首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.

Background

The aim of this study is to investigate the prevalence and prognostic impact of β-catenin and cyclin D1 expression in colorectal carcinoma (CRC) patients.

Method

We evaluated immunohistochemial expression of β-catenin and cyclin D1 using 2-mm cores from 220 CRC patients for tissue microarray, and its significance was statistically evaluated.

Result

Positive expression of β-catenin and cyclin D1 was found in 72.5% (158 of 218 cases) and 59.4% (129 of 217 cases) of CRC patients, respectively. Expression of β-catenin was significantly correlated with tumor location (P = .017), differentiation (P = .010), lymph node metastasis (P = .032), preoperative carcinoembryonic antigen level (P = .032), and cyclin D1 expression (P = .005). Expression of cyclin D1 was significantly correlated with recurrence and/or metastasis (P = .004). In univariate analysis, β-catenin expression predicted more favorable overall survival (P = .022) and cyclin D1 expression predicted both more favorable overall survival and relapse-free survival (P = .004 and P = .006, respectively). Multivariate analysis showed that tumor stage and expression of cyclin D1 were independent prognostic factors significantly associated with overall survival and relapse-free survival.

Conclusion

This study shows that expression of β-catenin and cyclin D1 is associated with favorable clinicopathologic variables and it is a clinically significant prognostic indicator for CRC patients.  相似文献   

2.

Background

Aberrant activation of Wnt/β-catenin signaling promotes the development of several cancers. It has been demonstrated that the Wnt signaling pathway is activated in chronic lymphocytic leukemia (CLL) cells, and that uncontrolled Wnt/β-catenin signaling may contribute to the defect in apoptosis that characterizes this malignancy. Thus, the Wnt signaling pathway is an attractive candidate for developing targeted therapies for CLL.

Methodology/Principal Findings

The diuretic agent ethacrynic acid (EA) was identified as a Wnt inhibitor using a cell-based Wnt reporter assay. In vitro assays further confirmed the inhibitory effect of EA on Wnt/β-catenin signaling. Cell viability assays showed that EA selectively induced cell death in primary CLL cells. Exposure of CLL cells to EA decreased the expression of Wnt/β-catenin target genes, including LEF-1, cyclin D1 and fibronectin. Immune co-precipitation experiments demonstrated that EA could directly bind to LEF-1 protein and destabilize the LEF-1/β-catenin complex. N-acetyl-L-cysteine (NAC), which can react with the α, β-unsaturated ketone in EA, but not other anti-oxidants, prevented the drug''s inhibition of Wnt/β-catenin activation and its ability to induce apoptosis in CLL cells.

Conclusions/Significance

Our studies indicate that EA selectively suppresses CLL survival due to inhibition of Wnt/β-catenin signaling. Antagonizing Wnt signaling in CLL with EA or related drugs may represent an effective treatment of this disease.  相似文献   

3.
4.

Background

The β-catenin is an important effector in WNT/β-catenin signaling pathway, which exerts a crucial role in the development and progression of hepatocellular carcinoma (HCC). Some researchers have suggested that the overexpression of β-catenin in cytoplasm and/or nucleus was closely correlated to metastasis, poor differentiation and malignant phenotype of HCC while some other researchers hold opposite point. So far, no consensus was obtained on the prognostic and clinicopathological significance of cytoplasmic/nuclear β-catenin overexpression for HCCs.

Methods

Systematic strategies were applied to search eligible studies in all available databases. Subgroup analyses, sensitivity analyses and multivariate analysis were performed. In this meta-analysis, we utilized either fixed- or random-effects model to calculate the pooled odds ratios (OR) and its 95% confidence intervals (CI).

