首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered membrane fusion reaction mediated by the E1 protein. E1 is a class II fusion protein that contains the hydrophobic fusion peptide loop and converts to a stable homotrimer during the fusion reaction. Intriguingly, the fusion loop is closely associated with a loop connecting the i and j beta-strands. This ij loop plays a role in the cholesterol dependence of membrane fusion and is specifically susceptible to proteolysis in the protease-resistant E1 homotrimer. The SFV ij loop contains a histidine residue at position 230. Sequence comparisons revealed that an analogous histidine is completely conserved in all alphavirus and flavivirus fusion proteins. An E1 H230A mutant was constructed using the SFV infectious clone. Although cells infected with H230A RNA produced virus particles, these virions were completely noninfectious and were blocked in both cell-cell fusion and lipid mixing assays. The H230A virions efficiently bound to cell surface receptors and responded to low pH by undergoing acid-dependent conformational changes including dissociation of the E1/E2 dimer, exposure of the fusion loop, association with target liposomes, exposure of acid-conformation-specific epitopes, and formation of the stable E1 homotrimer. Studies with a soluble fragment of E1 showed that the mutant protein was defective in lipid-dependent conformational changes. Our results indicate that the E1 ij loop and the conserved H230 residue play a critical role in alphavirus-membrane fusion and suggest the presence of a previously undescribed late intermediate in the fusion reaction.  相似文献   

2.
Semliki Forest virus (SFV) infects cells by an acid-dependent membrane fusion reaction catalyzed by the virus spike protein, a complex containing E1 and E2 transmembrane subunits. E1 carries the putative virus fusion peptide, and mutations in this domain of the spike protein were previously shown to shift the pH threshold of cell-cell fusion (G91A), or block cell-cell fusion (G91D). We have used an SFV infectious clone to characterize virus particles containing these mutations. In keeping with the previous spike protein results, G91A virus showed limited secondary infection and an acid-shifted fusion threshold, while G91D virus was noninfectious and inactive in both cell- cell and virus-liposome fusion assays. During the low pH- induced SFV fusion reaction, the E1 subunit exposes new epitopes for monoclonal antibody (mAb) binding and forms an SDS-resistant homotrimer, the virus associates hydrophobically with the target membrane, and fusion of the virus and target membranes occurs. After low pH treatment, G91A spike proteins were shown to bind conformation-specific mAbs, associate with target liposome membranes, and form the E1 homotrimer. However, both G91A membrane association and homotrimer formation had an acid-shifted pH threshold and reduced efficiency compared to wt virus. In contrast, studies of the fusion-defective G91D mutant showed that the virus efficiently reacted with low pH as assayed by mAb binding and liposome association, but was essentially inactive in homotrimer formation. These results suggest that the G91D mutant is noninfectious due to a block in a late step in membrane fusion, separate from the initial reaction to low pH and interaction with the target membrane, and involving the lack of efficient formation of the E1 homotrimer.  相似文献   

3.
The alphavirus Semliki Forest virus (SFV) infects cells through a low-pH-dependent membrane fusion reaction mediated by the virus fusion protein E1. Acidic pH initiates a series of E1 conformational changes that culminate in membrane fusion and include dissociation of the E1/E2 heterodimer, insertion of the E1 fusion loop into the target membrane, and refolding of E1 to a stable trimeric hairpin conformation. A highly conserved histidine (H3) on the E1 protein was previously shown to promote low-pH-dependent E1 refolding. An SFV mutant with an alanine substitution at this position (H3A) has a lower pH threshold and reduced efficiency of virus fusion and E1 trimer formation than wild-type SFV. Here we addressed the mechanism by which H3 promotes E1 refolding and membrane fusion. We identified E1 mutations that rescue the H3A defect. These revertants implicated a network of interactions that connect the domain I-domain III (DI-DIII) linker region with the E1 core trimer, including H3. In support of the importance of these interactions, mutation of residues in the network resulted in more acidic pH thresholds and reduced efficiencies of membrane fusion. In vitro studies of truncated E1 proteins demonstrated that the DI-DIII linker was required for production of a stable E1 core trimer on target membranes. Together, our results suggest a critical and previously unidentified role for the DI-DIII linker region during the low-pH-dependent refolding of E1 that drives membrane fusion.  相似文献   

