首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
纳米抗菌剂是新型高效的抗菌材料,使用安全、方便,稳定性好,抗菌谱广,抗菌效力强,已逐步应用于纺织、建筑、医疗等行业。我们分析了近几年对抗菌纳米粒子及其复合物的实验研究,简要综述纳米抗菌剂抗菌活性的研究成果,展望纳米抗菌剂发展的主要趋势,为制备更直接有效的纳米抗菌剂提供理论基础和实验研究依据。  相似文献   

2.
抗生素是抵抗细菌感染的有力武器,然而抗生素的过量使用和滥用加速了细菌耐药性的发展,严重威胁人类健康。开发高效和广谱的无抗生素抗菌策略迫在眉睫。以过氧化氢(H2O2)为代表的活性氧(reactive oxygen species, ROS)能氧化多种生物分子,使其结构和活性改变而发挥广谱抗菌作用,是无抗生素抗菌策略之一。然而,临床常用的H2O2浓度较高(0.5%~3%),会刺激皮肤和延缓伤口愈合。利用过氧化物酶催化H2O2生成氧化性更强的羟自由基(·OH),可大幅提高ROS抗菌策略的性能。然而,天然酶生产成本高、稳定性低等缺点限制了该策略的推广。纳米酶是具有类似天然酶催化活性的纳米材料的统称。与天然酶相比,纳米酶具有制备简单、成本低和易储存等优势,是开发基于ROS的无抗生素抗菌策略的良好选择。贵金属、金属氧化物、金属硫化物、金属有机框架、碳基纳米材料等多种纳米材料具有过氧化物酶、氧化酶等的模拟催化活性,基于这些材料的纳米酶抗菌研究层出不穷,本文将对这些研究进...  相似文献   

3.
纳米酶是近年来我国科学家发现的一类自身蕴含酶学特性的纳米材料。作为一种新型人工模拟酶,纳米酶具有经济、稳定、易于大批量生产的优势. 更重要的是,纳米酶是一个双功能或者多功能的分子,它不仅具有催化活性,还兼有纳米材料特有的物理和化学性质,如磁性、荧光、光热特性等. 纳米酶的出现为酶催化反应在疾病诊断中的应用提供了新思路,新方法和新工具. 本文将重点介绍近几年纳米酶在疾病诊断方面的应用,涵盖了癌症、代谢性疾病、传染性疾病、神经退行性疾病、心血管疾病和炎症性疾病等不同疾病类型,并对该领域未来的发展方向进行了讨论和展望.  相似文献   

4.
自2007年发现四氧化三铁纳米材料具有类似辣根过氧化物酶的催化特性以来,纳米酶研究领域迅速崛起.不同形貌、尺度和材料各异的纳米酶相继出现,同时其催化机制逐渐被认识.由于纳米酶具有催化效率高、稳定、经济和规模化制备的特点,它在医学、化工、食品、农业和环境等领域的应用研究便应运而生.纳米酶的发现,不仅推动了纳米科技的基础研究,还拓展了纳米材料的应用.本文将介绍纳米酶研究领域的最新研究进展.  相似文献   

5.
纳米酶是一个非常令人兴奋和有希望的领域,旨在模仿使用各种纳米材料的天然酶的一般原理,并在许多领域提供了大量实际应用。 天然酶具有一些内在的缺点,如成本高,稳定性低,储存困难,以及催化活性对环境条件的敏感性。 而纳米酶显示出低成本,高稳定性和高效活性。 各种过氧化物酶和/或氧化酶模拟物已经取得了很大的进展。本综述介绍了关于二维过渡金属硫化物纳米复合材料的纳米酶特性的最新研究进展。  相似文献   

6.
2007年四氧化三铁类过氧化物酶活性的发现催生了纳米酶这一新兴多学科交叉研究方向,多种基于金属、金属氧化物和碳纳米材料的纳米酶被发现,并在环境,食品安全,化工,生物医学等领域获得应用。相应的,纳米酶催化分子机制的理论研究也取得了进展。本文将回顾化学催化的基本原理,重点总结贵金属和碳纳米酶分子机制的理论研究进展。  相似文献   

