首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Improved adaptation of winter wheat(Triticum aestivum L.) to drought and heat may be influenced by days to heading, plant height, biomass, canopy temperature(CT) at grain filling, and rate of senescence. This study shows that,under supplemental irrigation or rainfed conditions, days to heading and plant height together explain up to 68% of grain yield(GY) variation, and these associations were further confirmed in several locations across West and Central Asia.Days to heading can be slightly reduced below that of check line Karahan to further improve GY while avoiding the effect of late frosts. Plant height has been decreased in recent germplasm, but further reductions below that of check line Karahan could still improve GY in a wide range of environments. However, in Iranian sites, taller genotypes showed better adaptation with higher biomass and increased reservesfor grain filling. Canopy temperature and rate senescence were not associated with GY. A normalized difference vegetation index, used to estimate biomass(Feekes stages 4–5), had intermediate heritability across environments and correlated positively with GY under low plant density and should be explored further as a tool for early selection.  相似文献   

2.
小麦及其近缘种中基因组特异性DNA重复序列的研究进展   总被引:7,自引:1,他引:6  
白建荣  贾旭  王道文 《遗传》2002,24(5):595-600
本文对小麦族植物中基因组特异性DNA重复序列的分类、基本特征、分离和鉴定方法、在小麦遗传改良中的应用以及未来研究的发展趋势进行了简述。综合已有的研究结果可以看出基因组特异性DNA重复序列是小麦族植物基因组特异性形成的重要构成部分。对基因组特异性DNA重复序列的研究是认识小麦族植物基因组的有效途径之一,基因组特异性DNA重复序列的应用将进一步促进小麦族植物分子细胞遗传学和普通小麦遗传改良研究的进展。 Advances in Studies of Genome-Specific Repetitive DNA Sequences in Wheat and Related Species BAI Jian-rong1,2,JIA Xu1,WANG Dao-wen1 1.The State Key Laboratory of Plant Cell and Chromosome Engineering,Institute of Genetics and Developmental Biology,The Chinese Academy of Sciences,Beijing 100101,China; 2.Crop Genetics Institute,Shanxi Academy of Agricultural Sciences,Taiyuan 030031,China Abstract:In this paper we review recent advances in studies of several aspects of genome specific repetitive DNA sequences in wheat and related species.The available results demonstrate that genome specific repetitive DNA sequences are important components of genome specificity in wheat and related species.Research on genome specific repetitive DNA sequences is essential to the elucidation of genome function.The application of genome specific repetitive DNA sequences will aid molecular cytogenetic studies in wheat and related species and contributes to genetic improvement of common wheat. Key words:wheat;genome specific repetitive DNA sequence;chromosome  相似文献   

3.
The wheat midge, Sitodiplosis mosellana, is a serious pest of wheat worldwide. In North America, management of S. mosellana in spring wheat relies on the timely application of pesticides, based on midge adults levels caught in pheromone traps or seen via field scouting during wheat heading. In this context, biopesticides can be an effective alternative to pesticides for controlling S. mosellana within an Integrated Pest Management program. A field study using insect pathogenic fungus Beauveria bassiana GHA, nematode Steinernema Jeltiae with Barricade polymer gel 1%, pyrethrin, combined formulations of B. bassiana GHA and pyrethrin, Jasmonic acid (JA) and chlorpyrifos (chemical check) was performed to determine to which extent they affect midge larval populations, kernel damage levels, grain yield, and quality, and the impacts on adult parasitoid Macroglenes penetrans populations. The results indicated that biopesticides JA and S. Jeltiae were the most effective in reducing larval populations and kernel damage levels, and produced a higher spring wheat yield when compared to the water control at both study locations (East Valier and North Valier, Montana, USA). Increased test weight in wheat had been recorded with two previous biopesticides at East Valier but not for North Valier, when compared over water control. These results were comparable in efficacy to the chlorpyrifos. This study also suggested that B. bassiana and pyrethrin may work synergistically, as exemplified by lower total larval populations and kernel damage levels when applied together. This study did not demonstrate the effect of any treatments on M. penetrans populations.  相似文献   