4.
A prevailing model for virus membrane fusion proteins has been that the hydrophobic fusion peptide is hidden in the prefusion conformation, becomes exposed once the fusion reaction is triggered, and then either inserts into target membranes or is rapidly inactivated. This model is in general agreement with the structure and mechanism of class I fusion proteins, such as the influenza virus hemagglutinin. We here describe studies of the class II fusion protein E1 from the alphavirus Semliki Forest virus (SFV). SFV fusion is triggered by low pH, which releases E1 from its heterodimeric interaction with the E2 protein and induces the formation of a stable E1 homotrimer. The exposure and target membrane interaction of the E1 fusion peptide (residues 83 to 100) were followed using a monoclonal antibody (MAb E1f) mapping to E1 residues 85 to 95. In agreement with the known structure of SFV and other alphaviruses, the fusion peptide was shielded in native SFV particles and exposed when E1-E2 dimer dissociation was triggered by acidic pH. In contrast, the fusion peptide on purified E1 ectodomains (E1(*)) was fully accessible at neutral pH. Functional assays showed that MAb E1f binding at neutral pH prevented subsequent low-pH-triggered E1(*) interaction with target membranes and trimerization. E1(*) was not inactivated by low pH when treated either in the absence of target membranes or in the presence of fusion-inactive cholesterol-deficient liposomes. Thus, the membrane insertion of the E1 fusion peptide is regulated by additional low-pH-dependent steps after exposure, perhaps involving an E1-cholesterol interaction.  相似文献   

5.
The alphavirus Semliki Forest virus (SFV) and a number of other enveloped animal viruses infect cells via a membrane fusion reaction triggered by the low pH within endocytic vesicles. In addition to having a low pH requirement, SFV fusion and infection are also strictly dependent on the presence of cholesterol in the host cell membrane. A number of conformational changes in the SFV spike protein occur following low-pH treatment, including dissociation of the E1-E2 dimer, conformational changes in the E1 and E2 subunits, and oligomerization of E1 to a homotrimer. To allow the ordering of these events, we have compared the kinetics of these conformational changes with those of fusion, using pH treatment near the fusion threshold and low-temperature incubation to slow the fusion reaction. Dimer dissociation, the E1 conformational change, and E1 trimerization all occur prior to the mixing of virus and cell membranes. Studies of cells incubated at 20 degrees C showed that as with virus fusion, E1 trimerization occurred in the endosome before transport to lysosomes. However, unlike the strictly cholesterol-dependent membrane fusion reaction, the E1 homotrimer was produced in vivo during virus uptake by cholesterol-depleted cells or in vitro by low-pH treatment of virus in the presence of artificial liposomes with or without cholesterol. Purified, lipid-free spike protein rosettes were assayed to determine the requirement for virus membrane cholesterol in E1 homotrimer formation. Spike protein rosettes were found to undergo E1 oligomerization upon exposure to low pH and target liposomes and showed an enhancement of oligomerization with cholesterol-containing membranes. The E1 homotrimer may represent a perfusion complex that requires cholesterol to carry out the final coalescence of the viral and target membranes.  相似文献   

