首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently we have found that propolypeptide of von Willebrand factor (pp-vWF) obtained from platelets binds to type I collagen. It is known that pp-vWF is present in platelet alpha-granules and is secreted upon activation. In this paper, we demonstrate the two following evidences to show that it is also present on the surface of resting platelets. [1] The antibody against pp-vWF bound to the surface of platelets. [2] The antibody induced aggregation of platelets. The binding of the antibody and the antibody-induced aggregation of platelets were inhibited in a dose-dependent manner by Fab fragment of the antibody. Platelets from von Willebrand disease patients bound less of the antibody and responded weakly to the antibody.  相似文献   

2.
Several proteins from bovine platelet lysate bound to type I collagen immobilized to the beads of formyl derivatives of cellulose. Among these proteins, a protein of about 100,000 daltons was purified to homogeneity by two additional affinity chromatographies, an organomercurial-agarose and a lentil lectin-agarose. This protein consisted of a single polypeptide chain which contains carbohydrate moiety and many intrapolypeptide disulfide bridges. In addition to platelets, this protein was present in plasma and cultured endothelial cells but not in red blood cells, leukocytes, and smooth muscle cells. Furthermore, it was released from platelets upon stimulation by various agonists. The purified 100-kDa protein was labeled with 125I to quantitate its binding to fibrillar type I collagen. The protein specifically bound to fibrillar collagen with the apparent dissociation constant of 5.6 x 10(-8) M for the high affinity site and 5.5 x 10(-7) M for the low affinity site. Analyses of amino acid sequences of both intact and tryptic fragments of this protein revealed that it had strong homology to the propolypeptide of human von Willebrand factor, which is also known as von Willebrand antigen II. Various properties of this protein listed above also strongly suggest that it was indeed the propolypeptide of bovine von Willebrand factor.  相似文献   

3.
The low affinity receptor for immunoglobulin G, FcgammaRIIA, is expressed in human platelets, mediates heparin-induced thrombocytopenia and participates to platelet activation induced by von Willebrand factor. In this work, we found that stimulation of platelets with agonists acting on G-protein-coupled receptors resulted in the tyrosine phosphorylation of FcgammaRIIA, through a mechanism involving a Src kinase. Treatment of platelets with the blocking monoclonal antibody IV.3 against FcgammaRIIA, but not with control IgG, inhibited platelet aggregation induced by TRAP1, TRAP4, the thromboxane analogue U46619, and low concentrations of thrombin. By contrast, platelet aggregation induced by high doses of thrombin was unaffected by blockade of FcgammaRIIA. We also found that the anti-FcgammaRIIA monoclonal antibody IV.3 inhibited pleckstrin phosphorylation and calcium mobilization induced by low, but not high, concentrations of thrombin. In addition, thrombin- or U46619-induced tyrosine phosphorylation of several substrates typically involved in FcgammaRIIA-mediated signalling, such as Syk and PLCgamma2, was clearly reduced by incubation with anti-FcgammaRIIA antibody IV.3. Upon stimulation with thrombin, FcgammaRIIA relocated in lipid rafts, and thrombin-induced tyrosine phosphorylation of FcgammaRIIA occurred within these membrane domains. Controlled disruption of lipid rafts by depleting membrane cholesterol prevented tyrosine phosphorylation of FcgammaRIIA and impaired platelet aggregation induced by U46619 or by low, but not high, concentrations of thrombin. These results indicate that FcgammaRIIA can be activated in human platelets downstream G-protein-coupled receptors and suggest a novel general mechanism for the reinforcement of platelet activation induced by low concentrations of agonists.  相似文献   

4.
In a previous paper we demonstrated using immunochemical techniques that propolypeptide of von Willebrand factor was present on the surface of resting platelets. In the present paper we show that polyclonal antibodies against propolypeptide of von Willebrand factor induce activation of phospholipase(s) in platelets and lead to platelet aggregation. The antibody-stimulation of platelets induced the synthesis of thromboxane A2 (TXA2). Furthermore, the aggregation was inhibited by aspirin and an antagonist of TXA2. Aspirin inhibited not only the aggregation but also the activation of arachidonic acid liberation from phospholipids, but the effect of aspirin on arachidonic acid liberation was cancelled by the combined effect of the antibodies and a TXA2 mimetic agonist, which itself did not activate arachidonic acid liberation. The antibody-induced activation of arachidonic acid liberation and the aggregation were blocked by cytochalasin B. All these results obtained with antibodies were quite similar to the results obtained with collagen.  相似文献   

