首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 743 毫秒
1.
Red tide blooms of Cochlodinium polykrikoides in a coastal cove   总被引:1,自引:0,他引:1  
Successive blooms of the dinoflagellate Cochlodinium polykrikoides occurred in Pettaquamscutt Cove, RI, persisting from September through December 1980 and again from April through October 1981. Cell densities varied from <100 cells L−1 at the onset of the bloom and reached a maximum density exceeding 3.4 × 106 cells L−1 during the summer of 1981. The bloom was mainly restricted to the mid to inner region of this shallow cove with greatest concentrations localized in surface waters of the southwestern region during summer/fall periods of both years. Highly motile cells consisting of single, double and multiple cell zooids were found as chains of 4 and 8 cells restricted to the late August/September periods. The highest cell densities occurred during periods when annual temperatures were between 19 and 28 °C and salinities between 25 and 30. A major nutrient source for the cove was Crying Brook, located at the innermost region at the head of the cove. Inorganic nitrogen (NH3 and NO2 + NO3) from the brook was continually detectable throughout the study with maximum values of 57.5 and 82.5 μmol L−1, respectively. Phosphate (PO4-P) was always present in the source waters and rarely <0.5 μmol L−1; silicate always exceeded 30 μmol L−1 with maximum concentrations reaching 226 μmol L−1. Chlorophyll a and ATP concentrations during the blooms varied directly with cell densities. Maximum Chl a levels were 218 mg m−3 and ATP-carbon was >20 g C m−3. Primary production by the dinoflagellate-dominated community during the bloom varied between 4.3 and 0.07 g C m−3 d−1. Percent carbon turnover calculated from primary production values and ATP-carbon varied from 6 to 129% d−1. The dinoflagellates dominated the entire summer period; other flagellates and diatoms were present in lesser amounts. A combination of low washout rate due to the cove dynamics, active growth, and life cycles involving cysts allowed C. polykrikoides to maintain recurrent bloom populations in this area.  相似文献   

2.
Noxious red tides of the dinoflagellate Cochlodinium polykrikoides tend to be long lasting and cause mass mortalities of cultured and natural fish and invertebrates along the western coast of Japan and the southern coast of Korea. In order to assess the tolerance of C. polykrikoides to attack by algicidal bacteria, the effects of algicidal bacteria strains on the growth of three C. polykrikoides strains were examined in laboratory culture experiments. Algicidal bacteria used were two strains of Cytophaga (J18/M01 and AA8-2, direct attack type and wide prey range), three strains of Alteromonas (S, K, D) and one strain of Pseudoalteromonas (R, indirect attack type), which were all isolated by using Chattonella antiqua as a prey organism. Neither Cytophaga strain showed any algicidal activity. In the cases of Alteromonas and Pseudoalteromonas, some cultures of C. polykrikoides were killed, but at least 10 days or more were required for the death of this dinoflagellate. C. polykrikoides survived in the presence of algicidal bacteria in concentrations up to 106–107 cells ml−1, which is enough for other red tide microalgae to be killed. On the contrary, the algicidal effects of bacteria on C. antiqua were detected clearly within a few days. These results imply that C. polykrikoides is resistant to the six algicidal bacteria examined, which may reflect the capacity for mixotrophy. This resistance of C. polykrikoides to algicidal bacteria could provide a selective advantage for survival compared to other microalgae susceptible to attack by algicidal bacteria and hence prolong red tides caused by this harmful dinoflagellate.  相似文献   