6.
Liu CY  Kielian M 《Journal of virology》2012,86(7):3588-3594
The enveloped alphaviruses infect cells via a low-pH-triggered membrane fusion reaction mediated by the viral transmembrane protein E1. During fusion, E1 inserts into the target membrane and refolds to a hairpin-like postfusion conformation in which domain III (DIII) and the juxtamembrane stem pack against a central core trimer. Although zinc has previously been shown to cause a striking block in alphavirus fusion with liposome target membranes, the mechanism of zinc's effect on the E1 fusion protein is not understood. Here we developed a cell culture system to study zinc inhibition of fusion and infection of the alphavirus Semliki Forest virus (SFV). Inclusion of 2 mM ZnCl(2) in the pH 5.75 fusion buffer caused a decrease of ~5 logs in SFV fusion at the plasma membrane. Fusion was also inhibited by nickel, a chemically related transition metal. Selection for SFV zinc resistance identified a key histidine residue, H333 on E1 DIII, while other conserved E1 histidine residues were not involved. An H333N mutation conferred resistance to both zinc and nickel, with properties in keeping with the known pH-dependent chelation of these metals by histidine. Biochemical studies demonstrated that zinc strongly inhibits formation of the postfusion E1 trimer in wild-type SFV but not in an H333 mutant. Together our results suggest that zinc acts by blocking the fold-back of DIII via its interaction with H333.  相似文献   

7.
Liao M  Kielian M 《Journal of virology》2006,80(22):11362-11369
Membrane fusion of the alphaviruses is mediated by the E1 protein, a class II virus membrane fusion protein. During fusion, E1 dissociates from its heterodimer interaction with the E2 protein and forms a target membrane-inserted E1 homotrimer. The structure of the homotrimer is that of a trimeric hairpin in which E1 domain III and the stem region fold back toward the target membrane-inserted fusion peptide loop. The E1 stem region has a strictly conserved length and several highly conserved residues, suggesting the possibility of specific stem interactions along the trimer core and an important role in driving membrane fusion. Mutagenesis studies of the alphavirus Semliki Forest virus (SFV) here demonstrated that there was a strong requirement for the E1 stem in virus assembly and budding, probably reflecting its importance in lateral interactions of the envelope proteins. Surprisingly, however, neither the conserved length nor any specific residues of the stem were required for membrane fusion. Although the highest fusion activity was observed with wild-type E1, efficient fusion was mediated by stem mutants containing a variety of substitutions or deletions. A minimal stem length was required but could be conferred by a series of alanine residues. The lack of a specific stem sequence requirement during SFV fusion suggests that the interaction of domain III with the trimer core can provide sufficient driving force to mediate membrane merger.  相似文献   

8.
Alphaviruses are small enveloped RNA viruses that include important emerging human pathogens, such as chikungunya virus (CHIKV). These viruses infect cells via a low-pH-triggered membrane fusion reaction, making this step a potential target for antiviral therapies. The E1 fusion protein inserts into the target membrane, trimerizes, and refolds to a hairpin-like conformation in which the combination of E1 domain III (DIII) and the stem region (DIII-stem) pack against a core trimer composed of E1 domains I and II (DI/II). Addition of exogenous DIII proteins from Semliki Forest virus (SFV) has been shown to inhibit E1 hairpin formation and SFV fusion and infection. Here we produced and characterized DIII and DI/II proteins from CHIKV and SFV. Unlike SFV DIII, both core trimer binding and fusion inhibition by CHIKV DIII required the stem region. CHIKV DIII-stem and SFV DIII-stem showed efficient cross-inhibition of SFV, Sindbis virus, and CHIKV infections. We developed a fluorescence anisotropy-based assay for the binding of SFV DIII-stem to the core trimer and used it to demonstrate the relatively high affinity of this interaction (Kd [dissociation constant], ∼85 nM) and the importance of the stem region. Together, our results support the conserved nature of the key contacts of DIII-stem in the alphavirus E1 homotrimer and describe a sensitive and quantitative in vitro assay for this step in fusion protein refolding.  相似文献   