5.
We compared the binding of propolypeptide and mature portions of von Willebrand factor of bovine origin to fibrillar type-I collagen obtained from bovine tendon. The propolypeptide (pp-vWF) and the mature portion (m-vWF) of human origin consist of 741 and 2050 amino acids, respectively, and are rather large proteins. The collagen-binding properties of the two proteins of bovine origin were similar in that both bound more avidly to native collagen than to heat-denatured collagen. Bindings was affected similarly by ionic strength but was not modified either by divalent cations or a synthetic peptide containing Arg-Gly-Asp. However, the binding sites in the fibrillar type-I collagen molecule for pp-vWF and m-vWF seem to be different: the two proteins did not effectively compete with each other for binding to collagen. Furthermore, pepsin treatment of fibrillar type-I collagen resulted in a drastic decrease in the binding of pp-vWF, while only a moderate decrease in the binding of m-vWF was observed after the treatment.  相似文献   

6.
Sphingosine is a potent inhibitor of [3H]phorbol dibutyrate binding and protein kinase C activity in vitro and in human platelets (Hannun, Y., Loomis, C., Merrill, A., and Bell, R. (1986) J. Biol. Chem. 261, 12604-12609). Preincubation of platelets with sphingosine resulted in the inhibition of platelet secretion and second phase aggregation in response to ADP, gamma-thrombin, collagen, arachidonic acid, and platelet activating factor. Sphingosine did not affect the initial shape change of platelets or the first phase of aggregation in response to these agonists. Ristocetin-induced platelet agglutination was not affected by sphingosine. Sphingosine inhibition of secondary aggregation (secretion and second phase aggregation) was overcome by phorbol dibutyrate and by the cell-permeable protein kinase C activator, dioctanoylglycerol. Furthermore, platelet secretion and irreversible aggregation were induced by protein kinase C activators in platelets that had been "primed" to undergo initial shape change and first phase aggregation by low concentrations of agonists. These results suggest that protein kinase C activation is a necessary component in the signal transducing pathways that lead to platelet activation. Higher concentrations of agonists, however, induced irreversible aggregation and partial secretion in the presence of sphingosine, suggesting the existence of protein kinase C-independent pathways for platelet activation. These results demonstrate the utility of sphingosine as a pharmacologic tool in probing the role of protein kinase C in signal transduction.  相似文献   

7.
GPIbalpha is an integral membrane protein of the GPIb-IX-V complex found on the platelet surface that interacts with the A1 domain of von Willebrand factor (vWF-A1). The interaction of GPIbalpha with vWF-A1 under conditions of high shear stress is the first step in platelet-driven thrombus formation. Phage display was used to identify peptide antagonists of the GPIbalpha-vWF-A1 interaction. Two nine amino acid cysteine-constrained phage display libraries were screened against GPIbalpha revealing peptides that formed a consensus sequence. A peptide with sequence most representative of the consensus, designated PS-4, was used as the basis for an optimized library. The optimized selection identified additional GPIbalpha binding peptides with sequences nearly identical to the parent peptide. Surface plasmon resonance of the PS-4 parent and two optimized synthetic peptides, OS-1 and OS-2, determined their equilibrium dissociation GPIbalpha binding constants ( K Ds) of 64, 0.74, and 31 nM, respectively. Isothermal calorimetry corroborated the K D of peptide PS-4 with a resulting affinity value of 68 nM. An ELISA demonstrated that peptides PS-4, OS-1, and OS-2 competitively inhibited the interaction between the vWF-A1 domain and GPIbalpha-Fc in a concentration-dependent manner. All three peptides inhibited GPIbalpha-vWF-mediated platelet aggregation induced under high shear conditions using the platelet function analyzer (PFA-100) with full blockade observed at 150 nM for OS-1. In addition, OS-1 blocked ristocetin-induced platelet agglutination of human platelets in plasma with no influence on platelet aggregation induced by several agonists of alternative platelet aggregation pathways, demonstrating that this peptide specifically disrupted the GPIbalpha-vWF-A1 interaction.  相似文献   