4.
The frequency and distribution of the major vernalization requirement genes and their effects on growth habits were studied. Of the 551 bread wheat genotypes tested, seven allelic combinations of the three Vrn-1 genes were found to be responsible for the spring habit, three for the facultative habit and one for the winter habit. The three Vrn-1 genes behaved additiveiy with the dominant allele of Vrn-A1 exerting the strongest effect. The allele combinations of the facultative genotypes and the discovery of spring genotypes with "winter" allele of Vrn-1 implied the presence of as yet unidentified alleles/genes for vernalization response. The dominant alleles of the three Vrn-1 genes were found in all ten ecological regions where wheat is cultivated in China, with Vrn-D1 as the most common allele in nine and Vrn-A1 in one. The combination of vrn-A1vrn-B1Vrn-D1 was the predominant genotype in seven of the regions. Compared with landraces, improved varieties contain a higher proportion of the spring type. This was attributed by a higher frequency of the dominant Vrn-A1 and Vrn-B1 alleles in the latter, Correlations between Vrn-1 allelic constitutions and heading date, spike length, plant type as well as cold tolerance were established.  相似文献   

5.
Simultaneous heading of plants within the same rice variety, also refer to heading synchrony, is an important factor that affects simultaneous ripening of the variety. Understanding of the genetic basis of heading synchrony may contribute to molecular breeding of rice with simultaneous heading and ripening. In the present study, a doubled haploid (DH) population, derived from a cross between Chunjiang 06 and TN1 was used to analyze quantitative trait locus (QTL) for heading synchrony related traits, i.e., early heading date (EHD), late heading date (LHD), heading asynchrony (HAS), and tiller number (PN). A total of 19 QTLs for four traits distributed on nine chromosomes were detected in two environments. One QTL, qHAS-8 for HAS, explained 27.7% of the phenotypic variation, co-located with the QTLs for EHD and LHD, but it was only significant under long-day conditions in Hangzhou, China. The other three QTLs, qHAS-6, qHAS-9, and qHAS-10, were identified under short-day conditions in Hainan, China, each of which explained about 11% of the phenotypic variation. Two of them, qHAS-6 and qHAS-9, were co-located with the QTLs for EHD and LHD. Two QTLs, qPN-4 and qPN-5 for PN, were detected in Hangzhou, and qPN-5 was also detected in Hainan. However, none of them was co-located with QTLs for EHD, LHD, and HAS, suggesting that PN and HAS were controlled by different genetic factors. The results of this study can be useful in marker assisted breeding for improvement of heading synchrony.  相似文献   

6.
Thinopyrum ponticum and Th. intermedium provide superior resistance against various diseases in wheat (Ttricum aestivum). Because of their readily crossing with wheat, many genes for disease resistance have been introduced from the wheatgrasses into wheat. Genes for resistance to leaf rust, stem rust, powdery mildew, Barley yellow dwarf virus, Wheat streak mosaic virus, and its vector, the wheat curl mite, have been transferred into wheat by producing chromosome translocations. These genes offer an opportunity to improve resistance of wheat to the diseases; some of them have been extensively used in protecting wheat from damage of the diseases. Moreover, new resistance to diseases is continuously detected in the progenies of wheat-Thinopyrum derivatives. The present article summaries characterization and application of the genes for fungal and viral disease-resistance derived from Th. ponticum and Th. intermedium.  相似文献   

