首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
固定化脂肪酶合成维生素A棕榈酸酯   总被引:2,自引:0,他引:2  
研究了有机溶剂中脂肪酶催化维生素A棕榈酸酯的合成工艺。采用维生素A醋酸酯和棕榈酸乙酯作为反应底物, 对催化合成维生素A棕榈酸酯反应介质进行了比较, 同时对影响合成维生素A棕榈酸酯反应的因素(温度、初始水含量、底物摩尔比、反应时间和酶量等)进行了探讨, 优化了反应条件: 在10 mL的石油醚中, 体系初始含水量0.2%(体积比V/V), 0.100 g 维生素A醋酸酯和0.433 g 棕榈酸乙酯在酶量为1.1 g的固定化酶催化下, 在30°C、190 r/min下反应12 h, 转化率可以达到83%, 固定化酶可连续使用5次以上。  相似文献   

2.
生物法合成维生素C棕榈酸酯   总被引:7,自引:0,他引:7  
研究了不同的脂肪酶在有机溶剂体系中催化合成L-维生素C棕榈酸酯的反应。针对维生素C在有机溶剂中溶解度较低这一问题,对催化合成维生素C棕榈酸酯反应的脂肪酶和反应介质进行比较,同时对影响合成维生素C棕榈酸酯反应的因素(温度、底物浓度、底物摩尔比、反应时间和酶量等)进行探讨,优化了反应条件:在10mL的丙酮中,1.094g棕榈酸与0.107g维生素C在酶量为20%(W/W, 固定化酶/维生素C)的固定化脂肪酶催化下,初始含0.4nm分子筛20%,温度为60℃,转速为200r/min,反应48h转化率可以达到80%,产物维生素C棕榈酸酯的浓度可达20g/L。  相似文献   

3.
本文对脂肪酶利用维生素A醋酸酯作为底物催化合成维生素A棕榈酸酯的分离纯化作了研究。确定了维生素A棕榈酸酯的萃取条件:萃取体系为乙醇/水和正己烷,乙醇浓度80%,乙醇/水与正己烷的体积比为5:1,萃取温度-20℃,萃取级数为5次,最终维生素A棕榈酸酯质量分数达到96.4%。萃取后,利用硅胶柱层析进一步纯化,条件为:反应液1mL上硅胶柱层析(硅胶200~300目,柱20mm×280mm),流动相为乙酸乙酯/石油醚(1:9,V/V),流速为68.5mL/h,5mL/管收集洗脱液,并用高效液相色谱(HPLC)鉴定,结果表明硅胶柱层析可以完全分离维生素A醋酸酯和维生素A棕榈酸酯。  相似文献   

4.
讨论了以固定化的黑曲霉脂肪酶为催化剂,以抗坏血酸和棕榈酸甲酯为底物的酯交 换反应及其影响因素.考察了反应温度、维生素C与棕榈酸的摩尔比、反应时间、溶剂的选 择、酶量等因素对催化棕榈酸抗坏血酸酯反应的影响规律.结果表明,摇床转速200r/min、 叔丁醇作溶剂、反应温度为55℃底物棕榈酸甲酯与Vc的摩尔比为2:1、反应时间为28h、脂肪酶浓度为4%,反应转化率为42.1%,产品纯度95%.  相似文献   

5.
为提高酶促合成L-抗坏血酸棕榈酸酯的效果,采用物理吸附法,将黑曲霉脂肪酶(Aspergillus niger lipase,ANL)固定在瓶壁、脱脂棉上,制得固定化酶(器壁-ANL、脱脂棉-ANL),并催化L-抗坏血酸(Vc)与棕榈酸酯化反应合成Vc棕榈酸酯。结果发现,在37℃、转速160 r/min、Vc和棕榈酸摩尔比1∶3、反应24 h、丙酮为溶剂的条件下,器壁-ANL和脱脂棉-ANL催化反应的摩尔转化率分别为87.3%和90.4%。同样条件下,酶粉催化反应转化率不足36%。底物摩尔比为1∶1,器壁-ANL、脱脂棉-ANL催化反应的转化率分别为51.5%和62.2%。从生产的角度来看,脱脂棉-ANL催化,丙酮为溶剂、底物等摩尔比的反应体系具有低碳、环保和产物易提纯的特性,通过进一步提高转化率,更具工业应用价值。  相似文献   

