首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The stable isotopes of nitrogen (δ15N) and carbon (δ13C) provide powerful tools for quantifying trophic relationships and carbon flow to consumers in food webs; however, the isotopic signatures of organisms vary within a lake. Assessment of carbon and nitrogen isotopic signatures in a suite of plants, invertebrates, and fishes in Lake Kyoga, indicated significant variation between two sites for δ13C (paired t = 6.305; df = 14, P < 0.001 and δ15N paired t = 1.292; df = 14; P < 0.05). The fish fauna in Bukungu was generally more 13C enriched (mean δ13C = –16.37 ± 1.64‰) than in Iyingo (mean δ13C = –20.80 ± 2.41‰) but more δ15N depleted (mean δ15N = 5.57 ± 0.71‰) than in Iyingo (mean δ15N = 6.92 ± 0.83‰). The simultaneous shifts in phytoplankton and consumer signatures confirmed phytoplankton as the major source of carbon for the food chain leading to fish. Limited sampling coverage within lakes may affect lake wide stable isotope signatures, and the same error is transferred into trophic position estimation. Consideration of potential intra‐lake spatial variability in isotope ratios and size is essential in evaluating the spatial and trophic structure of fish assemblages.  相似文献   

2.
In the present study, Xyrichtys novacula (Labridae) were sampled at five locations around the islands of Ibiza and Formentera (western Mediterranean Sea). Isotopic signatures of δ13C, δ15N and the C:N ratio were analysed in relation to locality, sex and size differences. δ13C and δ15N partitioning was also studied in the reproductive spawning period. There were significant differences in the δ13C signature between localities for both sexes, but not for δ15N. Sex differences were also found with a mean ±s.e . value of ?17·38 ± 0·06‰δ13C and 8·36 ± 0·05‰δ15N for females and ?17·17 ± 0·07‰δ13C and 8·80 ± 0·06‰δ15N for males. Increasing total length in both sexes was positively correlated with δ15N enrichment and a significant positive linear regression was established for both variables. During the reproductive spawning period, there were changes in δ13C fractioning with enrichment in postspawning females and males (with respect to prespawning and spawning periods) and δ15N impoverishment in postspawning females (with respect to prespawning and spawning periods). Xyrichtys novacula uses local food sources, as confirmed by δ13C and δ15N, and females and males use different food sources, thus avoiding intraspecific competition. This was confirmed by δ15N enrichment as size increased. Spawning leads to special requirements for gonad maturation, which is reflected in the isotopic signatures for both sexes.  相似文献   

3.
The trophic discrimination factor (TDF) of nitrogen isotopes (15N/14N) within amino acids, between a stream‐dwelling dobsonfly larva (Protohermes grandis: Megaloptera; Corydalidae) and its diet (chironomid larvae), was determined in controlled feeding experiments. Last‐instar larvae of P. grandis were collected from the Yozawa‐gawa River, central Japan, and reared in the laboratory. After fed to satiation for 1 month, one group of larvae was each fed one living chironomid larva per day for 4 weeks, while a second group was starved for 8 weeks. The larvae were harvested at intervals and the nitrogen isotopic composition of glutamic acid (δ15NGlu) and phenylalanine (δ15NPhe) were determined to calculate TDF. The mean TDF of satiated and starved larvae were 7.1‰ ± 0.5‰ (= 3) and 7.3‰ ± 0.5‰ (= 5), respectively. Thus, the TDF for P. grandis larvae in this study was similar to that reported for other arthropods (approximately 7‰) and was independent of satiation or starvation. A previous study of wild P. grandis larvae, based on the δ15NGlu and δ15NPhe values, estimated its trophic position (TP) as approximately 2.0 ± 0.1 (= 5), a low value close to that of algivores, although they are generally characterized as carnivores (usually accepted as TP ≥ 3). The TDF for P. grandis larvae suggests that their low TPs in nature were caused by incorporation of vascular plant‐derived amino acids (with a different δ15N profile from that of algae) and not by an unusually low TDF or by the effects of the satiation/starvation on amino acid metabolism.  相似文献   