3.
We report on the emergence of Cochlodinium polykrikoides blooms in the Peconic Estuary and Shinnecock Bay, NY, USA, during 2002–2006. Blooms occurred during late summer when temperatures and salinities ranged from 20 to 25 °C and 22 to 30 ppt, respectively. Bloom patches achieved cell densities exceeding 105 ml−1 and chlorophyll a levels exceeding 100 μg l−1, while background bloom densities were typically 103–104 cells ml−1. Light, scanning electron and ultrathin-section transmission electron microscopy suggested that cells isolated from blooms displayed characteristics of C. polykrikoides and provide the first clear documentation of the fine structure for this species. Sequencing of a hypervariable region of the large subunit rDNA confirmed this finding, displaying 100% similarity to other North American C. polykrikoides strains, but a lower similarity to strains from Southeast Asia (88–90%). Bioassay experiments demonstrated that 24 h exposure to bloom waters (>5 × 104 cells ml−1) killed 100% of multiple fish species (1-week-old Cyprinodon variegates, adult Fundulus majalis, adult Menidia menidia) and 80% of adult Fundulus heteroclitus. Microscopic evaluation of the gills of moribund fish revealed epithelial proliferation with focal areas of fusion of gill lamellae, suggesting impairment of gill function (e.g. respiration, nitrogen excretion, ion balance). Lower fish mortality was observed at intermediate C. polykrikoides densities (103–104 cells ml−1), while fish survived for 48 h at cell densities below 1 × 103 cells ml−1. The inability of frozen and thawed-, or filtered (0.2 μm)-bloom water to cause fish mortality suggested that the thick polysaccharide layer associated with cell membranes and/or a toxin principle within this layer may be responsible for fish mortality. Juvenile bay scallops (Argopecten irradians) and American oysters (Crassostrea virginica) experienced elevated mortality compared to control treatments during a 9-day exposure to bloom water (5 × 104 cells ml−1). Surviving scallops exposed to bloom water also experienced significantly reduced growth rates. Moribund shellfish displayed hyperplasia, hemorrhaging, squamation, and apoptosis in gill and digestive tissues with gill inflammation specifically associated with areas containing C. polykrikoides cells. In summary, our results indicate C. polykrikoides blooms have become annual events on eastern Long Island and that bloom waters are capable of causing rapid mortality in multiple species of finfish and shellfish.  相似文献   

4.
Harmful algal blooms (HABs) resulting in red discoloration of coastal waters in Sepanggar Bay, off Kota Kinabalu, Sabah, East Malaysia, were first observed in January 2005. The species responsible for the bloom, which was identified as Cochlodinium polykrikoides, coincided with fish mortalities in cage-cultures. Determinations of cell density between January 2005 and June 2006 showed two peaks that occurred in March–June 2005 and June 2006. Cell abundance reached a maximum value of 6 × 106 cells L−1 at the fish cage sampling station where the water quality was characterized by high NO3–N and PO4–P concentrations. These blooms persisted into August 2005, were not detected during the north–east monsoon season and occurred again in May 2006. Favorable temperature, salinity and nutrient concentrations, which were similar to those associated with other C. polykrikoides blooms in the Asia Pacific region, likely promoted the growth of this species. Identification of C. polykrikoides as the causative organism was based on light and scanning microscopy, and confirmed by partial 18S ribosomal DNA sequences of two strains isolated during the bloom event (GenBank accession numbers DQ915169 and DQ915170).  相似文献   

5.
You Wang  Xuexi Tang   《Harmful algae》2008,7(1):65-75
Interactions between Prorocentrum donghaiense Lu and Scrippsiella trochoidea (Stein) Loeblich III, two species of causative bloom dinoflagellates in China, were investigated using bi-algal cultures under controlled laboratory conditions. The growth of P. donghaiense and S. trochoidea were significantly suppressed when the initial cell densities were set at 1.9 × 104 cells mL−1 or 1.9 × 105 cells mL−1 for P. donghaiense and 1.0 × 104 cells mL−1 for S. trochoidea when the initial size/density ratio was 1:1 or 10:1, respectively, but no out-competement was observed in either bi-algal culture by the end. The simultaneous assay on the culture filtrate showed that P. donghaiense filtrate prepared at a lower initial density (1.9 × 104 cells mL−1) stimulated the co-cultured S. trochoidea at a density of 1.0 × 104 cells mL−1, but filtrate at a higher density (1.9 × 105 cells mL−1) depressed its growth. Differently, the filtrate of S. trochoidea at a density of 1.0 × 104 cells mL−1 significantly suppressed the growth of P. donghaiense at a density of 1.9 × 104 cells mL−1, but had little stimulatory effect on P. donghaiense at a density of 1.9 × 105 cells mL−1compared to the control (P > 0.05). It is likely that these two species of microalgae interact with each other mainly by releasing allelochemical substance(s) into the culture medium, and a direct cell-to-cell contact was not necessary for their mutual interaction. We then quantify their interactions in the bi-algal culture by using a mathematical model. The estimated parameters from the model showed that the inhibition exerted by S. trochoidea on P. donghaiense was about 43 and 24 times stronger than the inhibitory effect that P. donghaiense exerted on S. trochoidea when the initial size/density were 1:1 and 10:1, respectively. S. trochoidea seemed to have a survival strategy that was superior to P. donghaiense in the bi-algal culture under controlled laboratory conditions. We also observed a closely positive relationship between the initial cell density and its effect on the co-cultured microalga by measuring the fluorenscence: filtrate prepared from higher initial cell density had stronger interference on the co-cultured microalga. Moreover, pre-treated under different temperature conditions (30 °C, 60 °C and 100 °C) would significantly changed the effect of culture filtrate on the co-cultured microalga. Result inferred that P. donghaiense or S. trochoidea would release allelochemicals into the bi-algal culture medium and the allelochemicals might be a mixture with temperature-sensitive components in it.  相似文献   