9.
Liao M  Kielian M 《Journal of virology》2006,80(19):9599-9607
The E1 envelope protein of the alphavirus Semliki Forest virus (SFV) is a class II fusion protein that mediates low pH-triggered membrane fusion during virus infection. Like other class I and class II fusion proteins, during fusion E1 inserts into the target membrane and rearranges to form a trimeric hairpin structure. The postfusion structures of the alphavirus and flavivirus fusion proteins suggest that the "stem" region connecting the fusion protein domain III to the transmembrane domain interacts along the trimer core during the low pH-induced conformational change. However, the location of the E1 stem in the SFV particle and its rearrangement and functional importance during fusion are not known. We developed site-directed polyclonal antibodies to the N- or C-terminal regions of the SFV E1 stem and used them to study the stem during fusion. The E1 stem was hidden on neutral pH virus but became accessible after low pH-triggered dissociation of the E2/E1 heterodimer. The stem packed onto the trimer core in the postfusion conformation and became inaccessible to antibody binding. Generation of the E1 homotrimer on fusion-incompetent membranes identified an intermediate conformation in which domain III had folded back but stem packing was incomplete. Our data suggest that E1 hairpin formation occurs by the sequential packing of domain III and the stem onto the trimer core and indicate a tight correlation between stem packing and membrane merger.  相似文献   

10.
Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells via a membrane fusion reaction triggered by the acidic pH of endosomes. In response to low pH, the E1 proteins on the virus membrane undergo a series of conformational changes, resulting in the formation of a stable E1 homotrimer. Little is known about the structural basis of either the E1 conformational changes or the resulting homotrimer or about the mechanism of action of the homotrimer in fusion. Here, the E1 homotrimer was formed in vitro from either virus or soluble E1 ectodomain and then probed by various perturbants, proteases, or glycosidase. The preformed homotrimer was extremely stable to moderately harsh conditions and proteases. By contrast, mild reducing conditions selectively disrupted the N-terminal region of trimeric E1, making it accessible to proteolytic cleavage and producing E1 fragments that retained trimer interactions. Trypsin digestion produced a fragment missing a portion of the N terminus just proximal to the putative fusion peptide. Digestion with elastase produced several fragments with cleavage sites between residues 78 and 102, resulting in the loss of the putative fusion peptide and the release of membrane-bound E1 ectodomain as a soluble trimer. Elastase also cleaved the homotrimer within an E1 loop located near the fusion peptide in the native E1 structure. Mass spectrometry was used to map the C termini of several differentially produced and fully functional E1 ectodomains. Together, our data identify two separate regions of the SFV E1 ectodomain, one responsible for target membrane association and one necessary for trimer interactions.  相似文献   

11.
The two transmembrane spike protein subunits of Semliki Forest virus (SFV) form a heterodimeric complex in the rough endoplasmic reticulum. This complex is then transported to the plasma membrane, where spike-nucleocapsid binding and virus budding take place. By using an infectious SFV clone, we have characterized the effects of mutations within the putative fusion peptide of the E1 spike subunit on spike protein dimerization and virus assembly. These mutations were previously demonstrated to block spike protein membrane fusion activity (G91D) or cause an acid shift in the pH threshold of fusion (G91A). During infection of BHK cells at 37 degrees C, virus spike proteins containing either mutation were efficiently produced and transported to the plasma membrane, where they associated with the nucleocapsid. However, the assembly of mutant spike proteins into mature virions was severely impaired and a cleaved soluble fragment of E1 was released into the medium. In contrast, incubation of mutant-infected cells at reduced temperature (28 degrees C) dramatically decreased E1 cleavage and permitted assembly of morphologically normal virus particles. Pulse-labeling studies showed that the critical period for 28 degrees C incubation was during virus assembly, not spike protein synthesis. Thus, mutations in the putative fusion peptide of SFV confer a strong and thermoreversible budding defect. The dimerization of the E1 spike protein subunit with E2 was analyzed by using either cells infected with virus mutants or mutant virus particles assembled at 28 degrees C. The altered-assembly phenotype of the G91D and G91A mutants correlated with decreased stability of the E1-E2 dimer.  相似文献   

