首页 | 官方网站   微博 | 高级检索  
     


The cholesterol requirement for sindbis virus entry and exit and characterization of a spike protein region involved in cholesterol dependence
Authors:Lu Y E  Cassese T  Kielian M
Affiliation:Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
Abstract:Semliki Forest virus (SFV) and Sindbis virus (SIN) are enveloped alphaviruses that enter cells via low-pH-triggered fusion in the endocytic pathway and exit by budding from the plasma membrane. Previous studies with cholesterol-depleted insect cells have shown that SFV requires cholesterol in the cell membrane for both virus fusion and efficient exit of progeny virus. An SFV mutant, srf-3, shows efficient fusion and exit in the absence of cholesterol due to a single point mutation in the E1 spike subunit, proline 226 to serine. We have here characterized the role of cholesterol in the entry and exit of SIN, an alphavirus quite distantly related to SFV. Growth, primary infection, fusion, and exit of SIN were all dramatically inhibited in cholesterol-depleted cells compared to control cells. Based on sequence differences within the E1 226 region between SFV, srf-3, and SIN, we constructed six SIN mutants with alterations within this region and characterized their cholesterol dependence. A SIN mutant, SGM, that had the srf-3 amino acid sequence from E1 position 224 to 235 showed increases of approximately 100-fold in infection and approximately 250-fold in fusion with cholesterol-depleted cells compared with infection and fusion of wild-type SIN. Pulse-chase analysis demonstrated that SGM exit from cholesterol-depleted cells was markedly more efficient than that of wild-type SIN. Thus, similar to SFV, SIN was cholesterol dependent for both virus entry and exit, and the cholesterol dependence of both steps could be modulated by sequences within the E1 226 region.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号