4.
Ecological diversity has been reported for killer whales (Orcinus orca) throughout the North Atlantic but patterns of prey specialization have remained poorly understood. We quantify interindividual dietary variations in killer whales (n = 38) sampled throughout the year in 2017–2018 in northern Norway using stable isotopic nitrogen (δ15N: 15N/14N) and carbon (δ13C: 13C/12C) ratios. A Gaussian mixture model assigned sampled individuals to three differentiated clusters, characterized by disparate nonoverlapping isotopic niches, that were consistent with predatory field observations: seal‐eaters, herring‐eaters, and lumpfish‐eaters. Seal‐eaters showed higher δ15N values (mean ± SD: 12.6 ± 0.3‰, range = 12.3–13.2‰, n = 10) compared to herring‐eaters (mean ± SD: 11.7 ± 0.2‰, range = 11.4–11.9‰, n = 19) and lumpfish‐eaters (mean ± SD: 11.6 ± 0.2‰, range = 11.3–11.9, n = 9). Elevated δ15N values for seal‐eaters, regardless of sampling season, confirmed feeding at high trophic levels throughout the year. However, a wide isotopic niche and low measured δ15N values in the seal‐eaters, compared to that of whales that would eat solely seals (δN‐measured = 12.6 vs. δN‐expected = 15.5), indicated a diverse diet that includes both fish and mammal prey. A narrow niche for killer whales sampled at herring and lumpfish seasonal grounds supported seasonal prey specialization reflective of local peaks in prey abundance for the two fish‐eating groups. Our results, thus, show differences in prey specialization within this killer whale population in Norway and that the episodic observations of killer whales feeding on prey other than fish are a consistent behavior, as reflected in different isotopic niches between seal and fish‐eating individuals.  相似文献   

5.
Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) were used to investigate feeding patterns of larval and early juvenile pelagic fishes in slope waters of the Gulf of Mexico. Contribution of organic matter supplied to fishes and trophic position within this pelagic food web was estimated in 2007 and 2008 by comparing dietary signatures of the two main producers in this ecosystem: phytoplankton [based on particulate organic matter (POM)] and Sargassum spp. Stable isotope ratios of POM and pelagic Sargassum spp. were significantly different from one another with δ13C values of POM depleted by 3–6‰ and δ15N values enriched by 2 relative to Sargassum spp. Stable isotope ratios were significantly different among the five pelagic fishes examined: blue marlin Makaira nigricans, dolphinfish Coryphaena hippurus, pompano dolphinfish Coryphaena equiselis, sailfish Istiophorus platypterus and swordfish Xiphias gladius. Mean δ13C values ranged almost 2 among fishes and were most depleted in I. platypterus. In addition, mean δ15N values ranged 4–5 with highest mean values found for both C. hippurus and C. equiselis and the lowest mean value for M. nigricans during both years. Increasing δ13C or δ15N with standard length suggested that shifts in trophic position and diet occurred during early life for several species examined. Results of a two‐source mixing model suggest approximately an equal contribution of organic matter by both sources (POM = 55%; pelagic Sargassum spp. = 45%) to the early life stages of pelagic fishes examined. Contribution of organic matter, however, varied among species, and sensitivity analyses indicated that organic source estimates changed from 2 to 13% for a δ13C fractionation change of ±0·25‰ or a δ15N fractionation change of ± 1·0‰ relative to original fractionation values.  相似文献   

6.
Determining how marine predators partition resources is hindered by the difficulty in obtaining information on diet and distribution. Stable isotopes (SI) of carbon (13C/12C, δ13C) and nitrogen (15N/14N, δ15N) provide a two‐dimensional estimate of the dietary space of consumers; an animal's isotopic composition is directly influenced by what they consume and where they feed. Harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals are abundant phocid species found in the North Atlantic. We measured and contrasted SI values between seals sampled at nearshore and offshore sites to test for effects of sampling location, sex, age‐class, and body size to gain insight into how these species partition space and prey resources. In addition we contrasted previously published results for gray seals (Halichoerus grypus). Isotope values differed significantly by age class and location in harp and hooded seals. We found significant differences in SI values (mean δ13C and δ15N ± SE) between all species. Hooded seals, a continental shelf‐edge, deep‐diving species, exhibited low SI values (juveniles: ?20.9‰ ± 0.03‰, 13.36‰ ± 0.05‰; adults: ?20.41‰ ± 0.03‰, 14.81‰ ± 0.04‰) characteristic of feeding on meso‐ to bathypelagic prey. Harp seals, which dive to moderate depths primarily on the shelf had intermediate SI values (juveniles: ?20.53‰ ± 0.01‰, 13.91‰ ± 0.01‰; adults: ?20.13‰ ± 0.01‰, 14.96‰ ± 0.01‰) characteristic of feeding on epipelagic prey, whereas gray seals, which feed on or near the sea floor in shallow shelf waters, had high SI values (juveniles: ?19.74‰ ± 0.04‰, 17.51‰ ± 0.05‰; adults: ?18.86‰ ± 0.01‰, 17.23‰ ± 0.02‰) characteristic of feeding on demersal prey. In all species, δ13C values increased with body size and age in the same manner, indicating that seals exploit or forage in deeper habitats as they get larger and older. We hypothesize that the consistent ontogenetic shift in foraging niche, despite large differences between species in their diving behavior, geographic range and habitat use, not only reflects increased access to different prey due to increased diving capacity, but a progressive adjustment to balance energy budgets by reducing foraging costs.  相似文献   