6.
This study deals with a recently found phenomenon in the northern Baltic Sea: the occurrence of the dinoflagellate Dinophysis acuminata in the deep water below the thermocline. This was first observed in July 2001 at the station BY 15 in the Gotland Deep, where a sharp and intensive chlorophyll fluorescence signal was encountered at 77 m depth. The fluorescence peak was due to a dinoflagellate community dominated by Dinophysis acuminata (approximately 18 000 cells l−1). The survival of this community was followed in laboratory incubations in low light (20 μE m−2 s−1) and low temperature (+5 °C). After 5 weeks incubation, 67–84% of the initial cell abundance was lost, while few D. acuminata cells survived up to 24 weeks in the original sample. During the incubation, the fluorescence signal of the cells became fainter and the chloroplasts smaller and aggregated. On two occasions a D. acuminata cell was found attached to a smaller cell by a thin cytoplasm strand, possibly indicating mixotrophic behavior. During the following summer (2002), the photosynthetic efficiency of D. acuminata collected from thermocline layers of few stations and from the nitracline (75–80 m) at one station was studied in photosynthesis irradiance (P–E) incubations. Photosynthetic activity occurred in all populations, with differences in their photosynthetic carbon uptake rates. Photosynthesis of D. acuminata populations was saturated between 250 and 500 μE m−2 s−1; maximum cell-specific carbon uptake rates (Pm) ranged from 160–925 pg C cell−1 h−1. The Pm-rates in populations originating below the thermocline and in an artificially darkened population were markedly lower than in populations from upper water layers. The varying maximum photosynthetic rates of these populations may reflect their history, e.g. time spent in different light environments.  相似文献   

7.
The functional response of a planktonic ciliate, Strombidium sp. feeding on the dinoflagellate Pfiesteria piscicida non-toxic zoospores (NTZ) was experimentally studied with four different prey concentrations (43–3153 cells ml−1). Data from direct observations (NTZ inside individual Strombidium sp.) was used to calculate predator–prey specific ingestion and clearance rates. The ingestion rates varied between 0.68 and 14.26 NTZ ind−1 h−1, and with the predator–prey specific handling time of 2.83 min the Umax was 21.18 NTZ ind−1 h−1. The increase in the prey concentration between approximately 700 and 3000 NTZ ml−1 did not increase the uptake of prey, and at the lowest Pfiesteria NTZ concentrations the feeding efficiency of Strombidium sp. was lowered, possibly indicating a situation of threshold feeding. When data from direct observations of ingested Pfiesteria NTZ were compared with values of total NTZ loss from the experimental water during the experiment, ingestion was found to represent only a fraction of the total NTZ loss in the presence of ciliates. This discrepancy was concluded to be due to other grazer related factors than actual ciliate grazing. The control of the initial growth of Pfiesteria community, in a pre-bloom situation, would require only a small ciliate abundance (less than 5 ml−1), but when the Pfiesteria NTZ are scarce, relatively more ciliates are needed to limit the population growth of the dinoflagellate community because of the apparent feeding threshold. It is concluded that the formation of non-toxic P. piscicida blooms require periods of low grazing pressure or a means to escape grazing.  相似文献   