Results

A total of 22 studies containing 2334 cases were enrolled in this meta-analysis. Pooled data suggested that accumulation of β-catenin in cytoplasm and/or nucleus significantly correlated with poor 1-, 3- and 5-year OS and RFS. Moreover, nuclear accumulation combined with cytoplasmic accumulation of β-catenin tended to be associated with dismal metastasis and vascular invasion while cytoplasmic or nuclear expression alone showed no significant effect. Besides, no significant association was observed between cytoplasmic and/or nuclear β-catenin expression and poor differentiation grade, advanced TNM stage, liver cirrhosis, tumor size, tumor encapsulation, AFP and etiologies. Additional subgroup analysis by origin suggested that the prognostic value and clinicopathological significance of cytoplasmic and/or nuclear β-catenin expression was more validated in Asian population. Multivariate analyses of factors showed that cytoplasmic and/or nuclear β-catenin expression, as well as TNM stage, metastasis and tumor size, was an independent risk factors for OS and RFS.

Conclusions

Cytoplasmic and/or nuclear accumulation of β-catenin, as an independent prognostic factor, significantly associated with poor prognosis and deeper invasion of HCC, and could serve as a valuable prognostic predictor for HCC.  相似文献   

5.

Background

Dickkopf-1 (DKK1) is an antagonist of Wnt/β-catenin signaling implicated in tumorigenesis. However, the biological role of DKK1 and β-catenin involved in chondrosarcoma has not been sufficiently investigated. This study was designed to investigate the expression profiles of DKK1 and β-catenin, and to clarify their clinical values in chondrosarcoma.

Methods

The mRNA and protein levels of DKK1 and β-catenin in fresh chondrosarcoma and the corresponding non-tumor tissues were analyzed by Real-time PCR and Western blot, respectively. The protein expression patterns of DKK1 and β-catenin were investigated by immunohistochemistry. The associations among DKK1 level, β-catenin accumulation, clinicopathological factors and the overall survival were separately evaluated.

Results

Both DKK1 and β-catenin levels were remarkably elevated in chondrosarcoma compared with the corresponding non-tumor tissues. High DKK1 level and positive β-catenin accumulation in chondrosarcoma specimens were 58.7% and 53.9%, respectively. Elevated DKK1 level significantly correlated with positive β-catenin accumulation, and they were remarkably associated with histological grade and Musculoskeletal Tumor Society stage. Furthermore, DKK1 level and β-catenin accumulation had significant impacts on the prognosis of chondrosarcoma patients. Multivariate analysis revealed that DKK1 level was an independent prognostic factor for overall survival.

Conclusions

Elevated DKK1 levels associated with β-catenin accumulation play a crucial role in chondrosarcoma. DKK1 can serve as a novel predictor of poor prognosis in patients with chondrosarcoma.  相似文献   

6.

Objective

The canonical WNT pathway has been implicated as playing important roles in the pathogenesis of a variety of kidney diseases. Recently, WNT pathway activity was reported to be elevated in the renal tissue of a lupus mouse model. This study aimed to evaluate the potential role of the WNT pathway in the pathogenesis of human lupus nephritis.

Methods

The expression of β-catenin was evaluated in renal biopsy specimens from lupus nephritis patients and control kidney tissues by immunohistochemistry and western blotting. Real-time polymerase chain reaction (RT-PCR) was used to detect RNA expression of β-catenin, Dkk-1 and Axin2. Plasma concentrations of Dkk-1 were measured by ELISA.

Results

Immunohistochemistry and western blotting revealed increased expression of β-catenin in the kidneys of patients with lupus nephritis compared with control kidney tissues (p<0.05), accompanied by an increase in mRNA expression of β-catenin (p<0.01) and axin2 (p<0.05).β-catenin was significantly greater in LN patients without renal interstitial fibrosis compared with those with renal interstitial fibrosis (p<0.01) at the mRNA expression level; the increase in β-catenin mRNA positively correlated with the creatinine clearance rate (Ccr) and negatively correlated with chronicity indices of renal tissue injury. Greater plasma Dkk-1 concentrations were found in LN patients compared with controls (p<0.05). Plasma Dkk-1 concentrations also correlated negatively with anti-dsDNA antibody levels and positively with serum C3 levels.