6.
展示酶的酵母细胞作为全细胞催化剂,既具有固定化酶的优点,又有制备简单、成本较低的特点。本研究将细胞表面展示南极假丝酵母脂肪酶B(Candida antarctica lipase B,CALB)的重组毕赤酵母用于非水相中催化合成短链芳香酯,通过滴定和气相色谱的方法测定底物酸的转化率,从底物的碳链长度、醇的结构、酵母冻干粉的添加量、底物浓度及底物的酸醇摩尔比等方面考察了展示CALB的毕赤酵母全细胞催化合成短链芳香酯的特性。研究结果表明:该全细胞催化剂可催化C10以下的酸和醇直接酯化合成多种短链芳香酯,酸的转化率达到90%以上;其中己酸和乙醇为酶的最适底物;酵母冻干粉的添加量20g/L(306.0U/g-drycell)、己酸浓度0.8mol/L、酸醇摩尔比1:1.1是合成己酸乙酯的最佳条件。在此条件下反应1.5h,己酸的转化率达到97.3%。在现有的关于脂肪酶非水相催化合成短链芳香酯的报道中,该全细胞催化剂显示出较好的底物耐受性以及较高的催化反应速率。因此,展示CALB的毕赤酵母全细胞催化剂在合成短链芳香酯方面具有较大的商业化应用潜能。  相似文献   

7.
对催化合成L-抗坏血酸棕榈酸酯反应的脂肪酶(NOVO435、MML、LIPOLASE、PPL)和反应介质进行比较,得出最佳酶种为NOVO435,最佳介质为叔戊醇;同时对影响合成L抗坏血酸棕榈酸酯反应的初速度的因素(转速、温度、水分含量、酶浓度和底物浓度)进行了探讨,确定了最适反应条件:转速为200r/min,温度为55℃,水分含量为0,酶浓度为12.5%。  相似文献   

8.
以化学改性后的壳聚糖为载体固定假丝酵母99-125脂肪酶,研究了不同的活化剂对壳聚糖表面羟基基团的活化程度,及以活化后壳聚糖为载体采用不同固定化方法对假丝酵母脂肪酶固定效果的影响。结果表明1-乙基-3-(3-甲基氨基)丙基碳二亚胺可有效的活化壳聚糖表面羟基,活化后的壳聚糖表面氨基与戊二醛偶联后形成的壳聚糖为良好的脂肪酶固定化载体,其固定脂肪酶的水解活力可高达86.8U/g。此外,还对影响固定化进程中的各种因素进行了研究,确定最优条件,比较了固定化前后酶的热稳定性、有机溶剂稳定性及最适反应温度。并考察了该固定化脂肪酶催化合成棕榈酸十六酯的操作稳定性,结果表明,连续反应16批之后棕榈酸十六酯的转化率仍能达到85%以上。  相似文献   

9.
1,3-二油酸-2-棕榈酸三甘酯是一种重要的人乳脂替代品,其脂肪酸组成及脂肪酸在甘油三酯中的位置分布均与天然母乳脂非常相似,将其添加到婴幼儿奶粉中,可确保为婴儿提供接近母乳的甘油三酯营养供应。因此,采用绿色酶催化技术开发1,3-二油酸-2-棕榈酸三甘酯有着非常广阔的前景。概述了1,3-二油酸-2-棕榈酸三甘酯酶催化合成技术的研究进展,对合成工艺中的反应底物、酶、反应介质、反应类型以及催化反应中存在的问题进行了探讨。  相似文献   

10.
非水体系中脂肪酶催化合成乳酸乙基糖苷酯的工艺研究   总被引:3,自引:0,他引:3  
在非水体系中 ,通过固定化脂肪酶催化合成一种新型α 羟基酸衍生物 乳酸糖苷酯。考察了常压下有机溶剂、酰基供体、不同种固定化酶、乙基糖苷的浓度、酶量和反应温度对反应的影响。研究表明在无溶剂体系中以乳酸丁酯作为酰基供体可有效地合成乳酸糖苷酯 ,固定化酶Novozym435和来源于Candida sp .菌株的细胞固定化酶 ,化学修饰的干酶粉均是合适的催化剂。最佳反应条件为 :酶浓度 75g L ,乙基葡萄糖苷的浓度为 0.4mol L ,温度为 70℃ ,转速 200r min ,反应 50h ,转化率可达 71%。在真空度为 0.09MPa的压力下 ,反应温度 65℃ ,酶浓度 75g L ,乙基葡萄糖苷 0.35mol L时 ,反应初速率可达到 607(mmol·L-1·h-1 ) ,40h后转化率可达到 90%。反应产物经过萃取法和硅胶柱层析方法分离 ,纯度达到 95 % (W/W)。  相似文献   