12.
The alphavirus envelope is built by heterodimers of the membrane proteins E1 and E2. The complex is formed as a p62E1 precursor in the endoplasmic reticulum. During transit to the plasma membrane (PM), it is cleaved into mature E1-E2 heterodimers, which are oligomerized into trimeric complexes, so-called spikes that bind both to each other and, at the PM, also to nucleocapsid (NC) structures under the membrane. These interactions drive the budding of new virus particles from the cell surface. The virus enters new cells by a low-pH-induced membrane fusion event where both inter- and intraheterodimer interactions are reorganized to establish a fusion-active membrane protein complex. There are no intact heterodimers left after fusion activation; instead, an E1 homotrimer remains in the cellular (or viral) membrane. We analyzed whether these transitions depend on interactions in the transmembrane (TM) region of the heterodimer. We observed a pattern of conserved glycines in the TM region of E1 and made two mutants where either the glycines only (SFV/E1(4L)) or the whole segment around the glycines (SFV/E1(11L)) was replaced by leucines. We found that both mutations decreased the stability of the heterodimer and increased the formation of the E1 homotrimer at a suboptimal fusion pH, while the fusion activity was decreased. This suggested that TM interactions play a role in virus assembly and entry and that anomalous or uncoordinated protein reorganizations take place in the mutants. In addition, the SFV/E1(11L) mutant was completely deficient in budding, which may reflect an inability to form multivalent NC interactions at the PM.  相似文献   

13.
Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells via a membrane fusion reaction triggered by acidic pH in the endocytic pathway. Fusion is mediated by the spike protein E1 subunit, an integral membrane protein that contains the viral fusion peptide and forms a stable homotrimer during fusion. We have characterized four monoclonal antibodies (MAbs) specific for the acid conformation of E1. These MAbs did not inhibit fusion, suggesting that they bind to an E1 region different from the fusion peptide. Competition analyses demonstrated that all four MAbs bound to spatially related sites on acid-treated virions or isolated spike proteins. To map the binding site, we selected for virus mutants resistant to one of the MAbs, E1a-1. One virus isolate, SFV 4-2, showed reduced binding of three acid-specific MAbs including E1a-1, while its binding of one acid-specific MAb as well as non-acid-specific MAbs to E1 and E2 was unchanged. The SFV 4-2 mutant was fully infectious, formed the E1 homotrimer, and had the wild-type pH dependence of infection. Sequence analysis demonstrated that the relevant mutation in SFV 4-2 was a change of E1 glycine 157 to arginine (G157R). Decreased binding of MAb E1a-1 was observed under a wide range of assay conditions, strongly suggesting that the E1 G157R mutation directly affects the MAb binding site. These data thus localize an E1 region that is normally hidden in the neutral pH structure and becomes exposed as part of the reorganization of the spike protein to its fusion-active conformation.  相似文献   

14.
Semliki Forest virus (SFV) is an enveloped alphavirus whose membrane fusion is triggered by low pH and promoted by cholesterol and sphingolipid in the target membrane. Fusion is mediated by E1, a viral membrane protein containing the putative fusion peptide. Virus mutant studies indicate that SFV's cholesterol dependence is controlled by regions of E1 outside of the fusion peptide. Both E1 and E1*, a soluble ectodomain form of E1, interact with membranes in a reaction dependent on low pH, cholesterol, and sphingolipid and form highly stable homotrimers. Here we have used detergent extraction and gradient floatation experiments to demonstrate that E1* associated selectively with detergent-resistant membrane domains (DRMs or rafts). In contrast, reconstituted full-length E1 protein or influenza virus fusion peptide was not associated with DRMs. Methyl beta-cyclodextrin quantitatively extracted both cholesterol and E1* from membranes in the absence of detergent, suggesting a strong association of E1* with sterol. Monoclonal antibody studies demonstrated that raft association was mediated by the proposed E1 fusion peptide. Thus, although other regions of E1 are implicated in the control of virus cholesterol dependence, once the SFV fusion peptide inserts in the target membrane it has a high affinity for membrane domains enriched in cholesterol and sphingolipid.  相似文献   