7.
Tang  C.  Robson  A. D. 《Plant and Soil》2000,225(1-2):11-20
The application of herbicides has induced symptoms of nutrient deficiencies under some circumstances. This glasshouse study examined the effect of chlorsulfuron on the uptake and utilization of copper (Cu) in four cultivars of wheat plants (Triticum aestivum L. cvs. Kulin, Cranbrook, Gamenya and Bodallin) on a Cu-responsive soil. Application of chlorsulfuron depressed the concentration of Cu in wheat plants receiving either inadequate or adequate Cu. In plants with inadequate Cu supply, chlorsulfuron increased the severity of Cu deficiency. Shoot weight was markedly decreased by chlorsulfuron at all levels of Cu, through decreasing the number of tillers and the elongation of leaves. This decreased growth of shoots occurred prior to the effect on Cu concentration in tissues. The retranslocation of Cu in old tissues over time was unaffected by chlorsulfuron. In all wheat cultivars, the decreased growth of shoots were correlated with the concentration of Cu in the youngest fully emerged leaf blade with critical levels of 1.6−1.7 at day 25 and 0.9−1.0 μg g−1 d. wt. at day 60. The application of chlorsulfuron tended to increase the critical level at day 25 but not at day 60. In addition, Kulin seems to be most, and Cranbrook least, sensitive to chlorsulfuron. This sensitivity was associated with the sensitivity of the cultivars to Cu deficiency. It is suggested that chlorsulfuron application induces Cu deficiency in wheat plants mainly due to effects on the uptake of Cu. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
The characteristics of dry matter production before and after heading and the relationships between photosynthesis of flag leaves and dry matter accumulation in panicles were investigated on super high-yielding rice cv. Xieyou 9308 (the yield of up to 12 t/ha) with rice cv. Xieyou 63 as a control. The results showed that (i) the capacity of dry matter production before and after heading in Xieyou 9308, i.e. biomass and daily dry matter production, was remarkably higher than that in Xieyou 63, especially after heading; (ii) CO2 assimilation capacity in flag leaves in Xieyou 9308, namely Leaf Source Capacity (LSC), was also significantly higher than that in Xieyou 63, and the supply of photosynthate in leaves and the demand of grain filling were completely synchronous in Xieyou 9308, but photosynthetic function in flag leaves in Xieyou 63 declined sharply 20 days after heading and it was not enough to meet the demand of grain filling. These results confirmed that high efficient photosynthetic function in  相似文献   

9.
小麦雄性不育遗传及基因定位研究进展   总被引:13,自引:1,他引:12  
梁凤山  王斌 《遗传》2003,25(4):461-465
雄性不育的研究对于杂种优势的利用具有重要意义。本文综述了小麦雄性不育遗传及基因定位研究进展,介绍了小麦雄性不育的基因工程,对小麦雄性不育的应用进行了讨论。 Abstract:The study of plant male sterility plays an important role on utilization of heterosis.This paper reviews the current status of the studies of the heredity and mapping of the male sterile genes in wheat and the gene engineering of wheat male sterility.The application of male sterility in wheat breeding is discussed.  相似文献   

10.
无样地法在亚热带常绿阔叶林调查中的应用   总被引:4,自引:1,他引:3       下载免费PDF全文
 The toxicity of N-503 on wheat appears evidently in the seedling stage and becomes gradually less and little from the jointing stage to the mature stage. However, the symptom of damage is based upon the concentration of N-503 used. The concentration is better to keep below 50ppm. The effect of N-503 on rice is similarly to wheat, but the amount of residue in rice is more apparently than that in wheat. Chlorobenzene in the mixed sewage is also shown some damage symptom to rice.  相似文献   

11.
The broad adaptability of heading time has contributed to the global success of wheat in a diverse array of climatic conditions. Here, we investigated the genetic architecture underlying heading time in a large panel of 1,110 winter wheat cultivars of worldwide origin. Genome‐wide association mapping, in combination with the analysis of major phenology loci, revealed a three‐component system that facilitates the adaptation of heading time in winter wheat. The photoperiod sensitivity locus Ppd‐D1 was found to account for almost half of the genotypic variance in this panel and can advance or delay heading by many days. In addition, copy number variation at Ppd‐B1 was the second most important source of variation in heading, explaining 8.3% of the genotypic variance. Results from association mapping and genomic prediction indicated that the remaining variation is attributed to numerous small‐effect quantitative trait loci that facilitate fine‐tuning of heading to the local climatic conditions. Collectively, our results underpin the importance of the two Ppd‐1 loci for the adaptation of heading time in winter wheat and illustrate how the three components have been exploited for wheat breeding globally.  相似文献   