11.
In this work, the Candida antarctica lipase B (CALB), produced by recombinant Pichia pastoris , was immobilized and used to synthesize vitamin A palmitate by transesterification of vitamin A acetate and palmitic acid in organic solvent. The reaction conditions including the type of solvent, temperature, rotation speed, particle size, and molar ratio between the two substrates were investigated. It turned out that the macroporous resin HPD826 serving as a carrier showed the highest activity (ca. 9200 U g?1) among all the screened carriers. It was found that the transesterification kinetic of the immobilized CALB followed the ping pong Bi‐Bi mechanism and the reaction product acetic acid inhibited the enzymatic reaction with an inhibition factor of 2.823 mmol L?1. The conversion ability of the immobilized CALB was 54.3% after 15 cycles. In conclusion, the present work provides a green route for vitamin A palmitate production using immobilized CALB to catalyze the transesterification of vitamin A acetate and palmitic acid.  相似文献   

12.
Lipase is one of the most important industrial enzymes, which has been widely used in the preparation of food additives, cosmetics and pharmaceuticals industries. In order to obtain a large amount of lipase, the lipase gene from Candida antarctica ZJB09193 was cloned, and expressed in Pichia pastoris with the vector pPICZαA. Under the optimal conditions, the yield of recombinant lipase in the culture broth reached 3.0 g/L. After purification, the properties of recombinant lipase were studied: the optimum pH and temperature were pH 8.0 and 52°C, Ca(2+) activated the activity of lipase, and the apparent K(m) and V(max) values for p-nitrophenyl acetate were 0.34 mM and 7.36 μmol min(-1) mg(-1), respectively. Furthermore, the recombinant lipase was immobilized on pretreated textile for biosynthesis of vitamin A esters. In a system of n-hexane, 0.3 g immobilized recombinant lipase was used in the presence of 0.06 g vitamin A acetate and 0.55 mmol fatty acid (nine different fatty acids were tested). The yield of all vitamin A esters exceeded 78% in 7h at 30°C except using lactic acid and hexanoic acid as substrates. After optimization, the yield of vitamin A palmitate reached 87%. This study has the potential to be developed into industrial application.  相似文献   

13.
The 2-ethylhexyl esters of fatty acids were synthesized by immobilized lipase from Candida sp. 99–125. The reuse stability of immobilized lipase was at least four batches. The conditions of enzymatic synthesis of 2-ethylhexyl palmitate were optimized. In the system of petroleum ether, 10% (w/w) immobilized lipase was used in the esterfication of 2-ethyl hexanol (7.8 mmol) and palmitic acid (7.8 mmol) at 40 °C with silica gel as the water absorbent. The esterification degree was 91% under these conditions. The purity of 2-ethylhexyl palmitate was 98% after purification consisting washing by water and evaporation to remove the organic solvent.  相似文献   

14.
This study aimed to assess the interaction between different dietary vitamin A (dVitA) levels and the same concentration of vitamin E (100 IU all-rac-α-tocopheryl acetate/kg feed) in growing-finishing pigs. In the first experiment, two fat sources × two dVitA levels (0 v. 100 000 IU) were used. The supplementation of 100 000 IU dVitA induced a range of 5.13 to 30.03 μg retinol/g liver, 62.78 to 426.88 μg retinol palmitate/g liver, and 0.60 to 1.96 μg retinol/g fat. Dietary fat did not affect retinol or retinyl palmitate deposition in pigs. The high concentration of dVitA produced lower fat and liver α-tocopherol concentrations, and increased susceptibility of muscle tissue to oxidation. A second experiment was carried out to study the retinol and α-tocopherol retention at different withdrawal times prior to slaughter (two dVitA levels; 0 v. 100 000 IU). A high dose of 100 000 IU vitamin A during a short 2-week period was enough to induce α-tocopherol depletion in liver and fat to a similar extent as when 100 000 IU were administered during the whole fattening. Muscle, fat and liver α-tocopherol concentrations were not affected by dVitA in the 1300-13 000 IU/kg range, but liver α-tocopherol concentration was higher when vitamin A was removed from the vitamin mix 5 weeks prior to slaughter (experiment 3).  相似文献   