7.
1. An increase in human population and associated changes in land use have caused an increase in groundwater nitrate concentrations throughout central Florida. Within the region, this nitrate‐laden groundwater returns to the surface via numerous large springs that serve as the origin of flow for many coastal streams and rivers. These rivers can exhibit strong nitrate gradients because of the high nutrient uptake potential of the rivers. 2. We hypothesised that downstream declines in nitrate concentrations would be manifested spatially as increases in the δ15N of the residual pool of nitrate, macrophytes and periphyton as a consequence of isotopic fractionation associated with preferential use of 14NO3. This hypothesis was tested in two spring‐fed river systems, the Chassahowitzka and Homosassa rivers, along Florida's central Gulf of Mexico coast. 3. In general, δ15N values of nitrate, macrophytes and periphyton increased with decreasing fraction of nitrate remaining in each of the two study systems. The fractionation associated with nitrate uptake by macrophytes and associated periphyton was determined from the relationship between δ15N of both constituents of the macrophyte community and the fraction of nitrate removed from the system. Values for fractionation by macrophytes and periphyton ranged from 1.9‰ to 3.6‰ and from 0.7‰ to 2.5‰, respectively.  相似文献   

8.
To gain a better understanding on the trophic ecology of New Granada sea catfish, Ariopsis canteri, and their linkage to mangroves, nitrogen and stable carbon isotopes (δ15N and δ13C), as well as Bayesian mixing models, were used to explore trophic dynamics and potential ontogenic feeding shifts across different size classes: class I (8–20 cm), class II (21–32 cm) and class III (>32 cm). The study area was the estuary of the Atrato River Delta, where information about fish ecology is scarce. The δ13C of size class I was lower (mean ± s.d . = −24.96 ± 0.69‰) than that of size classes II (−22.20 ± 0.90‰) and III (−22.00 ± 1.96‰). The δ15N of size class I was lower (mean ± s.d . = 8.50 ± 0.67‰) than that of size classes II (9.77 ± 0.60‰) and III (10.00 ± 0.66‰). Body size was positively and significantly correlated to δ15N and δ13C. Individuals with LT > 32 cm presented the highest estimated trophic position (3.8). Five-source mixing models indicated that for class I, the mean estimated contribution of macroalgae was the highest (6%–57% c.i. ), and for classes II and III, the mean estimated contribution of macrophytes was the highest (3%–53% c.i. and 4%–53% c.i. , respectively). Ontogenetic feeding shifts of A. canteri were confirmed evidencing decreasing intraspecific competition between small and large individuals. Results suggest that mangroves are a nursery and feeding ground habitat for this species and that mangroves support A. canteri mainly due to the substrate/habitat that supports sources in the food webs. These results can be used in ecosystem-based fishery management focused on the protection of extensive mangrove areas in the southern Caribbean Sea.  相似文献   

9.
The vaquita (Phocoena sinus) is the world's most endangered cetacean and has experienced a 60% reduction in the size of its population in the past decade. Knowledge of its basic ecology is essential for developing successful management plans to protect and conserve this species. In this study, we identified vaquita foraging areas by creating an isoscape of the Upper Gulf of California (UGC) based on sediment and zooplankton carbon (δ13C) and nitrogen (δ15N) isotope values. Our results confirm that this species is confined to the western region of the UGC, which is characterized by relatively high δ15N values (sediments: 10.2‰ ± 2.0‰, zooplankton: 15.8‰ ± 1.3‰), higher sea surface temperatures (~16°C–25°C), higher concentrations of silt in sediments, and the highest turbidity. In contrast, the eastern region of the UGC had relatively low sediment (7.7‰ ± 2.4‰) and zooplankton (14.6‰ ± 1.0‰) δ15N values, and the highest concentrations of sand in sediments. Our approach is an effective use of marine isoscapes over a small spatial scale (<200 km) to identify the environmental characteristics that define the critical habitat for an extremely endangered marine mammal.  相似文献   