8.
A novel assay method using nuclease protection assay integrated with sandwich hybridization (NPA-SH) for qualitative and quantitative detection of microalgae has been developed. Two species-specific nuclease-protection-assay (NPA) probes targeted 28S ribosomal RNA of Prorocentrum minimum and Prorocentrum micans, respectively, were designed in this study. The assay consists of S1 nuclease protection, sandwich hybridization and signal detection. The specificity of the probes was verified with cultured algae in the laboratory and field sample from Jiaozhou Bay, and the quantity by NPA-SH analysis showed good agreement with that of cell-counting with a light microscope. The optical absorbance of probe binding on the target showed good linear fit with cell amount. A standard curve for P. minimum was established to correlate the optical absorbance to cell density on a basis in the linear range between 15 and 475 cells ml−1 seawater, and the equation deducted was ‘y = 0.0053 × x + 0.0658’ (R2 = 0.992, n = 4). The assay was sensitive to detect 15 cells ml−1 seawater. And for P. micans, with linear range between 0.6 and 20 cells ml−1 seawater, the equation deducted was ‘y = 0.1174 × x + 0.1106’ (R2 = 0.996, n = 4); the assay was sensitive to detect less than 1 cell ml−1 seawater. The inter-assay coefficients of variation (CVs) were 12.4 and 10.9%, respectively. The good specificity, sensitivity and reproducibility of the NPA-SH implied that this new technique could be extremely useful for qualitative and quantitative assay of P. minimum and P. micans at low abundance.  相似文献   

9.
A sudden and nearly synchronous emergence of the red tide forming dinoflagellate Cochlodinium along more than 800 km of California coastline was initially observed in late summer 2004. Thereafter high cell concentrations have been detected on an annual basis. Here, we present quantitative and semi-quantitative data indicating that Cochlodinium was uncommon in the phytoplankton community in California prior to 2004 and is now persisting as a more regular component and one that seasonally can cause red tides. The quantitative portion of this study was primarily conducted in Monterey Bay, where cell densities reached at least 6 × 104 cells L−1 during the initial outbreak. A semi-quantitative comparison of California coastal counties by the California Department of Health Services (CDHS) was also made: of the 15 counties surveyed (most with multiple sites per county), cells were detected only from Los Angeles County in the south to San Mateo County in the central region (seven counties), but not in the northern part of the state (six counties). Two counties in the central region of the state, San Luis Obispo and Santa Cruz, displayed intense and frequent periods of elevated Cochlodinium cell abundances. Although not observed in the state-wide CDHS survey, we occasionally found cells in San Diego County with densities up to 2.7 × 104 cells L−1. Though these colonial dinoflagellates have been recognized in California for over 80 years, with several “blooms” recorded prior to 2004, the species’ geographic range and abundance in recent years suggest significant shifts in the nearshore phytoplankton community of this region of the eastern Pacific.  相似文献   

10.
Potentially toxic cyanobacterial blooms are becoming common in the Brazilian reservoirs in all regions of the country. During October 2004, a dense bloom of cyanobacteria occurred in the Monjolinho Reservoir (São Carlos, São Paulo State, Brazil) and a significant amount of cyanobacterial material accumulated on the water surface. Phytoplankton analysis showed that the main species in this bloom were Anabaena circinalis and Anabaena spiroides. Cladoceran (Ceriodaphnia dubia and Ceriodaphnia silvestrii) and mouse bioassays were performed to detect toxic products in extracts of the natural samples collected at the three different dates during in short period. To prepare the extracts, freeze-dried cells were dispersed in distilled water and subjected to repeated freeze/thaw cycles and sonication and centrifuging processes. Crude extracts were toxic both to cladocerans (LC50 94–406 mg freeze-dried cells L−1) and mice (indicative LD50 297–445 mg freeze-dried cells kg−1) and the toxicity of the bloom increased for cladocerans during the occurrence of the bloom. Toxin analysis by ELISA revealed that microcystin (MC) was found in the water of the reservoir (concentrations ranging from 28 to 45 μg L−1). In addition, microcystin was also found in freeze-dried cyanobacteria cells with concentrations ranging from 138 to 223 μg g−1. On the other hand, neurotoxins (saxitoxin and gonyautoxin) were not detected in any of the natural samples by HPLC. Signs of toxicity in mice did not indicate whether the bloom samples were predominantly hepatotoxic or neurotoxic. It is known that natural Anabaena blooms can contain other toxic compounds besides microcystins and neurotoxins such as lipopolysaccharides or other toxins not identified or known. Methods of detecting cyanotoxins used in this study were insufficient to clarify the toxicological features of Anabaena bloom and indicated that other methods should be investigated.  相似文献   