15.
Abstract

We have developed an improved and effective method to immobilize lipase on hydrophobic polyurethane foam (PUF) with different modifications. PUF was treated with hydrochloric acid to increase the active sites and then the active carboxyl groups and amino groups were exposed. Enzyme activity of lipase immobilized on PUF-HCL (8000?U/g) was 50% higher than that of lipase immobilized on PUF (5300?U/g). There is an increase in the activity of the immobilized lipase on AA/PEI-modified support (115,000?U/g), a 2.17-fold increase compared to lipase immobilized on the native support was observed. The activity of immobilized lipases was dependent on the PEI molecular weight, with best results from enzyme immobilized on PUF-HCL-AA/PEI (MW 70,000?Da, 12,800?U/g)), which was 2.41 times higher compared to that of the same enzyme immobilized on PUF. These results suggest that the activity of immobilized lipase is influenced by the support surface properties, and a moderate support surface micro-environment is crucial for improving enzyme activity. Finally, the immobilized lipase was used for the production of vitamin A palmitate. The immobilized lipase can be reused for up to 18 times with a conversion rate above 90% for 12?h in a 3?L bioreactor.
  • Research highlights
  • An efficient immobilization protocol on polyurethane foam was developed

  • Polyethyleneimine and acetic acid were used to regulate the micro-environment concurrently

  • The activity of lipase immobilized on PUF-HCL-AA/PEI was improved by 2.41 times

  • Immobilized lipase exhibited excellent operational stability for vitamin A palmitate synthesis

  相似文献   

16.
Ethyl acetate was explored as an acyl acceptor for immobilized lipase-catalyzed preparation of biodiesel from the crude oils of Jatropha curcas (jatropha), Pongamia pinnata (karanj) and Helianthus annuus (sunflower). The optimum reaction conditions for interesterification of the oils with ethyl acetate were 10% of Novozym-435 (immobilized Candida antarctica lipase B) based on oil weight, ethyl acetate to oil molar ratio of 11:1 and the reaction period of 12h at 50 degrees C. The maximum yield of ethyl esters was 91.3%, 90% and 92.7% with crude jatropha, karanj and sunflower oils, respectively under the above optimum conditions. Reusability of the lipase over repeated cycles in interesterification and ethanolysis was also investigated under standard reaction conditions. The relative activity of lipase could be well maintained over twelve repeated cycles with ethyl acetate while it reached to zero by 6th cycle when ethanol was used as an acyl acceptor.  相似文献   

17.
Methanol, the acyl acceptor usually used in the commercial process of biodiesel production, is associated with some problems such as immiscibility with oils and lipase deactivation. To overcome these barriers, ethyl acetate was proposed as an alternative acyl acceptor for the production of biodiesel from soybean oil using an immobilized lipase, Novozym 435, Ethyl acetate mixed well with soybean oil, and only slightly inhibited the lipase activity by 5%. The effects of various environmental parameters, such as the composition of soybean oil and ethyl acetate, lipase content, and reaction temperature, were investigated to determine the optimal conditions for biodiesel production. As a result, the highest biodiesel production yield, 63.3 (±0.6)%, was obtained by using an ethyl acetate and soybean oil mixture with a 6∶1 molar ratio, with 8% of the immobilized lipase based on the weight of oil added at 70°C and 600 rpm.  相似文献   

18.
A purified alkaline thermo-tolerant bacterial lipase from Pseudomonas aeruginosa MTCC-4713 was immobilized on a poly (AAc-co-HPMA-cl-MBAm) hydrogel. The hydrogel-bound lipase achieved 93.6% esterification of ethanol and propionic acid (300 mM: 100 mM) into ethyl propionate at temperature 65 degrees C in 3 h in the presence of a molecular sieve (3 angstroms). In contrast, hydrogel-immobilized lipase pre-exposed to 5 mM of HgCl2 orNH4Cl resulted in approximately 97% conversion of reactants in 3 h into ethyl propionate under identical conditions. The salt-exposed hydrogel was relatively more efficient in repetitive esterification than the hydrogel-bound lipase not exposed to any of the cations. Moreover, bound lipase exposed Hg2+ or NH4+ ions showed altered specificity towards p-nitrophenyl esters and was more hydrolytic towards higher C-chain p-nitrophenyl esters (p-nitrophenyl laurate and p-nitrophenyl palmitate with C 12 and C 16 chain) than the immobilized lipase not exposed to any of the salts. The later showed greater specificity towards p-nitrophenyl caprylate (C 8).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号