10.
We determined the magnitude of isotopic fractionation of carbon and nitrogen stable isotope ratios (as enrichment factors, Δδ13C and Δδ15N, respectively) between the tissues and diets of captive Japanese macaques (Macaca fuscata) using a controlled feeding experiment, to provide basic data for reconstructing their feeding habits. The Δδ13C and Δδ15N values, respectively, were 0.9 ± 0.2 ‰ (mean ± standard deviation, SD) and 3.0 ± 0.3 ‰ for whole blood, 1.3 ± 0.2 ‰ and 4.3 ± 0.3 ‰ for plasma, and 0.8 ± 0.2 ‰ and 3.0 ± 0.2 ‰ for red blood cells. However, the Δδ13C and Δδ15N values for hair were 2.8 ± 0.3 ‰ and 3.4 ± 0.2 ‰, respectively. No difference was detected in the δ13C and δ15N values of hair sampled from different parts of the body. We investigated the effects of diet on δ13C in growing hair by alternating the diet of the macaques each month between two diets that differed markedly in δ13C. Hair regrown after shaving repeatedly recorded the δ13C of the diet consumed during the time of hair growth. On the other hand, hair naturally grown during the diet-change experiment did not show a clear pattern. One possible reason is that the hair had grown abnormally under unnatural indoor conditions and showed complicated isotope signatures. To reconstruct the long-term feeding history of Japanese macaques, we need to further clarify the relationships between the stable isotope signature of diet and various body tissues.  相似文献   

11.
The natural 15N abundance (δ15N) of epiphytes and its N sources were studied in the canopy of a lowland rainforest in Costa Rica. Vascular and non‐vascular epiphytes and canopy soils were collected from four canopy zones and analysed for N contents and δ15N signals. In addition, the N concentrations and δ15N signatures of bulk precipitation, throughfall and stemflow were measured during the wet and the dry season. The δ15N values of epiphyte leaves decreased significantly from the lower zones (means of ?3·9 and ?4·3‰) to the upper zones (means of ?5·4 and ?6·1‰) of the canopy. In contrast, δ15N signatures of canopy soils (average ?0·3‰) differed little between the zones. Bulk deposition was enriched in 15N (+4·3‰) compared to all other potential N sources and was higher than throughfall and stemflow (+0·5 to ?1·3‰). δ15N values of atmospheric deposition were inversely related to those of the epiphyte leaves, whereas N isotopic composition of canopy soils did not vary significantly. Consequently, it is concluded that the variations in foliar N isotope composition of epiphytes were not simply caused by utilization of isotopically different N sources, but by different 15N discrimination during N acquisition.  相似文献   

12.
1. The variability in the stable isotope signatures of carbon and nitrogen (δ13C and δ15N) in different phytoplankton taxa was studied in one mesotrophic and three eutrophic lakes in south‐west Finland. The lakes were sampled on nine to 16 occasions over 2–4 years and most of the time were dominated by cyanobacteria and diatoms. A total of 151 taxon‐specific subsamples covering 18 different phytoplankton taxa could be isolated by filtration through a series of sieves and by flotation/sedimentation, followed by microscopical identification and screening for purity. 2. Substantial and systematic differences between phytoplankton taxa, seasons and lakes were observed for both δ13C and δ15N. The values of δ13C ranged from ?34.4‰ to ?5.9‰ and were lowest in chrysophytes (?34.4‰ to ?31.3‰) and diatoms (?30.6‰ to ?26.6‰). Cyanobacteria were most variable (?32.4‰ to ?5.9‰), including particularly high values in the nostocalean cyanobacterium Gloeotrichia echinulata (?14.4‰ to ?5.9‰). For δ13C, the taxon‐specific amplitude of temporal changes within a lake was usually <1–8‰ (<1–4‰ for microalgae alone and <1–8‰ for cyanobacteria alone), whereas the amplitude among taxa within a water sample was up to 31‰. 3. The values of δ15N ranged from ?2.1‰ to 12.8‰ and were high in chrysophytes, dinophytes and diatoms, but low in the nitrogen‐fixing cyanobacteria Anabaena spp., Aphanizomenon spp. and G. echinulata (?2.1‰ to 1.6‰). Chroococcalean cyanobacteria ranged from ?1.4‰ to 8.9‰. For δ15N, the taxon‐specific amplitude of temporal changes within a lake was 2–6‰, (2–6‰ for microalgae alone and 2–4‰ for cyanobacteria alone) and the amplitude among taxa within a water sample was up to 11‰. 4. The isotopic signatures of phytoplankton changed systematically with their physical and chemical environment, most notably with the concentrations of nutrients, but correlations were non‐systematic and site‐specific. 5. The substantial variability in the isotopic signatures of phytoplankton among taxa, seasons and lakes complicates the interpretation of isotopic signatures in lacustrine food webs. However, taxon‐specific values and seasonal patterns showed some consistency among years and may eventually be predictable.  相似文献   

