biosynthesis directly from glucose. The novel pathways each constitute extensions of the previously engineered styrene pathway, developed by co-expressing either styrene monooxygenase (SMO) or styrene dioxygenase (SDO) to convert styrene to (S)-styrene oxide and (R)-1,2-phenylethanediol, respectively. StyAB from Pseudomonas putida S12 was determined to be the most effective SMO. SDO activity was achieved using NahAaAbAcAd of Pseudomonas sp. NCIB 9816-4, a naphthalene dioxygenase with known broad substrate specificity. Production of phenylalanine, the precursor to both pathways, was systematically enhanced through a number of mutations, most notably via deletion of tyrA and over-expression of tktA. As a result, (R)-1,2-phenylethanediol reached titers as high as 1.23 g/L, and at 1.32 g/L (S)-styrene oxide titers already approach their toxicity limit. As with other aromatics, product toxicity was strongly correlated with a model of membrane accumulation and disruption. This study additionally demonstrates that greater flux through the styrene pathway can be achieved if its toxicity is addressed, as achieved in this case by reacting styrene to less toxic products. See accompanying commentary by Brian F. Pfleger DOI: 10.1002/biot.201300251  相似文献   

19.
L ‐Dibenzoyl tartaric acid was mono‐esterified with benzyl alcohol, and then chlorinated with SOCl2 to give (2S,3S)‐1‐(benzyloxy)‐4‐chloro‐1,4‐dioxobutane‐2,3‐diyl dibenzoate (Selector 1 ). (1R,2R)‐1,2‐Diphenylethylenediamine was mono‐functionalized with phenyl isocyanate and phenylene diisocyanate in sequence to give (1R,2R)‐1,2‐diphenyl‐2‐(3‐phenylureido)ethyl 4‐ isocyanatophenylurea (Selector 2 ). Two brush‐type chiral stationary phases (CSPs) of single selector were prepared by separately immobilizing selectors 1 and 2 on aminated silica gel. Selectors 1 and 2 were simultaneously immobilized on aminated silica gel to give a mixed selector CSP. The enantioseparation ability of these CSPs was studied. The CSP of selector 1 has strongest separation ability, while the enantioseparation ability of the mixed selector CSP is relatively lower. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
A novel simple synthetic protocol for the preparation of both (2S,4R)- and (2S,4S)-FGlu, applying Michael addition of methyl α-fluoroacrylate to a NiII complex of glycine Schiff base with BPB, was elaborated. In addition, same reaction of mentioned complex with ethyl α-bromoacrylate leads to the NiII complex of the Schiff base of BPB with (2S,4R)-4-bromo-glutamic acid monoester, that can be transformed into the corresponding complexes of 1-aminocyclopropane-1,2-dicarboxylic acid. The decomposition of the diastereoisomerically pure complexes leads to corresponding enantiomerically enriched (ee > 98%) amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号