12.
13.
Wheat is sensitive to high temperatures, but the spatial and temporal variability of high temperature and its impact on yield are often not known. An analysis of historical climate and yield data was undertaken to characterize the spatial and temporal variability of heat stress between heading and maturity and its impact on wheat grain yield in China. Several heat stress indices were developed to quantify heat intensity, frequency, and duration between heading and maturity based on measured maximum temperature records of the last 50 years from 166 stations in the main wheat‐growing region of China. Surprisingly, heat stress between heading and maturity was more severe in the generally cooler northern wheat‐growing regions than the generally warmer southern regions of China, because of the delayed time of heading with low temperatures during the earlier growing season and the exposure of the post‐heading phase into the warmer part of the year. Heat stress between heading and maturity has increased in the last decades in most of the main winter wheat production areas of China, but the rate was higher in the south than in the north. The correlation between measured grain yields and post‐heading heat stress and average temperature were statistically significant in the entire wheat‐producing region, and explained about 29% of the observed spatial and temporal yield variability. A heat stress index considering the duration and intensity of heat between heading and maturity was required to describe the correlation of heat stress and yield variability. Because heat stress is a major cause of yield loss and the number of heat events is projected to increase in the future, quantifying the future impact of heat stress on wheat production and developing appropriate adaptation and mitigation strategies are critical for developing food security policies in China and elsewhere.  相似文献   

14.
There is increasing awareness that epistasis plays a role for the determination of complex traits. This study employed an association mapping approach in a large panel of 455 diverse European elite soft winter wheat lines. The genotypes were evaluated in multi-environment trials and fingerprinted with SSR markers to dissect the underlying genetic architecture of grain yield and heading time. A linear mixed model was applied to assess marker-trait associations incorporating information of covariance among relatives. Our findings indicate that main effects dominate the control of grain yield in wheat. In contrast, the genetic architecture underlying heading time is controlled by main and epistatic effects. Consequently, for heading time it is important to consider epistatic effects towards an increased selection gain in marker-assisted breeding.  相似文献   

15.
The genetic segregation of the heading trait was analyzed using a recombinant inbred line (RIL) of einkorn wheat, RILWA-1, derived from cultivated Triticum monococcum L., and wild-type T. boeoticum Boiss. The latency to heading was examined in 115 lines under controlled environmental conditions, as well as in the field, and the degrees of narrow-sense earliness and vernalization requirement were evaluated for quantitative trait locus (QTL) analysis. Single-marker analysis using 107 RFLP markers segregating in RILWA-1 detected 20 linking markers for heading factors. In all marker loci, the alleles for early heading were conferred by T. monococcum. In interval analysis of chromosome 5Am, two vernalization genes, Vrn-Am1 and Vrn-Am2, were precisely mapped to the Xcdo504-Xpsr426 interval on the central region of the long arm and to the Xwg114-Xwec87 interval on its distal region, respectively. Interval analysis also showed that two genes for narrow-sense earliness, designated Nse-3Am and Nse-5Am, were located on chromosome 3Am and 5Am, respectively. It was noticed that heading time in the field was determined mainly by Nse-3Am, suggesting that narrow-sense earliness is critical for heading in the field in einkorn wheat.  相似文献   

16.
Summary Heading time and its constituent traits, photoperiodic response, narrow-sense earliness and vernalization requirement, were surveyed for 158 wheat landraces. Wide varietal variation was observed in each character. Nearly half of the variation for each character was explained by a geographical difference in origin. Based on these data and the growing environments in each locality, we analyzed adaptation strategy, seen as the adjustment of heading time in terms of differences in the constituent traits, both individually and combined. The difference among localities indicated that wheat landraces had been selected for early heading as an adaptation strategy to water stress and/or high temperature in early summer. This change was caused by a reduction in photoperiodic response and narrow-sense earliness. The vernalization requirement was also reduced for adaptation to relatively mild winters. Adaptation strategy deduced from the variation within each locality was also different amongst localities. In the central region of wheat evolution, where wide variations existed in both photoperiodic response and narrow-sense earliness, the late-heading trait was achieved by either one of these traits individually or both of them combined. On the contrary, in the eastern and the western regions, wide variation in heading time was achieved by the unique combination of photoperiodic response and narrowsense earliness. A sampling strategy for wheat germ plasm is also discussed.  相似文献   