13.
A complementary approach of stomach content and stable isotope analyses was used to characterize the foraging ecology and evaluate niche overlap between pygmy (Kogia breviceps) and dwarf (K. sima) sperm whales stranded on the U.S. mid‐Atlantic coast between 1998 and 2011. Food habits analysis demonstrated both species were primarily teuthophagous, with 35 species of cephalopods, and 2 species of mesopelagic fishes represented in their overall diets. Pianka's Index of niche overlap suggested high overlap between whale diets (On = 0.92), with squids from the families Histioteuthidae, Cranchidae, and Ommastrephidae serving as primary prey. Pygmy sperm whales consumed slightly larger prey sizes (mean mantle length [ML] = 10.8 cm) than dwarf sperm whales (mean ML = 7.8 cm). Mean prey sizes consumed by pygmy sperm whales increased with growth, but showed no trend in dwarf sperm whales. Significant differences were not detected in δ15N and δ13C values of muscle tissues from pygmy (10.8‰ ± 0.5‰, ?17.1‰ ± 0.6‰), and dwarf sperm whales (10.7‰ ± 0.5‰, ?17.0‰ ± 0.4‰), respectively. Isotopic niche widths also did not differ significantly and dietary overlap was high between the two species. Results suggest the feeding ecologies of the pygmy and dwarf sperm whales are similar and both species occupy equivalent trophic niches in the region.  相似文献   

14.
General linear models (GLMs) were used to determine the relative importance of interspecific, ontogenetic and spatial effects in explaining variability in stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) of the co‐occurring Cape hakes Merluccius capensis and Merluccius paradoxus off South Africa. Significant GLMs were derived for both isotopes, explaining 74 and 56% of observed variance in Merluccius spp. δ15N and δ13C, respectively. Spatial effects (west or south coast) contributed most towards explaining variability in the δ15N model, with Merluccius spp. off the west coast having higher (by c. 1·4‰) δ15N levels than Merluccius spp. off the south coast. Fish size and species were also significant in explaining variability in δ15N, with both species showing significant linear increases in δ15N with size and M. capensis having higher (by c. 0·7‰) δ15N values than M. paradoxus. Species and coast explained most and similar amounts of variability in the δ13C model, with M. capensis having higher (by c. 0·8‰) δ13C values than M. paradoxus, and values being lower (by c. 0·7‰) for fishes off the west coast compared with the south coast. These results not only corroborate the knowledge of Merluccius spp. feeding ecology gained from dietary studies, in particular the ontogenetic change in trophic level corresponding to a changing diet, but also that M. capensis feeds at a slightly higher trophic level than M. paradoxus. The spatial difference in Merluccius spp. δ15N appears due to a difference in isotopic baseline, and not as a result of Merluccius spp. feeding higher in the food web off the west than the south coast, and provides new evidence that corroborates previous observations of biogeographic differences in isotopic baselines around the South African coast. This study also provides quantitative data on the relative trophic level and trophic width of Cape hakes over a large size range that can be used in ecosystem models of the southern Benguela.  相似文献   