15.
The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a low-pH-triggered membrane fusion reaction that requires cholesterol and sphingolipid in the target membrane. Cholesterol-depleted insect cells are highly resistant to alphavirus infection and were used to select srf-3, an SFV mutant that is approximately 100-fold less cholesterol dependent for infection due to a single amino acid change in the E1 spike subunit, proline 226 to serine. Sensitive lipid-mixing assays here demonstrated that the in vitro fusion of srf-3 and wild-type (wt) virus with cholesterol-containing liposomes had comparable kinetics, activation energies, and sphingolipid dependence. In contrast, srf-3 fusion with sterol-free liposomes was significantly more efficient than that of wt virus. Thus, the srf-3 mutation does not affect its general fusion properties with purified lipid bilayers but causes a marked and specific reduction in cholesterol dependence. Upon exposure to low pH, the E1 spike subunit undergoes distinct conformational changes, resulting in the exposure of an acid conformation-specific epitope and formation of an E1 homotrimer. These conformational changes were strongly cholesterol and sphingolipid dependent for wt SFV and strikingly less cholesterol dependent for srf-3. Our results thus demonstrate the functional importance of fusogenic E1 conformational changes in the control of SFV cholesterol dependence.  相似文献   

16.
Enveloped animal viruses infect cells via fusion of the viral membrane with a host cell membrane. Fusion is mediated by a viral envelope glycoprotein, which for a number of enveloped animal viruses rearranges itself during fusion to form a trimeric alpha-helical coiled-coil structure. This conformational change from the metastable, nonfusogenic form of the spike protein to the highly stable form involved in fusion can be induced by physiological activators of virus fusion and also by a variety of destabilizing conditions. The E1 spike protein subunit of Semliki Forest virus (SFV) triggers membrane fusion upon exposure to mildly acidic pH and forms a homotrimer that appears necessary for fusion. We have here demonstrated that formation of the E1 homotrimer was efficiently triggered under low-pH conditions but not by perturbants such as heat or urea, despite their induction of generalized conformational changes in the E1 and E2 subunits and partial exposure of an acid-specific E1 epitope. We used a sensitive fluorescence assay to show that neither heat nor urea treatment triggered SFV-liposome fusion at neutral pH, although either treatment inactivated subsequent low-pH-triggered fusion activity. Once formed, the low-pH-induced E1 homotrimer was very stable and was only dissociated under harsh conditions such as heating in sodium dodecyl sulfate. Taken together, these data, as well as protein structure predictions, suggest a model in which the less stable native E1 subunit specifically responds to low pH to form the more stable E1 homotrimer via conformational changes different from those of the coiled-coil type of fusion proteins.  相似文献   

17.
The class II fusion proteins of the alphaviruses and flaviviruses mediate virus infection by driving the fusion of the virus membrane with that of the cell. These fusion proteins are triggered by low pH, and their structures are strikingly similar in both the prefusion dimer and the postfusion homotrimer conformations. Here we have compared cholesterol interactions during membrane fusion by these two groups of viruses. Using cholesterol-depleted insect cells, we showed that fusion and infection by the alphaviruses Semliki Forest virus (SFV) and Sindbis virus were strongly promoted by cholesterol, with similar sterol dependence in laboratory and field isolates and in viruses passaged in tissue culture. The E1 fusion protein from SFV bound cholesterol, as detected by labeling with photocholesterol and by cholesterol extraction studies. In contrast, fusion and infection by numerous strains of the flavivirus dengue virus (DV) and by yellow fever virus 17D were cholesterol independent, and the DV fusion protein did not show significant cholesterol binding. SFV E1 is the first virus fusion protein demonstrated to directly bind cholesterol. Taken together, our results reveal important functional differences conferred by the cholesterol-binding properties of class II fusion proteins.  相似文献   