8.
In the presence of ristocetin, von Willebrand factor is capable of agglutinating washed platelets. Modification of only a small percentage of amino groups of von Willebrand factor with trinitrobenzenesulfonic acid markedly inhibits this platelet agglutinating activity. 90% of the platelet agglutinating activity is lost after modification of only 10% of the von Willebrand factor amino groups. Since only the higher molecular weight forms of the heterogeneous von Willebrand factor polymers possess this platelet agglutinating activity, it was important to demonstrate that trinitrophenylation did not alter the degree of von Willebrand factor polymerization. This was accomplished by agarose gel electrophoresis. Subsequent direct binding and competitive binding studies demonstrated that trinitrophenylation markedly impairs the ability of von Willebrand factor to bind to the platelet surface. Thus the loss of platelet agglutinating activity upon modification of only a small fraction of the amino groups of von Willebrand factor is attributable to impaired binding of the modified von Willebrand factor to the platelet surface.  相似文献   

9.
Bovine von Willebrand factor was digested with human plasmin in order to isolate and characterize a fragment that can bind to human platelets. A terminal plasmin digest of bovine von Willebrand factor is composed of five fragments, ranging in relative molecular weight (Mr) from 250,000 to 35,000. The major fragment has a Mr of 250,000 and consists of four disulfide-linked polypeptide chains with Mr from 69,000 to 35,000. The Mr 69,000 and 49,000 polypeptides possess carbohydrate moieties, as indicated by their reaction with periodate-Schiff reagent. Gel filtration studies suggest that, at physiological ionic strength, four of the Mr 250,000 fragments associate into a limited noncovalent oligomer. Monoclonal antibodies were prepared against native von Willebrand factor and used to characterize the distribution of epitopes on native vWF and the Mr 250,000 major fragment. Two of the monoclonal antibodies that recognize the major fragment (2 and H-9) inhibit platelet agglutination. The Mr 250,000 fragment binds to human platelets, and the binding is inhibited by monoclonal antibodies 2 and H-9. The Mr 250,000 fragment does not agglutinate platelets, consistent with a requirement for high molecular weight oligomers of von Willebrand factor for platelet agglutination. The Mr 250,000 fragment can compete with intact, bovine von Willebrand factor for binding to human platelets. However, its affinity is one-tenth that of intact von Willebrand factor.  相似文献   

10.
Amyloid precursor protein (APP) is the precursor of amyloid β (Aβ) peptides, whose accumulation in the brain is associated with Alzheimer's disease. APP is also expressed on the platelet surface and Aβ peptides are platelet agonists. The physiological role of APP is largely unknown. In neurons, APP acts as an adhesive receptor, facilitating integrin-mediated cell adhesion, while in platelets it regulates coagulation and venous thrombosis. In this work, we analyzed platelets from APP KO mice to investigate whether membrane APP supports platelet adhesion to physiological and pathological substrates. We found that APP-null platelets adhered and spread normally on collagen, von Willebrand Factor or fibrinogen. However, adhesion on immobilized Aβ peptides Aβ1–40, Aβ1–42 and Aβ25–35 was completely abolished in platelets lacking APP. By contrast, platelet activation and aggregation induced by Aβ peptides occurred normally in the absence of APP. Adhesion of APP-transfected HEK293 to Aβ peptides was significantly higher than that of control cells expressing low levels of APP. Co-coating of Aβ1–42 and Aβ25–35 with collagen strongly potentiated platelet adhesion when whole blood from wild type mice was perfused at arterial shear rate, but had no effects with blood from APP KO mice. These results demonstrate that APP selectively mediates platelet adhesion to Aβ under static condition but not platelet aggregation, and is responsible for Aβ-promoted potentiation of thrombus formation under flow. Therefore, APP may facilitate an early step in thrombus formation when Aβ peptides accumulate in cerebral vessel walls or atherosclerotic plaques.  相似文献   

11.
Porcine von Willebrand factor (vWF) directly aggregates human platelets in vitro indicating a conformational difference between the human and porcine molecules. We amplified and directly sequenced 1242 nucleotides of porcine vWF cDNA that encodes functional domains which mediate the binding of vWF to platelets and subendothelium. The deduced amino acid sequence corresponds to residues 473-891 of the human mature vWF subunit and is 79% homologous with the human protein. Significant differences are found in two discontinuous segments thought to be involved in the binding of vWF to platelet glycoprotein Ib. Porcine vWF lacks four contiguous residues in the first segment and has two positively charged arginine residues in the second. Three point mutations associated with human type IIB von Willebrand disease in the first segment of a botrocetin binding site are at the same position as mismatches between the pig and human. The second segment of the botrocetin site is highly conserved while the third segment shows only a 60% homology.  相似文献   