11.
Karlodinium veneficum is a common member of temperate, coastal phytoplankton assemblages that occasionally forms blooms associated with fish kills. Here, we tested the hypothesis that the cytotoxic and ichthyotoxic compounds produced by K. veneficum, karlotoxins, can have anti-grazing properties against the heterotrophic dinoflagellate, Oxyrrhis marina. The sterol composition of O. marina (>80% cholesterol) renders it sensitive to karlotoxin, and does not vary substantially when fed different algal diets even for prey that are resistant to karlotoxin. At in situ bloom concentrations (104–105 K. veneficum ml−1), grazing rates (cells ingested per Oxyrrhis h−1) on toxic K. veneficum strain CCMP 2064 were 55% that observed on the non-toxic K. veneficum strain MD5. At lower prey concentrations typical of in situ non-bloom levels (<103 cells ml−1), grazing rates (cells ingested per Oxyrrhis h−1) on toxic K. veneficum strain CCMP 2064 were 70–80% of rates on non-toxic strain MD5. Growth of O. marina was significantly suppressed when fed the toxic strain of K. veneficum. Experiments with mixed prey cultures, where non-toxic strain MD5 was fluorescently stained, showed that the presence of toxic strain CCMP 2064 inhibited grazing of O. marina on the co-occurring non-toxic strain MD5. Exogenous addition of a sub-lethal dose (100 ng ml−1) of purified karlotoxin inhibited grazing of O. marina by approximately 50% on the non-toxic K. veneficum strain MD5 or the cryptophyte S. major. These results identify karlotoxin as an anti-grazing compound for those grazers with appropriate sterol composition (i.e., desmethyl sterols). This strategy is likely to be an important mechanism whereby growth of K. veneficum is uncoupled from losses due to grazing, allowing it to form ichthyotoxic blooms in situ.  相似文献   

12.
The aim of this study in the field was to investigate whether there are differences between the outer archipelago (Gullmar Fjord) and a semi-enclosed fjord system (Koljö Fjord) in occurrences of D. acuta and D. acuminata as well as in their content of diarrheic shellfish toxin (DST) per cell. When all data pairs of cell toxicity of D. acuminata and the corresponding number of cells l−1 from the two sites were tested in a regression analysis, a statistically significant negative correlation became evident and was apparent as a straight line on a log–log plot (p < 0.0001). Obviously, there was an overall inverse relationship between the population density of D. acuminata and the toxin content per cell. Plotted on a linear scale, all data-pairs of cell toxicity and cell number made up a parabolic curve. On this curve the data-pairs could be separated into three groups: (i) D. acuminata occurring in numbers of fewer than approximately 100 cells l−1, and with a toxin content per cell above 5 ρg cell−1; (ii) cell numbers between 100 and approximately 250 cells l−1 with a cell toxin content from 5 to 2 ρg cell−1; (iii) when the population became greater than 250 cells l−1, the toxicity, with few exceptions, was less than 2 ρg cell−1. By applying this subdivision, some clear patterns of the distribution of the differently toxic D. acuminata became evident. When comparing the cell toxicity of the two sites, it was obvious that the D. acuminata cells from all depths from the Gullmar Fjord as a mean were significantly more toxic compared to the Koljö Fjord samples. The results have demonstrated that approximately 100 high-toxicity cells in a low-density population at surface may lead to the same accumulation of DST in a mussel as the ingestion of 1500 low-toxicity cells from a high-density pycnocline population.  相似文献   