7.
抗生素的滥用和人口的大量流动使得病原菌耐药性增强并与其他病原体产生共感染等问题,严重威胁人类的生命安全,因此,研发新型抗菌药物成为人类亟待解决的问题。丙氨酸消旋酶是以磷酸吡哆醛为辅酶催化L-丙氨酸与D-丙氨酸旋光结构互换的一类异构酶,其消旋产物D-丙氨酸对细菌细胞壁的形成具有决定性作用,与细菌性疾病密切相关。抑制丙氨酸消旋酶的活性会影响细菌的生存,近年来成为设计抗菌药物的一个理想靶位,其抑制剂的开发已成为抗菌药物研发的热点。本文从丙氨酸消旋酶的来源、结构、功能、应用及抑制剂等方面进行系统阐述,并对丙氨酸消旋酶的研究提出新的策略,为进一步研究丙氨酸消旋酶与致病菌的关系及抗菌药物候选靶标的研究提供理论基础。  相似文献   

8.
病原体的耐药性很强,其生物被膜(biofilm,BF)的形成是导致耐药性的主要原因之一。生物被膜一旦形成,根除难度很大,会导致患者持久性感染,引发多种慢性疾病,并给全球医疗体系带来沉重负担。柱芳烃(pillararenes)是一类具有独特柱状结构的新型大环化合物,由于其在构建功能化和生物活性材料开发中的潜在应用引起人们广泛的关注。此外,它们在预防和控制抗生素耐药性(antimicrobial resistance,AMR)方面具有广阔的应用前景。本文综述了柱[5]芳烃衍生物对细菌病原菌的抗菌活性,并进一步揭示其在抗菌活性中的抑菌机制,尤其是对生物被膜的抑制作用。在此基础上,探索新的抑菌杀菌策略,用非传统药物以解决抗生素耐药性问题,以期为开发新的抗菌剂防控生物被膜或治疗细菌感染提供理论依据。  相似文献   

9.
细菌耐药性问题给人类生命安全带来了前所未有的挑战。常用抗生素对某些耐药性细菌的治疗作用逐渐减弱甚至无效,开发新型化学合成抗菌剂成本高、耗时长、难度大。以植物活性成分如生物碱类、多酚类、萜类、凝集素、皂甙类、硫代葡萄糖苷等化合物为基础的抑菌剂不仅在抗菌等方面具有巨大的潜力,还可以通过多种途径与抗生素发挥协同抗菌作用。本文综述了细菌耐药现状以及植物活性成分协同抗生素对耐药菌的作用及其机制,以期恢复或增强耐药菌对现有抗生素的敏感性,为植物活性成分在消减细菌耐药性的应用领域提供理论基础。  相似文献   

10.
抗菌肽的研究进展   总被引:5,自引:0,他引:5  
祝骥  高飞  易喻  陈建澍  应国清 《生命科学》2008,20(4):605-610
近年来,由于细菌耐药性问题日趋严峻,开发新型抗菌制剂已迫在眉睫。抗菌肽具有相对分,子质量小、对热稳定、抗菌谱广及不同于抗生素的抗菌机制,不产生耐药性,因而具有重要的临床应用价值。本文对天然来源、蛋白质酶解、化学合成及基因工程方法产生的抗菌肽及其研究进展进行了综述。  相似文献   

11.
The emergence of diseases and mortalities in aquaculture and development of antibiotics resistance in aquatic microbes, has renewed a great interest towards alternative methods of prevention and control of diseases. Nanoparticles have enormous potential in controlling human and animal pathogens and have scope of application in aquaculture. The present investigation was carried out to find out suitable nanoparticles having antimicrobial effect against aquatic microbes. Different commercial as well as laboratory synthesized metal and metal oxide nanoparticles were screened for their antimicrobial activities against a wide range of bacterial and fungal agents including certain freshwater cyanobacteria. Among different nanoparticles, synthesized copper oxide (CuO), zinc oxide (ZnO), silver (Ag) and silver doped titanium dioxide (Ag–TiO2) showed broad spectrum antibacterial activity. On the contrary, nanoparticles like Zn and ZnO showed antifungal activity against fungi like Penicillium and Mucor species. Since CuO, ZnO and Ag nanoparticles showed higher antimicrobial activity, they may be explored for aquaculture use.  相似文献   

