首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Precise localization of NF1 to 17q11.2 by balanced translocation.   总被引:25,自引:11,他引:14       下载免费PDF全文
A female patient is described with von Recklinghausen neurofibromatosis (NF1) in association with a balanced translocation between chromosome 17 and 22 [46,XX,t(17;22)(q11.2;q11.2)]. The breakpoint in chromosome 17 is cytogenetically identical to a previously reported case of NF1 associated with a 1;17 balanced translocation and suggests that the translocation events disrupt the NF1 gene. This precisely maps the NF1 gene to 17q11.2 and provides a physical reference point for strategies to clone the breakpoint and therefore the NF1 gene. A human-mouse somatic cell hybrid was constructed from patient lymphoblasts which retained the derivative chromosome 22 (22pter----22q11.2::17q11.2----17qter) but not the derivative 17q or normal 17. Southern blot analysis with genes and anonymous probes known to be in proximal 17q showed ErbA1, ErbB2, and granulocyte colony-stimulating factor (CSF3) to be present in the hybrid and therefore distal to the breakpoint, while pHHH202 (D17S33) and beta crystallin (CRYB1) were absent in the hybrid and therefore proximal to the breakpoint. The gene cluster including ErbA1 is known to be flanked by the constitutional 15;17 translocation breakpoint in hybrid SP3 and by the acute promyelocytic leukemia (APL) breakpoint, which provides the following gene and breakpoint order: cen-SP3-(D17S33,CRYB1)-NF1-(CSF3,ERBA1, ERBB2)-APL-tel. The flanking breakpoints of SP3 and API are therefore useful for rapidly localizing new markers to the neurofibromatosis critical region, while the breakpoints of the two translocation patients provide unique opportunities for reverse genetic strategies to clone the NF1 gene.  相似文献   

4.
Breakpoints on chromosome 22 in the translocation t(9;22) found in Philadelphia positive acute lymphoblastic leukaemia patients fall within two categories. In the first the breakpoint is localized within the breakpoint cluster region of the BCR gene, analogous to the chromosome 22 breakpoint in chronic myeloid leukaemia. The second category has a breakpoint 5' of this area, but still within the BCR gene. We have previously shown that these breakpoints occur within the first intron of the BCR gene and cloned the 9q+ junction from such a patient. We have now determined the sequences around the breakpoints on both translocation partners from this patient as well as the germline regions. The chromosome 9 ABL sequence around the breakpoint shows homology to the consensus Alu sequence whereas the chromosome 22 BCR sequence does not. At the junction there is a 6 bp duplication of the chromosome 22 sequence which is present both in the 9q+ and in the 22q- translocation products. Possible mechanisms for the generation of the translocation are discussed.  相似文献   

5.
Reciprocal chromosome translocations are common de novo rearrangements that occur randomly throughout the human genome. To learn about causative mechanisms, we have cloned and sequenced the breakpoints of a cytologically balanced constitutional reciprocal translocation, t(X;4)(p21.2;q31.22), present in a girl with Duchenne muscular dystrophy (DMD). Physical mapping of the derivative chromosomes, after their separation in somatic cell hybrids, reveals that the translocation disrupts the DMD gene in Xp21 within the 18-kb intron 16. Restriction mapping and sequencing of clones that span both translocation breakpoints as well as the corresponding normal regions indicate the loss of approximately 5 kb in the formation of the derivative X chromosome, with 4-6 bp deleted from chromosome 4. RFLP and Southern analyses indicate that the de novo translocation is a paternal origin and that the father's X chromosome contains the DNA that is deleted in the derivative X. Most likely, deletion and translation arose simultaneously from a complex rearrangement event that involves three chromosomal breakpoints. Short regions of sequence homology were present at the three sites. A 5-bp sequence, GGAAT, found exactly at the translocation breakpoints on both normal chromosomes X and 4, has been preserved only on the der(4) chromosome. It is likely that the X-derived sequence GGAATCA has been lost in the formation of the der(X) chromosome, as it matches an inverted GAATCA sequence present on the opposite strand exactly at the other end of the deleted 5-kb fragment. These findings suggest a possible mechanism which may have juxtaposed the three sites and mediated sequence-specific breakage and recombination between nonhomologous chromosomes in male meiosis.  相似文献   