13.
A series of experiments was conducted to examine effects of four strains of the estuarine dinoflagellate, Pfiesteria shumwayae, on the behavior and survival of larval and adult shellfish (bay scallop, Argopecten irradians; eastern oyster, Crassostrea virginica; northern quahogs, Mercenaria mercenaria; green mussels, Perna viridis [adults only]). In separate trials with larvae of A. irradians, C. virginica, and M. mercenaria, an aggressive predatory response of three strains of algal- and fish-fed P. shumwayae was observed (exception, algal-fed strain 1024C). Larval mortality resulted primarily from damage inflicted by physical attack of the flagellated cells, and secondarily from Pfiesteria toxin, as demonstrated in larval C. virginica exposed to P. shumwayae with versus without direct physical contact. Survival of adult shellfish and grazing activity depended upon the species and the cell density, strain, and nutritional history of P. shumwayae. No mortality of the four shellfish species was noted after 24 h of exposure to algal- or fish-fed P. shumwayae (strains 1024C, 1048C, and CCMP2089) in separate trials at ≤5 × 103 cells ml−1, whereas higher densities of fish-fed, but not algal-fed, populations (>7–8 × 103 cells ml−1) induced low (≤15%) but significant mortality. Adults of all four shellfish species sustained >90% mortality when exposed to fish-fed strain 270A1 (8 × 103 cells ml−1). In contrast, adult M. mercenaria and P. viridis exposed to a similar density of fish-fed strain 2172C sustained <15% mortality, and there was no mortality of A. irradians and C. virginica exposed to that strain. In mouse bioassays with tissue homogenates (adductor muscle, mantle, and whole animals) of A. irradians and M. mercenaria that had been exposed to P. shumwayae (three strains, separate trials), mice experienced several minutes of disorientation followed by recovery. Mice injected with tissue extracts from control animals fed cryptomonads showed no response. Grazing rates of adult shellfish on P. shumwayae (mean cell length ±1 standard error [S.E.], 9 ± 1 μm) generally were significantly lower when fed fish-fed (toxic) populations than when fed populations that previously had been maintained on algal prey, and grazing rates were highest with the nontoxic cryptomonad, Storeatula major (cell length 7 ± 1 μm). Abundant cysts of P. shumwayae were found in fecal strands of all shellfish species tested, and ≤45% of the feces produced viable flagellated cells when placed into favorable culture conditions. These findings were supported by a field study wherein fecal strands collected from field-collected adult shellfish (C. virginica, M. mercenaria, and ribbed mussels, Geukensia demissa) were confirmed to contain cysts of P. shumwayae, and these cysts produced fish-killing flagellated populations in standardized fish bioassays. Thus, predatory feeding by flagellated cells of P. shumwayae can adversely affect survival of larval bivalve molluscs, and grazing can be depressed when adult shellfish are fed P. shumwayae. The data suggest that P. shumwayae could affect recruitment of larval shellfish in estuaries and aquaculture facilities; shellfish can be adversely affected via reduced filtration rates; and adult shellfish may be vectors of toxic P. shumwayae when shellfish are transported from one geographic location to another.  相似文献   

14.
Cochlodinium polykrikoides (p) is a planktonic dinoflagellate known to produce red tides responsible for massive fish kills and thereby serious economic loss in Korean coastal waters, particularly during summer and fall seasons. The present study involved analyzing chlorophyll-a (Chl-a) from SeaWiFS ocean color imagery collected over the period 1998–2002 to understand the spatial and temporal aspects of C. polykrikoides blooms that occurred in the enclosed and semi-enclosed bays of the Korean Southeast Sea. NOAA-AVHRR data were used to derive Sea Surface Temperature (SST) to elucidate physical factors affecting the spatial distribution and abundance of C. polykrikoides blooms. The time series of SeaWiFS-derived Chl-a gave an impression that recent red tide events with higher concentrations appeared to span more than 8 weeks during summer and fall seasons and were widespread in most of the Korean Southeast Sea coastal bays and neighboring oceanic waters. Coupled eutrophication and certain oceanic processes were thought to give rise to the formation of massive C. polykrikoides blooms with cell abundances ranging from 1000 to 30,000 cells ml−1, causing heavy mortalities of aquaculture fish and other marine organisms in these areas. Our analysis indicated that Chl-a estimates from SeaWiFS ocean color imagery appeared to be useful in demarcating the locality, spatial extent and distribution of these blooms, but unique identification of C. polykrikoides from non-bloom and sediment dominated waters remains unsuccessful with this data alone. Thus, the classical spectral enhancement and classification techniques such as Forward Principal Component Analysis (FPCA) and Minimum Spectral Distance (MSD) to uniquely identify and better understand C. polykrikoides blooms characteristics from other optical water types were attempted on both low spatial resolution SeaWiFS ocean color imagery and high spatial resolution Landsat-7 ETM+ imagery. Application of these techniques could capture intricate and striking patterns of C. polykrikoides blooms from surrounding non-bloom and sediment dominated waters, providing improved capability of detecting, predicting and monitoring C. polykrikoides bloom in such optically complex waters. The result obtained from MSD classification showed that retrieval of C. polykrikoides bloom from the mixed phase of this bloom with turbid waters was not feasible with the SeaWiFS ocean color imagery, but feasible with Landsat-7 ETM+ imagery that provided more accurate and comparable spatial C. polykrikoides patterns consistent with in situ observations. The dense phase of the bloom estimated from these imageries occupied an area of more than 25 km2 around the coastal bays and the mixed phase extended over several hundreds kilometers towards the Southeast Sea offshore due to exchange of water masses caused by coastal and oceanic processes. Sea surface temperature analyzed from AVHRR infrared data captured the northeastward flow of Tsushima Warm Current (TWC) waters that provided favorable environmental conditions for the rapid growth and subsequent southward initiation of C. polykrikoides blooms in hydrodynamically active regions in the Korean Southeast Sea offshore.  相似文献   