15.
The farming of shrimp is developing quickly worldwide, and recently, ingredients such as seaweeds in low proportion (25 to 4 %), incorporated into the commercial food, have been shown to improve the shrimp productive variables. The change of commercial foods to commercial feed with a proportion of natural food, and finally, to natural food has been little and simultaneously evaluated. The aim of our study was to determine the relative contribution of dietary carbon to the growth of Litopenaeus vannamei fed with a proportion of 4 % Sargassum13C = ?20.9?±?0.05?‰), 4 % Ulva13C = ?20.6?±?0.6?‰) meal, and a control diet (δ13C?=??22.6?±?0.2?‰) in 60-L tanks for 30 days, and finally, with the green seaweed Ulva spp. (δ13C = ?13.2?±?0.25?‰) and Ulva meal (δ13C = ?14.5?±?0.6?‰) in open-air ponds for 120 days, by measuring δ13C for each of the foods and in the muscle of shrimp. After 15 days, the rates of metabolic turnover (Δ13C = δ13Cshrimp ? δ13Cfood) were constant until the end of the experiment in the tanks. The muscle of shrimp assimilated carbon from all diets, which demonstrated the potential use of combined diets and the optimization of their use in diets containing seaweed. Our data will be useful in future interpretations of field and laboratory isotopic values for this species.  相似文献   

16.
1. To assess the use of stable nitrogen isotopes (δ15N) for reconstructing trophic relationships in planktonic food webs, crustacean zooplankton species and pelagic dissolved and particulate matter were analysed in 14 subarctic lakes in northern Sweden. The lakes are situated along an altitudinal gradient and show a substantial variation in nutrient content and energy mobilization by bacterioplankton and phytoplankton. 2. The δ15N of dissolved and particulate matter was comparatively low, suggesting efficient N recycling and low losses of depleted N from the pelagic zone of these unproductive lakes. 3. Copepods had a systematically higher δ15N than cladocerans, with an average difference of 3.1–4.9‰ within lakes, implying different trophic positions of the two groups. Comparisons of nitrogen pools and energy fluxes suggest that the low cladoceran δ15N was a result of feeding on bacteria. 4. The difference in δ15N between copepods and cladocerans declined with decreasing bacterioplankton production among lakes, due either to increasing trophic isotope fractionation or decreasing relative importance of bacteria in the diet of cladocerans.  相似文献   

17.
Changes in the world's oceans have altered nutrient flow, and affected the viability of predator populations when prey species become unavailable. These changes are integrated into the tissues of apex predators over space and time and can be quantified using stable isotopes in the inert feathers of historical and contemporary avian specimens. We measured δ13C and δ15N values in Flesh‐footed Shearwaters (Puffinus carneipes) from Western and South Australia from 1936–2011. The Flesh‐footed Shearwaters more than doubled their trophic niche (from 3.91 ± 1.37 ‰2 to 10.00 ± 1.79 ‰2), and dropped an entire trophic level in 75 years (predicted δ15N decreased from +16.9 ‰ to + 13.5 ‰, and δ13C from ?16.9 ‰ to ?17.9 ‰) – the largest change in δ15N yet reported in any marine bird, suggesting a relatively rapid shift in the composition of the Indian Ocean food web, or changes in baseline δ13C and δ15N values. A stronger El Niño‐Southern Oscillation results in a weaker Leeuwin Current in Western Australia, and decreased Flesh‐footed Shearwater δ13C and δ15N. Current climate forecasts predict this trend to continue, leading to increased oceanic ‘tropicalization' and potentially competition between Flesh‐footed Shearwaters and more tropical sympatric species with expanding ranges. Flesh‐footed Shearwater populations are declining, and current conservation measures aimed primarily at bycatch mitigation are not restoring populations. Widespread shifts in foraging, as shown here, may explain some of the reported decline. An improved understanding and ability to mitigate the impacts of global climactic changes is therefore critical to the long‐term sustainability of this declining species.  相似文献   

18.
Compound‐specific stable isotope analysis (CSIA) of amino acids (AA) has rapidly become a powerful tool in studies of food web architecture, resource use, and biogeochemical cycling. However, applications to avian ecology have been limited because no controlled studies have examined the patterns in AA isotope fractionation in birds. We conducted a controlled CSIA feeding experiment on an avian species, the gentoo penguin (Pygoscelis papua), to examine patterns in individual AA carbon and nitrogen stable isotope fractionation between diet (D) and consumer (C) (Δ13CC‐D and Δ15NC‐D, respectively). We found that essential AA δ13C values and source AA δ15N values in feathers showed minimal trophic fractionation between diet and consumer, providing independent but complimentary archival proxies for primary producers and nitrogen sources respectively, at the base of food webs supporting penguins. Variations in nonessential AA Δ13CC‐D values reflected differences in macromolecule sources used for biosynthesis (e.g., protein vs. lipids) and provided a metric to assess resource utilization. The avian‐specific nitrogen trophic discrimination factor (TDFGlu‐Phe = 3.5 ± 0.4‰) that we calculated from the difference in trophic fractionation (Δ15NC‐D) of glutamic acid and phenylalanine was significantly lower than the conventional literature value of 7.6‰. Trophic positions of five species of wild penguins calculated using a multi‐TDFGlu‐Phe equation with the avian‐specific TDFGlu‐Phe value from our experiment provided estimates that were more ecologically realistic than estimates using a single TDFGlu‐Phe of 7.6‰ from the previous literature. Our results provide a quantitative, mechanistic framework for the use of CSIA in nonlethal, archival feathers to study the movement and foraging ecology of avian consumers.  相似文献   