12.
We have obtained evidence that selective inhibition of high affinity thrombin-binding sites located in the amino-terminal domain of the membrane glycoprotein (GP) Ib alpha results in impaired platelet activation, as shown by abrogation or reduction of the following responses induced in normal platelets by exposure to less than 1 nM alpha-thrombin: (i) increase in intracellular ionized calcium concentration ([Ca2+]i), (ii) release of dense granule content, (iii) binding of fibrinogen, (iv) aggregation. An anti-GP Ib monoclonal antibody, LJ-Ib 10, which does not inhibit von Willebrand factor binding to platelets, obliterated the high affinity alpha-thrombin-binding sites on normal platelets. Isotherms of alpha-thrombin binding to normal platelets treated with saturating amounts of the antibody were virtually identical to those obtained with platelets from a patient with classical Bernard-Soulier syndrome. In parallel with decreased binding of the agonist, this antibody caused 50% inhibition of the maximal extent of platelet aggregation and 90% inhibition of ATP release induced by 0.3 nM alpha-thrombin. By inhibiting alpha-thrombin binding to GP Ib, the antibody prevented the activation of platelets exposed to low concentrations of the agonist, as demonstrated by abrogation of the increase in intraplatelet ionized calcium concentration induced in control platelets by 0.18 nM alpha-thrombin; under these conditions, fibrinogen binding was inhibited by 84%. Therefore, there is a correlation between occupancy of the high affinity sites for alpha-thrombin on GP Ib alpha and platelet activation, secretion, and aggregation, suggesting that GP Ib alpha is part of an alpha-thrombin receptor relevant for platelet function.  相似文献   

13.
R59022 is an inhibitor of the enzyme 1,2-diacylglycerol (DAG) kinase, which, by inhibiting the conversion of DAG to phosphatidic acid, causes an increase in endogenous DAG levels and the activity of the DAG-dependent enzyme protein kinase C. This property of the drug was utilized in the present study to assess the role of DAG, i.e., its relative importance as a potentiatory versus inhibitory mediator, in agonist-induced platelet activation. The phosphorylation of the 40-47-kDa protein by protein kinase C was monitored as an indicator of endogenous DAG levels and correlated with other agonist-induced platelet responses such as platelet aggregation, 5-hydroxytryptamine (5HT) secretion and arachidonate release, the agonists used being those that induce DAG formation, e.g., thrombin and collagen. Pretreatment of platelets with R59022 before agonist addition resulted in the potentiation of 5HT secretion as well as 45 kDa protein phosphorylation induced by thrombin and the DAG analogue, 1,2-dioctanoylglycerol (DiC8). However, collagen-induced 5HT secretion was significantly inhibited (70%) in the presence of R59022, which also had strong inhibitory effects on aggregation induced by collagen, as well as by thrombin and DiC8. The inhibition of collagen-induced secretion by R59022 was in contrast to the potentiatory effects of DiC8 on the same, suggesting that even although DAG acts as a potentiatory signal in this system, the inhibitory effects of R59022 on collagen-induced aggregation can mask any effects of endogenous DAG. This inhibitory effect of R59022 on agonist-induced platelet aggregation makes it unsuitable as a tool in studying the role of DAG in platelet activation induced by agonists such as collagen as well as the 'weak' agonists (ADP, adrenaline and platelet-activating factor), where aggregation mediates other responses such as arachidonate release and secretion. Furthermore, potentiatory effects of R59022 on 5HT secretion induced by phorbol 12-myristate 13-acetate and ionomycin, which are effects unlikely to be related to inhibition of DAG kinase was observed, and these effects further underline the non-specificity in the actions of R59022 and its limitations as a tool in studying platelet stimulus-response coupling.  相似文献   