15.
The occurrence and toxicity of Amphidinium carterae Hulburt is hereby reported for the first time from the North Arabian Sea on the coast of Pakistan. The concentrations of 1.2 × 104 cells ml−1 were found in intertidal pools that were also inhabited by the brown macroalga Sargassum wightii. Both wild and cultured A. carterae cells were tested for ciguatera toxicity through exposure to brine shrimp nauplii (Artemia salina) and albino mice. Although the brine shrimp did not appear to be affected mortalities in mice ranged between 13 and 16% at doses of 7.2 × 104 and 2.5 × 105 cells ml−1, respectively. When mice were affected pharmacological effects such as muscle contraction in lower back area, increased respiration, immobility and paralysis in hind limbs were observed for 2 h. These effects appeared to be reversible and gradually disappeared within 24 h.  相似文献   

16.
Seasonal changes of field populations and growth rates of two dinoflagellates, Ceratium furca and Ceratium fusus, were examined in the temperate coastal water of Sagami Bay, Japan. Weekly field sampling was conducted from August 2002 to August 2003, and laboratory experiments were also carried out to investigate effects of temperature, irradiance and photoperiod on the growth rates of these two Ceratium species. In the field, the abundances of both species increased significantly from April to August 2003, were gradually decreased from November 2002 and were not observed in January 2003. C. fusus was able to increase at lower temperatures in February 2003 compared to C. furca. In the laboratory, the two species did not grow at <10 °C or >32 °C. The highest specific growth rate of C. furca was 0.72 d−1 at 24 °C and 600 μmol m−2 s−1. Optimum growth rates (>0.4 d−1) of C. furca were observed at temperatures from 18 to 28 °C and at irradiances from 216 to 796 μmol m−2 s−1. The highest growth rate of C. fusus was 0.56 d−1 at 26 °C and 216 μmol m−2 s−1. Optimum growth rates of C. fusus were observed at the same irradiance rage of C. furca, whereas optimum temperature range was narrower (26–28 °C). The growth curves of both species indicated saturation of the growth rates when light intensity was above 216 μmol m−2 s−1, and did not show photoinhibition at irradiances up to 796 μmol m−2 s−1. The specific growth rates of both Ceratium species were clearly decreased at L:D = 10:14 relative to those at L:D = 14:10 and L:D = 12:12. The present study indicates the two Ceratium species can adapt to a wide range of temperature and irradiance.  相似文献   

17.
The seasonal variability of specific growth rate and the carbon stable isotope ratio (δ13C) of leaf blades (δ13Cleaf) of a temperate seagrass, Zostera marina (within 10 days old) were measured simultaneously, together with the δ13C of dissolved inorganic carbon (δ13CDIC) at three sites in the semi-closed Akkeshi estuary system, northeastern Japan, in June, September, and November 2004. The δ13Cleaf ranged from −16.2 to −6.3‰ and decreased from summer to winter. The simultaneous measurement of the δ13Cleaf, growth rate, and morphological parameters (mean leaf length and width, mean number of leaves per shoot, and sheath length) of the seagrass and δ13CDIC in the surrounding water allowed us to compare directly the δ13Cleaf and specific growth rate of seagrass. The difference in the δ13C of seagrass leaves relative to the source DIC (Δδ13Cleaf − DIC) was the least negative (−11 to −7‰) in June at all three sites and became more negative (−17 to −8‰) as the specific growth rate decreased. This positive correlation between Δδ13Cleaf − DIC and specific growth rate can be used to diagnose the growth of seagrasses. Δδ13Cleaf − DIC changed by −1.7 ± 0.2‰ when the leaf specific growth rate decreased by 1% d−1.  相似文献   