12.
Abstract

Recent advances in microbial genomics, synthetic organic chemistry and X-ray crystallography provided opportunities to identify novel antibacterial targets for the development of new classes of antibiotics and to design more potent antimicrobial compounds derived from existing antibiotics in clinical use for decades. The antimetabolites, sulfa drugs and trimethoprim (TMP)-like agents, are inhibitors of three families of enzymes. One family belongs to the carbonic anhydrases, which catalyze a simple but physiologically relevant reaction in all life kingdoms, carbon dioxide hydration to bicarbonate and protons. The other two enzyme families are involved in the synthesis of tetrahydrofolate (THF), i.e. dihydropteroate synthase (DHPS) and dihydrofolate reductase. The antibacterial agents belonging to the THF and DHPS inhibitors were developed decades ago and present significant bacterial resistance problems. However, the molecular mechanisms of drug resistance both to sulfa drugs and TMP-like inhibitors were understood in detail only recently, when several X-ray crystal structures of such enzymes in complex with their inhibitors were reported. Here, we revue the state of the art in the field of antibacterials based on inhibitors of these three enzyme families.  相似文献   

13.
Infectious diseases still remain the main cause of human premature deaths; especially in developing countries. The emergence and spread of pathogenic bacteria resistant to many antibiotics (multidrug-resistant strains) have created the need for the development of novel therapeutic agents. Only two new classes of antibiotics of novel mechanisms of action (linezolid and daptomycin) have been introduced into the market during the last three decades. The recent progress in molecular biology and bacterial genome analysis has had an enormous impact on antibacterial drug research. This review presents new achievements in searching a new bacterial essential genes, a potential targets for antibacterial drugs. Application of metagenomics strategy is also shown. Some recent technologies aimed at development of anti-pathogenic drugs such as inhibitors of quorum sensing process or histidine kinases are also discussed. Extensive research efforts have provided many details concerning structure of bacterial proteins playing an important role in pathogenesis such as adherence proteins or toxins, what allowed searching for antitoxin drugs or drugs interfering with bacterial adhesion. As an example, the review focuses on anthrax therapies under development. Additionally, the article presents the progress in phage therapy; using bacteriophages or their products such as lysins in antibacterial therapy.  相似文献   

14.
A new drug target - the 'switch region' - has been identified within bacterial RNA polymerase (RNAP), the enzyme that mediates bacterial RNA synthesis. The new target serves as the binding site for compounds that inhibit bacterial RNA synthesis and kill bacteria. Since the new target is present in most bacterial species, compounds that bind to the new target are active against a broad spectrum of bacterial species. Since the new target is different from targets of other antibacterial agents, compounds that bind to the new target are not cross-resistant with other antibacterial agents. Four antibiotics that function through the new target have been identified: myxopyronin, corallopyronin, ripostatin, and lipiarmycin. This review summarizes the switch region, switch-region inhibitors, and implications for antibacterial drug discovery.  相似文献   

15.
Engineering enzymes with improved catalytic properties in non-natural environments have been concerned with their diverse industrial and biotechnological applications. Immobilization represents a promising but straightforward route, and immobilized biocatalysts often display higher activities and stabilities compared to free enzymes. Owing to their unique physicochemical characteristics, including the high-specific surface area, exceptional chemical, electrical, and mechanical properties, efficient enzyme loading, and multivalent functionalization, nano-based materials are postulated as suitable carriers for biomolecules or enzyme immobilization. Enzymes immobilized on nanomaterial-based supports are more robust, stable, and recoverable than their pristine counterparts, and are even used for continuous catalytic processes. Furthermore, the unique intrinsic properties of nanomaterials, particularly nanoparticles, also confer the immobilized enzymes to be used for their broader applications. Herein, an effort has been made to present novel potentialities of multi-point enzyme immobilization in the current biotechnological sector. Various nano-based platforms for enzyme/biomolecule immobilization are discussed in the second part of the review. In summary, recent developments in the use of nanomaterials as new carriers to construct robust nano-biocatalytic systems are reviewed, and future trends are pointed out in this article.  相似文献   

16.
Biological efficiency of existing antimicrobial agents is still inadequate to ensure optimal therapeutic index. Developing biocompatible advanced functional materials with antimicrobial properties could be promising for environmentally benign applications. Nanoparticles and other nanoscale materials are of great interest due to their multiple potential applications in material science, medicine, and industry. Nanomaterials possess well renowned antimicrobial activity against several microorganisms; however, it has some non-specific toxicity. Biofunctionalization of nanomaterials is one such topic to address this issue. Rational selection of therapeutically active biomolecules for design of nanoparticles will certainly increase the biological applicability. The present paper describes the current status of different types of biofunctionalized nanoparticles and their antibacterial applications. Key principles such as strategies involved at bio-/nanointerface, the structural activity relationship, and mechanism of action involved in the antibacterial activity of functionalized nanoparticles are briefly discussed. This knowledge is important from the objective of generation of advanced functional nanomaterials with antimicrobial properties.  相似文献   