14.
In vitro, high concentrations of ethanol (EtOH) reduce platelet aggregation. Less is known about the effect of low EtOH doses on platelet function in a selected human population of long-life abstainers and low moderate-wine drinkers to avoid rebound effect of EtOH on platelet aggregation. Results of our experiments suggest that moderate-wine drinkers have higher levels of high density lipoprotein (HDL) than long-life abstainers while fibrinogen levels are unchanged. Furthermore, platelets obtained from these individuals do not differ in their response when stimulated by agonists such as AA and collagen. The effect of in vitro exposure of low doses of EtOH has been studied in PRP and in washed platelets. EtOH (0.1-10 mM) inhibits platelet aggregation induced by collagen at its ED50 while is ineffective when aggregation was triggered by U-46619 and by 1 microM adenosine diphosphate (ADP). 5-10 mM EtOH partially reduces the second wave of aggregation induced by 3 microM ADP. 0.1-10 mM EtOH dose-dependently lowers the aggregation induced by AA at its ED50 but it is less effective at ED75 of AA. The antiaggregating effect of EtOH on aggregation induced by AA is unchanged by inhibitor of nitric oxide synthase. In addition, 10 mM EtOH reduces thromboxane (Tx) formation. In washed platelets, 1-10 mM EtOH partially inhibits platelet aggregation induced by thrombin. In washed resting platelets, 10 mM EtOH does not change the resting [Ca++]i while significantly reduces the increase in [Ca++]i triggered by AA. The results of ex vivo experiments have demonstrated that wine increases the HDL. However, this observation may or may not influence the response of platelets to agonists. Results of our studies demonstrate that low doses of alcohol reduces platelet function.  相似文献   

15.
Two reduced/alkylated fragments of bovine propolypeptide of von Willebrand factor (pp-vWF) that inhibit pp-vWF binding to collagen were isolated. One is a tryptic fragment of molecular mass of about 30 kDa and inhibits the binding at a molar concentration about 20 times higher than the intact pp-vWF. Amino acid sequence of this fragment was determined almost completely, and it was revealed that this fragment corresponded to the carboxyl-terminal region of pp-vWF molecule beginning with Phe557. The other active fragment was obtained by lysyl endopeptidase digestion. This migrated as a 21.5/21-kDa doublet in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but deglycosylation of this doublet resulted in production of single species of 19 kDa. The difference between the doublet constituents, therefore, was of carbohydrate composition. The extent of inhibition of collagen-binding by this 21.5/21-kDa fragment was comparable to that of the 30-kDa fragment, and furthermore, location of this fragment in the molecule was established to be between Phe570 and Lys682. These were the only fragments among those obtained by proteolytic digestions that had significant competitive effect on the binding of intact pp-vWF to collagen. These results strongly suggest that at least one collagen-binding site should be present in the carboxyl-terminal region of bovine pp-vWF extending from residue 570 to 682.  相似文献   

16.
Platelet factor XIII. The collagen receptor?   总被引:4,自引:0,他引:4  
We have studied the binding of collagen fibers with platelet proteins using affinity chromatography on collagen-Sepharose. Only a few proteins from a platelet lysate were trapped by this column. When denatured collagen (gelatin) was used as the affinity ligand, the major protein did not bind and was identified as platelet Factor XIII by polyacrylamide gel electrophoresis, immunoprecipitation, and enzymic activity. This is a zymogen form of transglutaminase, which corresponds to the "a" subunit of the coagulation factor in plasma. Immunoglobulins specific for platelet Factor XIII obtained from antiserum raised against plasma Factor XIII were able to initiate platelet aggregation by themselves, in strong contrast to nonspecific antibodies. This specific immunoglobulin-mediated platelet aggregation required the presence of Ca2+. It was inhibited by aspirin and prostacyclin, but not by specific inhibitors for other agonists. These data suggest the possibility that the zymogen form of Factor XIII is located on the surface of platelets and may play a key role as the receptor for collagen-induced platelet aggregation.  相似文献   

17.
Degradation of inositides induced by phospholipase C in activated platelets leads to the formation of 1,2-diacylglycerol (1,2-DG) and its phosphorylated product, phosphatidic acid (PA). We have studied the relationship between activation of phospholipase C and the appearance of specific platelet responses, such as phosphorylation of proteins, shape change, release reaction and aggregation induced by different stimuli such as thrombin, platelet-activating factor, collagen, arachidonic acid (AA) and dihomogamma linolenic acid. A low degree of platelet activation induces only shape change which is associated with partial activation of phospholipase C (formation of phosphatidic acid), and phosphorylation of both a 40K molecular weight protein (protein kinase C activation) and a 20K molecular weight protein (myosin light chain). A higher degree of platelet activation induces aggregation, release of serotonin and a higher level of phospholipase C and protein kinase C activities. Metabolism of AA occurs concomitantly to aggregation and serotonin release, but AA metabolites are not related to the shape change of human platelets. Platelet shape change and the initial activation of phospholipase C induced by thrombin or platelet-activating factor is independent of the metabolites derived from cyclo-oxygenase activity. Further activation of phospholipase C which occurs during platelet aggregation and release reaction is, however, partly dependent on cyclo-oxygenase metabolites.  相似文献   