18.
Biomass, primary production and nutrient budgets associated to Sarcocornia perennis subspecies (ssp.) alpini were studied in the Palmones River estuary salt marsh (Southern Spain) to evaluate the nutrient sequestration capacity of the low marsh. Above- and belowground living and dead biomass, as well as carbon, nitrogen and phosphorus content were monitored during 1 year. Additionally, the fate of aboveground detritus was evaluated in an experiment on litter decomposition. The detritus production of S. perennis ssp. alpini was almost equivalent to its annual primary production indicating a rapid turnover of biomass. We calculated that only 12% of the aboveground detritus was exported out of the low marsh while the rest was decomposed in the sediment with a rate of 0.8 year−1. Changes in concentrations of total carbon, nitrogen and phosphorus in the sediment showed patterns related to S. perennis ssp. alpini belowground biomass. Our results suggested that the sediment functions as a net sink for nutrients accumulating 550 g C m−2 year−1, 55 g N m−2 year−1, and 13 g P m−2 year−1.  相似文献   

19.
We studied the seasonal variation on aerobic metabolism and the response of oxidative stress parameters in the digestive glands of the subpolar limpet Nacella (P.) magellanica. Sampling was carried out from July (winter) 2002 to July 2003 in Beagle Channel, Tierra del Fuego, Argentina. Whole animal respiration rates increased in early spring as the animals spawned and remained elevated throughout summer and fall (winter: 0.09 ± 0.02 μmol O2 h− 1 g− 1; summer: 0.31 ± 0.06 μmol O2 h− 1 g− 1). Oxidative stress was assessed at the hydrophilic level as the ascorbyl radical content / ascorbate content ratio (A / AH). The A / AH ratio showed minimum values in winter (3.7 ± 0.2 10− 5 AU) and increased in summer (18 ± 5 10− 5 AU). A similar pattern was observed for lipid radical content (122 ± 29 pmol mg− 1 fresh mass [FW] in winter and 314 ± 45 pmol mg− 1 FW in summer), iron content (0.99 ± 0.07 and 2.7 ± 0.6 nmol mg− 1 FW in winter and summer, respectively) and catalase activity (2.9 ± 0.2 and 7 ± 1 U mg− 1 FW in winter and summer, respectively). Since nitrogen derived radicals are thought to be critically involved in oxidative metabolism in cells, nitric oxide content was measured and a significant difference in the content of the Fe–MGD–NO adduct in digestive glands from winter and summer animals was observed. Together, the data indicate that both oxygen and nitrogen radical generation rates in N. (P.) magellanica are strongly dependent on season.  相似文献   

20.
Red tides dominated by Cochlodinium polykrikoides often lead to great economic losses and some methods of controlling these red tides have been developed. However, due to possible adverse effects and the short persistence of their control actions, safer and more effective sustainable methods should be developed. The non-toxic dinoflagellate Alexandrium pohangense is known to grow well mixotrophically feeding on C. polykrikoides, and populations are also maintained by photosynthesis. Thus, compared with other methods, the use of mass-cultured A. pohangense is safer and the effects can be maintained in the long term. To develop an effective method, the concentrations of A. pohangense cells and culture filtrate resulting in the death of C. polykrikoides cells were determined by adding the cells or filtrates to cultured and natural populations of C. polykrikoides. Cultures containing 800 A. pohangense cells ml−1 eliminated almost all cultured C. polykrikoides cells at a concentration of 1000 cells ml−1 within 24 h. Furthermore, the addition of A. pohangense cultures at a concentration of 800 cells ml−1 to C. polykrikoides populations from a red-tide patch resulted in the death of most C. polykrikoides cells (99.8%) within 24 h. This addition of A. pohangense cells also lowered the abundances of total phototrophic dinoflagellates excluding C. polykrikoides, but did not lower the abundance of total diatoms. Filtrate from 800 cells ml−1 A. pohangense cultures reduced the population of cultured C. polykrikoides by 80% within 48 h. This suggests that A. pohangense cells eliminate C. polykrikoides by feeding and releasing extracellular compounds. Over time, A. pohangense concentrations gradually increased when incubated with C. polykrikoides. Thus, an increase in the concentration of A. pohangense by feeding may lead to A. pohangense cells eliminating more C. polykrikoides cells in larger volumes. Based on the results of this study, a 1 m3 stock culture of A. pohangense at 4000 cells ml−1 is calculated to remove all C. polykrikoides cells in ca. 200 m3 within 6 days. Furthermore, maintenance of A. pohangense populations through photosynthesis prepared A. pohangense to eliminate C. polykrikoides cells in future red-tide patches. Moreover, incubation of A. pohangense at 2000 cells ml−1 with juvenile olive flounder Paralichthys olivaceus for 3 days did not result in the death of fish. Therefore, the method developed in this study is a safe and effective way of controlling C. polykrikoides populations and can be easily applied to aqua-tanks on land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号