Conclusions

The canonical WNT/β-catenin signaling pathway was activated in lupus nephritis patients, accompanied by an increase in plasma levels of Dkk-1. Altered WNT/β-catenin signaling was related to the pathogenesis of lupus nephritis and might play a role in renal fibrosis.  相似文献   

7.
8.
The canonical Wnt signaling pathway, in which β-catenin nuclear localization is a crucial step, plays an important role in osteoblast differentiation. Pin1, a prolyl isomerase, is also known as a key enzyme in osteogenesis. However, the role of Pin1 in canonical Wnt signal-induced osteoblast differentiation is poorly understood. We found that Pin1 deficiency caused osteopenia and reduction of β-catenin in bone lining cells. Similarly, Pin1 knockdown or treatment with Pin1 inhibitors strongly decreased the nuclear β-catenin level, TOP flash activity, and expression of bone marker genes induced by canonical Wnt activation and vice versa in Pin1 overexpression. Pin1 interacts directly with and isomerizes β-catenin in the nucleus. The isomerized β-catenin could not bind to nuclear adenomatous polyposis coli, which drives β-catenin out of the nucleus for proteasomal degradation, which consequently increases the retention of β-catenin in the nucleus and might explain the decrease of β-catenin ubiquitination. These results indicate that Pin1 could be a critical target to modulate β-catenin-mediated osteogenesis.  相似文献   

9.
10.
11.

Background

Myofibroblasts are the critical effector cells in the pathogenesis of pulmonary fibrosis which carries a high degree of morbidity and mortality. We have previously identified Type II TGFβ receptor interacting protein 1 (TRIP-1), through proteomic analysis, as a key regulator of collagen contraction in primary human lung fibroblasts—a functional characteristic of myofibroblasts, and the last, but critical step in the process of fibrosis. However, whether or not TRIP-1 modulates fibroblast trans-differentiation to myofibroblasts is not known.

Methods

TRIP-1 expression was altered in primary human lung fibroblasts by siRNA and plasmid transfection. Transfected fibroblasts were then analyzed for myofibroblast features and function such as α-SMA expression, collagen contraction ability, and resistance to apoptosis.

Results

The down-regulation of TRIP-1 expression in primary human lung fibroblasts induces α-SMA expression and enhances resistance to apoptosis and collagen contraction ability. In contrast, TRIP-1 over-expression inhibits α-SMA expression. Remarkably, the effects of the loss of TRIP-1 are not abrogated by blockage of TGFβ ligand activation of the Smad3 pathway or by Smad3 knockdown. Rather, a TRIP-1 mediated enhancement of AKT phosphorylation is the implicated pathway. In TRIP-1 knockdown fibroblasts, AKT inhibition prevents α-SMA induction, and transfection with a constitutively active AKT construct drives collagen contraction and decreases apoptosis.

Conclusions

TRIP-1 regulates fibroblast acquisition of phenotype and function associated with myofibroblasts. The importance of this finding is it suggests TRIP-1 expression could be a potential target in therapeutic strategy aimed against pathological fibrosis.  相似文献   

12.

Background

Intramyocellular lipid accumulation is strongly related to insulin resistance in humans, and we have shown that high glucose concentration induced de novo lipogenesis and insulin resistance in murin muscle cells. Alterations in Wnt signaling impact the balance between myogenic and adipogenic programs in myoblasts, partly due to the decrease of Wnt10b protein. As recent studies point towards a role for Wnt signaling in the pathogenesis of type 2 diabetes, we hypothesized that activation of Wnt signaling could play a crucial role in muscle insulin sensitivity.