18.
Semliki Forest virus (SFV) and Sindbis virus (SIN) are enveloped alphaviruses that enter cells via low-pH-triggered fusion in the endocytic pathway and exit by budding from the plasma membrane. Previous studies with cholesterol-depleted insect cells have shown that SFV requires cholesterol in the cell membrane for both virus fusion and efficient exit of progeny virus. An SFV mutant, srf-3, shows efficient fusion and exit in the absence of cholesterol due to a single point mutation in the E1 spike subunit, proline 226 to serine. We have here characterized the role of cholesterol in the entry and exit of SIN, an alphavirus quite distantly related to SFV. Growth, primary infection, fusion, and exit of SIN were all dramatically inhibited in cholesterol-depleted cells compared to control cells. Based on sequence differences within the E1 226 region between SFV, srf-3, and SIN, we constructed six SIN mutants with alterations within this region and characterized their cholesterol dependence. A SIN mutant, SGM, that had the srf-3 amino acid sequence from E1 position 224 to 235 showed increases of approximately 100-fold in infection and approximately 250-fold in fusion with cholesterol-depleted cells compared with infection and fusion of wild-type SIN. Pulse-chase analysis demonstrated that SGM exit from cholesterol-depleted cells was markedly more efficient than that of wild-type SIN. Thus, similar to SFV, SIN was cholesterol dependent for both virus entry and exit, and the cholesterol dependence of both steps could be modulated by sequences within the E1 226 region.  相似文献   

19.
Alphaviruses are taken up into the endosome of the cell, where acidic conditions activate the spikes for membrane fusion. This involves dissociation of the three E2-E1 heterodimers of the spike and E1 interaction with the target membrane as a homotrimer. The biosynthesis of the heterodimer as a pH-resistant p62-E1 precursor appeared to solve the problem of premature activation in the late and acidic parts of the biosynthetic transport pathway in the cell. However, p62 cleavage into E2 and E3 by furin occurs before the spike has left the acidic compartments, accentuating the problem. In this work, we used a furin-resistant Semliki Forest virus (SFV) mutant, SFV(SQL), to study the role of E3 in spike activation. The cleavage was reconstituted with proteinase K in vitro using free virus or spikes on SFV(SQL)-infected cells. We found that E3 association with the spikes was pH dependent, requiring acidic conditions, and that the bound E3 suppressed spike activation. This was shown in an in vitro spike activation assay monitoring E1 trimer formation with liposomes and a fusion-from-within assay with infected cells. Furthermore, the wild type, SFV(wt), was found to bind significant amounts of E3, especially if produced in dense cultures, which lowered the pH of the culture medium. This E3 also suppressed spike activation. The results suggest that furin-cleaved E3 continues to protect the spike from premature activation in acidic compartments of the cell and that its release in the neutral extracellular space primes the spike for low-pH activation.  相似文献   

20.
Alphaviruses such as Semliki Forest virus (SFV) are enveloped viruses that infect cells through a low-pH-triggered membrane fusion reaction mediated by the transmembrane fusion protein E1. E1 drives fusion by insertion of its hydrophobic fusion loop into the cell membrane and refolding to a stable trimeric hairpin. In this postfusion conformation, the immunoglobulin-like domain III (DIII) and the stem region pack against the central core of the trimer. Membrane fusion and infection can be specifically inhibited by exogenous DIII, which binds to an intermediate in the E1 refolding pathway. Here we characterized the properties of the E1 target for interaction with exogenous DIII. The earliest target for DIII binding was an extended membrane-inserted E1 trimer, which was not detectable by assays for the stable postfusion hairpin. DIII binding provided a tool to detect this extended trimer and to define a series of SFV fusion-block mutants. DIII binding studies showed that the mutants were blocked in distinct steps in fusion protein refolding. Our results suggested that formation of the initial extended trimer was reversible and that it was stabilized by the progressive fold-back of the DIII and stem regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号