18.
The inhibitory effects of three pure compounds isolated from wood garlic, 2,4,5-trithiahexane (I), 2,4,5,7-tetrathiaoctane (II), and 2,4,5,7-tetrathiaoctane 2,2-dioxide (III), on rabbit platelet aggregation induced by collagen, arachidonic acid, U46619, ADP (adenosine 5'-diphosphate), PAF (platelet aggregating factor), and thrombin were studied in vitro. The anti-aggregating activity of 2,4,5,7-tetrathiaoctane 4,4-dioxide (IV) was also measured with collagen and arachidonic acid. I, II, III, and IV inhibited the platelet aggregation induced by all tested agonists. I, II, and III exhibited a stronger inhibitory effect against the thrombin-induced aggregation of GFP (gel-filtered platelets) than against the aggregation induced by the other agonists. Notably, the IC50 value for III was 4 microM, which is approximately 2.5 times stronger than MATS (methyl allyl trisulfide), a major anti-platelet compound isolated from garlic. In inhibiting collagen-induced aggregation, II was as potent as MATS and aspirin, with a marked disaggregation effect on the secondary aggregation by arachidonic acid, at the rate of 47.05%/min at a concentration of 10(-4) M. I, II, and III also suppressed U46619-induced aggregation. These results suggest that sulfur-containing compounds in wood garlic not only inhibit arachidonic acid metabolism but also suppress aggregation in association with the function of the platelet plasma membrane.  相似文献   

19.
Thrombin and trypsin induce serotonin release and aggregation in human platelets. Both proteases induce activation of phospholipase C as reflected by formation of inositol phosphates and phosphorylation of the resultant 1,2-diacylglycerol to phosphatidic acid. Also, thrombin and trypsin activate protein kinase C and myosin light chain kinase as indicated, respectively, by phosphorylation of the 40,000 and 20,000 dalton proteins. Leupeptin, a known inhibitor of serine proteases, blocks all the observed responses of human platelets to trypsin and thrombin. Leupeptin does not inhibit serotonin release and aggregation induced by other platelet stimuli such as collagen, platelet-activating factor, ionophore A23187, and arachidonic acid. The implication of a proteolytic-mediated pathway in the transmembrane signalling involved in platelet activation is discussed.  相似文献   

20.
We have found that the form of glycoprotein (GP) IIb-IIIa (integrin alpha IIb beta 3) expressed on nonstimulated platelets is a functional receptor that mediates selective and irreversible adhesion to immobilized fibrinogen. This occurs even in the presence of the elevated intracellular cAMP levels induced by prostaglandin E1 or after inhibition of protein kinase C activity by sphingosine. In the absence of inhibitors, platelets adhering to fibrinogen through GP IIb-IIIa become fully activated and aggregate with one another. Immobilized von Willebrand factor (vWF), in contrast, is recognized by nonstimulated platelets through another receptor, GP Ib. This interaction leads to a change in the ligand recognition specificity of GP IIb-IIIa that can then bind to immobilized vWF and mediate irreversible platelet adhesion and aggregation; this process, however, is inhibited by elevated intracellular cAMP levels or blockade of protein kinase C activity. Therefore, GP Ib and GP IIb-IIIa induce platelet activation through the selective recognition of immobilized vWF and fibrinogen, respectively, in the absence of exogenous agonists. Moreover, "nonactivated" and "activated" GP IIb-IIIa exhibits distinctly different reactivity toward surface-bound vWF, and the functional switch can be induced by the binding of vWF to GP Ib. These findings demonstrate the modulation of platelet function by two different adhesion receptors, GP Ib and GP IIb-IIIa, as well as the distinct dual role of the latter as the necessary common mediator of irreversible adhesion and aggregation on both fibrinogen and vWF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号