17.
Kawahara T  Taketa S  Murai K 《Hereditas》2002,136(3):195-200
Wheat (Triticum aestivum L.)-barley (Hordeum vulgare L.) chromosome addition lines are possible vehicles for transferring barley genes into wheat. The barley 5H chromosome has genetic effects on the heading characters in wheat-barley addition lines: accelerating narrow-sense earliness, decreasing vernalization requirement and/or increasing photoperiodic sensitivity. To elucidate the effects of different 5H chromosomes under an identical wheat genetic background, two wheat-barley addition lines, i.e. cultivated barley 'New Golden' 5H chromosome added to 'Shinchunaga' wheat (Shi-NG5H) and wild barley H. vulgare ssp. spontaneum 5H chromosome added to 'Shinchunaga' wheat (Shi-Spn5H), were examined for their heading characters. The addition line Shi-NG5H showed a significantly lower vernalization requirement in comparison with 'Shinchunaga' wheat, whereas Shi-Spn5H did not. Furthermore, both NG5H and Spn5H chromosomes shortened narrow-sense earliness and increased photoperiodic sensitivity in wheat, but the effects of Spn5H were weaker than those of NG5H. The fact that NG5H and Spn5H showed differential effects on heading characters in wheat demonstrated that the heading characters were altered by the function of the barley genes located on 5H chromosomes, not merely by the aneuploid effect alone.  相似文献   

18.
普通小麦日长反应的探讨   总被引:5,自引:2,他引:3  
  相似文献   

19.
The purpose of this study was to analyze the genetic segregation of heading traits in wheat using recombinant inbred lines (RILs) of hexaploid wheat, derived from Triticum aestivum cv. Chinese Spring and T. spelta var. duhameliamum. The population was examined under controlled environmental conditions as well as in the field. This strategy differentiated the effect of three genetic factors (vernalization requirement, photoperiod sensitivity and narrow-sense earliness) and identified their interactions. Correlation analysis showed that photoperiod sensitivity and narrow-sense earliness are critical for heading time in the field. Single-marker analysis using 322 molecular markers segregating among RIL detected a total of 38 linked markers for each genetic factor and heading in the field. In interval analysis, two Vrn genes (Vrn-B1 and Vrn-D1) and Ppd-B1 were mapped on chromosomes 5B, 5D and 2B, respectively. It was noticed that Vrn-B1 on 5B from the spelt wheat conferred a strong-spring habit equivalent to the homologous Vrn-A1. Quantitative trait locus analysis also showed that Ppd-B1 was not detected under the short-day condition without vernalization treatment, and that there were two types of genes for photoperiod sensitivity, dependent on and independent of vernalization treatment.  相似文献   

20.
Fusarium head blight is one of the most important wheat diseases causing grain yield and quality losses as well as mycotoxin contamination all over the world. Since Fusarium cannot be reliably controlled with fungicides, breeding has become a favorable tool to decrease the infection severity. In most cases, selection for Fusarium resistance is done by artificial infection in the field. However, there is a risk in preferring late heading genotypes, because heading of wheat is negatively correlated to head blight severity. Because an indirect selection for late maturity is not intended, we considered a statistical approach to avoid this problem. In this paper, we propose a mixed model to analyze extensive Fusarium head blight rating in resistance breeding experiments of wheat. The objective of the analysis was to select for Fusarium resistance, while at the same time ensuring that late heading genotypes, which show less head blight over the shorter vegetation period, are not preferred. Thus, selection was to be done such that genetic variability for heading date was retained. Therefore, the statistical model contained a covariate to adjust for differences in the heading date. The use of covariate adjustment is an easily handled alternative to a bivariate analysis. Covariate adjustment will in practice often work almost equally well as bivariate analysis. Any statistical software with powerful mixed model analysis tools can be used for this type of analysis. We propose an ad hoc method to obtain heritability estimates and a form of LSD (least significance difference) as a measure of accuracy on the basis of the proposed model and under special consideration of the experimental design. The ad hoc LSD was used as a rough measure to judge rankings of genotypic means (BLUPs). Friedman's super smoother was used to compare smoothed rank estimates for adjusted and unadjusted genotypes against increasing smoothed heading dates. Traits were transformed to meet the model assumptions, especially homogeneity of errors and normality, and back-transformation of means and standard errors was conducted by using the delta method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号