6.
7.
8.
9.
10.
《Genomics》1999,55(1):118-121
The t(8;13)(p11;q12) is the most common translocation associated with the 8p11 myeloproliferative syndrome and results in an identical mRNA fusion between ZNF198 at 13q12 and FGFR1 at 8p11 in all cases thus far reported. ZNF198 is a widely expressed gene that is predicted to encode a 1377-amino-acid protein with five Zn finger-related motifs known as MYM domains. To determine the genomic DNA structure of ZNF198, we employed bubble PCR from PAC clones with a panel of gene-specific primers. Sequencing of these products revealed that ZNF198 consists of 26 exons with the initiation codon located in exon 4. The t(8;13) results in a consistent mRNA fusion of ZNF198 exon 17 to FGFR1 exon 9. Notable features of the structure of ZNF198 include three noncanonical GC donor splice sites and the presence of an alternatively spliced intron within exon 4. Amplification of genomic DNA from six t(8;13) patients with primers to ZNF198 exon 17 and FGFR1 exon 9 yielded patient-specific products ranging in size from 500 bp to 2.5 kb, indicating that the positions of the breakpoints in the t(8;13) are tightly clustered. The positions of the six t(8;13) breakpoints were determined and found to be distributed across ZNF198 intron 17 and FGFR1 intron 8 with no apparent subclustering. No consistent sequence motifs, repeats, or topoisomerase II cleavage sites were found at or near the breakpoints. It remains unclear why the t(8;13) translocation breakpoints occur within such small genomic regions, and it is possible that strict ZNF198–FGFR1 coding requirements restrict the positions of the breakpoints.  相似文献   

11.
12.
Palindromic AT-rich repeats (PATRRs) on chromosomes 11q23 and 22q11 at the constitutional t(11;22) breakpoint are predicted to induce genomic instability, which mediates the translocation. A PCR-based translocation-detection system for the t(11;22) has been developed with PCR primers flanking the PATRRs of both chromosomes, to examine the involvement of the PATRRs in the recurrent rearrangement. Forty unrelated carriers of the t(11;22) balanced translocation, plus two additional, independent cases with the supernumerary-der(22) syndrome, were analyzed to compare their translocation breakpoints. Similar translocation-specific junction fragments were obtained from both derivative chromosomes in all 40 carriers of the t(11;22) balanced translocation and from the der(22) in both of the offspring with unbalanced supernumerary-der(22) syndrome, suggesting that the breakpoints in all cases localize within these PATRRs and that the translocation is generated by a similar mechanism. This PCR strategy provides a convenient technique for rapid diagnosis of the translocation, indicating its utility for prenatal and preimplantation diagnosis in families including carriers of the balanced translocation.  相似文献   

13.
14.
15.
16.
A 244K genome-wide array based comparative genomic hybridization study was carried out in a familial translocation t(2;6)(p25;p21) balanced in the mother and unbalanced in her daughter. In the past, this translocation has allowed us to localize the HLA multigene cluster to chromosome 6. With microarray technology, confirmation of the chromosome localization of the HLA system was easily obtained, showing that such approach may be applied to the breakpoint localizations of other familial structural changes when they are unbalanced. The disruption of genes at the translocation breakpoints that did not have any phenotypic consequences in the parent will allow the generation of a map of 'haplotolerant genes'. In addition, many genomic variants were detected with this technology, enlarging the possibility of analyzing their possible contribution to phenotypic diversity.  相似文献   

17.
Loring Craymer 《Genetics》1984,108(3):573-587
Translocations have long been valued for their segregational properties. This paper extends the utility of translocations by considering recombinational derivatives of pairs of simple reciprocal translocations. Three major derivative structures are noted. One of these derivatives is suitable for use in half-tetrad experiments. A second should find use in recombining markers with translocation breakpoints. The third is an insertional-tandem duplication: it has a section of one chromosome inserted into a heterologue with a section of the latter chromosome tandemly repeated about the breaks of the insert. All of these structures are contained in "constellations" of chromosomes that regularly segregate aneuploid-1 products (informationally equivalent to nonrecombinant adjacent-1 segregants) for one of the parental translocations but do not segregate euploid products. This is in contrast to the parental T1/T2 constellations which segregate euploid products but not aneuploid-1 products. Methods are described for selecting translocation recombinants on the basis of this dichotomy. Several examples of translocation recombinants have been recovered with these techniques, and the recombination frequencies seem to be consistent with those observed for crossovers between inversion breakpoints. Recombinant chromosomes tend to disjoin, but it is observed that the tendency may vary according to the region involved in the recombination, and it is suggested that this difference reflects a difference in chiasmata terminalization times. Special consideration is given to insertional-tandem duplications. Large insertional-tandem duplications are useful in cytogenetic screens. Small insertional-tandem duplications are useful in gene dosage studies and other experiments that require an insert from one chromosome to another. Large duplications can be deleted to form small duplications. To generate a small insert for a specified region, it is only necessary to have one translocation with a breakpoint flanking the region of interest. The second translocation can have a breakpoint quite far from the region: an insertional-tandem duplication containing the region that has one closely flanking breakpoint can be deleted to create a smaller duplication that has two closely flanking breakpoints.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号