19.
In this study, components of the food-web in Macao wetlands were quantified using stable isotope ratio techniques based on carbon and nitrogen values. The δ13C and δ15N values of particulate organic matter (δ13CPOM and δ15NPOM, respectively) ranged from ?30.64 ± 1.0 to ?28.1 ± 0.7 ‰, and from ?1.11 ± 0.8 to 3.98 ± 0.7 ‰, respectively. The δ13C values of consumer species ranged from ?33.94 to ?16.92 ‰, showing a wide range from lower values in a freshwater lake and inner bay to higher values in a mangrove forest. The distinct dietary habits of consumer species and the location-specific food source composition were the main factors affecting the δ13C values. The consumer 15N-isotope enrichment values suggested that there were three trophic levels; primary, secondary, and tertiary. The primary consumer trophic level was represented by freshwater herbivorous gastropods, filter-feeding bivalves, and plankton-feeding fish, with a mean δ15N value of 5.052 ‰. The secondary consumer level included four deposit-feeding fish species distributed in Fai Chi Kei Bay and deposit-feeding gastropods in the Lotus Flower Bridge flat, with a mean δ15N value of 6.794 ‰. The tertiary consumers group consisted of four crab species, one shrimp species, and four fish species in the Lotus Flower Bridge Flat, with a mean δ15N value of 13.473 ‰. Their diet mainly comprised organic debris, bottom fauna, and rotten animal tissues. This study confirms the applicability of the isotopic approach in food web studies.  相似文献   

20.
The amounts, sources and relative ages of inorganic and organic carbon pools were assessed in eight headwater streams draining watersheds dominated by either forest, pasture, cropland or urban development in the lower Chesapeake Bay region (Virginia, USA). Streams were sampled at baseflow conditions six different times over 1 year. The sources and ages of the carbon pools were characterized by isotopic (δ13C and ?14C) analyses and excitation emission matrix fluorescence with parallel factor analysis (EEM–PARAFAC). The findings from this study showed that human land use may alter aquatic carbon cycling in three primary ways. First, human land use affects the sources and ages of DIC by controlling different rates of weathering and erosion. Relative to dissolved inorganic carbon (DIC) in forested streams which originated primarily from respiration of young, 14C-enriched organic matter (OM; δ13C = ?22.2 ± 3 ‰; ?14C = 69 ± 14 ‰), DIC in urbanized streams was influenced more by sedimentary carbonate weathering (δ13C = ?12.4 ± 1 ‰; ?14C = ?270 ± 37 ‰) and one of pasture streams showed a greater influence from young soil carbonates (δ13C = ?5.7 ± 2.5 ‰; ?14C = 69 ‰). Second, human land use alters the proportions of terrestrial versus autochthonous/microbial sources of stream water OM. Fluorescence properties of dissolved OM (DOM) and the C:N of particulate OM (POM) suggested that streams draining human-altered watersheds contained greater relative contributions of DOM and POM from autochthonous/microbial sources than forested streams. Third, human land uses can mobilize geologically aged inorganic carbon and enable its participation in contemporary carbon cycling. Aged DOM (?14C = ?248 to ?202 ‰, equivalent14C ages of 1,811–2,284 years BP) and POM (?14C = ?90 to ?88 ‰, 14C ages of 669–887 years BP) were observed exclusively in urbanized streams, presumably a result of autotrophic fixation of aged DIC (?297 to ?244 ‰, 14C age = 2,251–2,833 years BP) from sedimentary shell dissolution and perhaps also watershed export of fossil fuel carbon. This study demonstrates that human land use may have significant impacts on the amounts, sources, ages and cycling of carbon in headwater streams and their associated watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号