Methodology/Principal Findings

Here we demonstrate that SREBP-1c and Wnt10b display inverse expression patterns during muscle ontogenesis and regeneration, as well as during satellite cells differentiation. The Wnt/β-catenin pathway was reactivated in contracting myotubes using siRNA mediated SREBP-1 knockdown, Wnt10b over-expression or inhibition of GSK-3β, whereas Wnt signaling was inhibited in myoblasts through silencing of Wnt10b. SREBP-1 knockdown was sufficient to induce Wnt10b protein expression in contracting myotubes and to activate the Wnt/β-catenin pathway. Conversely, silencing Wnt10b in myoblasts induced SREBP-1c protein expression, suggesting a reciprocal regulation. Stimulation of the Wnt/β-catenin pathway i) drastically decreased SREBP-1c protein and intramyocellular lipid deposition in myotubes; ii) increased basal glucose transport in both insulin-sensitive and insulin-resistant myotubes through a differential activation of Akt and AMPK pathways; iii) restored insulin sensitivity in insulin-resistant myotubes.

Conclusions/Significance

We conclude that activation of Wnt/β-catenin signaling in skeletal muscle cells improved insulin sensitivity by i) decreasing intramyocellular lipid deposition through downregulation of SREBP-1c; ii) increasing insulin effects through a differential activation of the Akt/PKB and AMPK pathways; iii) inhibiting the MAPK pathway. A crosstalk between these pathways and Wnt/β-catenin signaling in skeletal muscle opens the exciting possibility that organ-selective modulation of Wnt signaling might become an attractive therapeutic target in regenerative medicine and to treat obese and diabetic populations.  相似文献   

13.
14.

Background

Currently available methods for diagnosis and staging of prostate cancer lack the sensitivity to distinguish between patients with indolent prostate cancer and those requiring radical treatment. Alterations in key adherens (AJ) and tight junction (TJ) components have been hailed as potential biomarkers for prostate cancer progression but the majority of research has been carried out on individual molecules.

Objective

To elucidate a panel of biomarkers that may help distinguish dormant prostate cancer from aggressive metastatic disease.

Methods

We analysed the expression of 7 well known AJ and TJ components in cell lines derived from normal prostate epithelial tissue (PNT2), non-invasive (CAHPV-10) and invasive prostate cancer (LNCaP, DU145, PC-3) using gene expression, western blotting and immunofluorescence techniques.

Results

Claudin 7, α –catenin and β-catenin protein expression were not significantly different between CAHPV-10 cells and PNT2 cells. However, in PC-3 cells, protein levels for claudin 7, α –catenin were significantly down regulated (−1.5 fold, p = <.001) or undetectable respectively. Immunofluoresence showed β-catenin localisation in PC-3 cells to be cytoplasmic as opposed to membraneous.

Conclusion

These results suggest aberrant Claudin 7, α – and β-catenin expression and/or localisation patterns may be putative markers for distinguishing localised prostate cancer from aggressive metastatic disease when used collectively.  相似文献   

15.
16.
17.
18.
19.

Background

FRAT1 positively regulates the Wnt/β-catenin signaling pathway by inhibiting GSK-3-mediated phosphorylation of β-catenin. It was originally characterized as a protein frequently rearranged in advanced T cell lymphoma, but has recently also been identified as a proto-oncogene involved in tumorigenesis. Our previous studies showed that FRAT1 was dramatically overexpressed in gliomas and its expression level was significantly increased along with clinicopathological grades.

Methods

In the current study, we used RT-PCR and Western blotting to assess the mRNA and protein levels of FRAT1 in three glioma cell lines. In addition, to evaluate its functional role in gliomas, we examined the effects of FRAT1 knockdown on proliferation, migration and invasion in vitro and tumor growth in vivo using glioblastoma U251 cells and RNAi.

Results

FRAT1 was highly expressed in all three glioma cell lines. RNAi-mediated down-regulation of endogenous FRAT1 in human glioblastoma U251 cells resulted in suppression of cell proliferation, arrest of cell cycle, inhibition of cell migration and invasion in vitro. Moreover, FRAT1 depletion significantly impaired tumor xenograft growth in nude mice.

Conclusions

Our results highlight the potential role of FRAT1 in tumorigenesis and progression of glioblastoma. These findings provide a biological basis for FRAT1 as a potential molecular marker for improved pathological grading and as a novel candidate therapeutic target for glioblastoma management.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号