17.
Bacterial type II DNA topoisomerases are essential enzymes for correct genome functioning and cell growth. Gyrase is responsible for maintaining negative supercoiling of bacterial chromosome, whereas topoisomerase IV acts in disentangling daughter chromosomes following replication. Type II DNA topoisomerases possess an ATP binding site, which can be treated as a target for antibacterial drugs. Resolving crystal structures of protein fragments consisting of an ATP binding site complexed with ADPNP/antibiotics have proven to be valuable for the understanding of the mode of action of existing antibacterial agents and presented new possibilities for novel drug design. Coumarins, quinolones and cyclothialidines are diverse group of antibiotics that interfere with type II DNA topoisomerases, however their mode of action is different. Recently a new class of antibiotics, simociclinones, was characterized. Their mechanism of action towards gyrase is entirely distinct from already known modes of action, therefore demonstrating the potential for development of novel anti-bacterial agents.  相似文献   

18.
The size distribution of nanomaterials and their similarity in size with enzyme molecules together with other advantageous properties such as thermal stability, high surface-to-volume ratio, and irradiation resistance have revolutionized nanobiocatalytic approaches in various areas of enzyme technology. In the present study, polyaniline-assisted Ag nanocomposites were synthesized using ammonium peroxydisulfate as oxidant. These nanocomposites were used as a support for the covalent conjugation of α-amylase, one of the important industrial enzymes. X-ray diffraction study showed that the crystalline nature of nanocomposites was increased in the presence of Ag nanoparticles. Thermogravimetric and differential thermal analysis revealed that the synthesized nanocomposites retained significantly very high thermal stability. Scanning electron micrograph showed that Ag nanoparticles were homogeneously dispersed in polyaniline film providing large surface area and microenvironment for enzyme loading. Fourier transform infrared spectroscopy confirmed the conjugation of α-amylase to the functionalized nanocomposites. The conjugated α-amylase exhibited better tolerance to variations in the medium pH and temperature compared with the native enzyme. Immobilized α-amylase hydrolyzes starch more efficiently as compared to the free enzyme in batch process.  相似文献   

19.
Abstract

DNA gyrase is an essential bacterial enzyme that catalyzes the ATP-dependent negative super-coiling of double-stranded closed-circular DNA. Gyrase belongs to a class of enzymes known as topoisomerases that are involved in the control of topological transitions of DNA. The mechanism by which gyrase is able to influence the topological state of DNA molecules is of inherent interest from an enzymological standpoint. In addition, much attention has been focused on DNA gyrase as the intracellular target of a number of antibacterial agents and as a paradigm for other DNA topoisomerases. In this review we summarize the current knowledge concerning DNA gyrase by addressing a wide range of aspects of the study of this enzyme.  相似文献   

20.
Abstract

Enzymes are one of the foundations and regulators for all major biological activities in living bodies. Hence, enormous efforts have been made for enhancing the efficiency of enzymes under different conditions. The use of nanomaterials as novel carriers for enzyme delivery and regulating the activities of enzymes has stimulated significant interests in the field of nano-biotechnology for biomedical applications. Since, all types of nanoparticles (NPs) offer large surface to volume ratios, the use of NPs as enzyme carriers affect the structure, performance, loading efficiency, and the reaction kinetics of enzymes. Hence, the immobilization of enzymes on nanomatrices can be used as a useful approach for direct delivery of therapeutic enzymes to the targeted sites. In other words, NPs can be used as advanced enzyme delivery nanocarriers. In this paper, we present an overview of different binding of enzymes to the nanomaterials as well as different types of nanomatrix supports for immobilization of enzymes. Afterwards, the enzyme immobilization on nanomaterials as a potential system for enzyme delivery has been discussed. Finally, the challenges associated with the enzyme delivery using nano matrices and their future perspective have been discussed.

Communicated by Ramasamy H. Sarma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号