首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract A phylogeny of the tribe Aphidini (Hemiptera: Aphididae) was reconstructed from three gene fragments: two mitochondrial regions, partial tRNA‐leucine + cytochrome oxidase II (tRNA/COII), partial 12S rRNA + tRNA‐valine + 16S rRNA (12S/16S) and one nuclear gene, the elongation factor‐1 alpha (EF1α). Bayesian phylogenetic (BP) analyses were performed on each individual dataset of tRNA/COII, 12S/16S and EF1α, and maximum parsimony (MP), Bremer support test, maximum likelihood (ML) and BP analysis were performed on the combined dataset. After comparing our molecular phylogenetic results with the classic classification based on morphological and ecological data, we analysed three main issues: the monophyletic relationships among tribes and subtribes, the validities of the latest taxonomic positions of genera and species and the status of certain Aphis species groups. Our results indicate that 36 of the species analysed, with the exception of Cryptosiphum artemisiae, are clustered within the clade of Aphidini. Also, the 28 species representative of the subtribe Aphidina were separated from the eight species representative of Rhopalosiphina; each monophyletic subtribe was supported by significant P‐values in the combined analysis. According to our results, Cryptosiphum should be moved to Macrosiphini because it is more closely related to the genera Lipaphis and Brevicoryne. The genus Toxoptera was recovered as non‐monophyletic. In Rhopalosiphina, three genera, Hyalopterus, Rhopalosiphum and Schizaphis, were relatively closer to each other than to the genus Melanaphis. In the relationships between species‐groups among Aphis, most species were separated into two main lineages; the fabae group seemed to be more closely related to the spiraecola and craccivora group rather than to the gossypii group.  相似文献   

2.
The Dipsadidae contains more than 700 extant species belonging to 92 genera and is the largest family of American snakes. In this work, we built a data set including two mitochondrial genes (12S and 16S rRNA) for 125 dipsadid taxa belonging to 59 genera, in order to gain further insights on the phylogenetic relationships of this large group at the subfamilial and generic levels. Among dipsadines, the monotypic genus Nothopsis is the sister-group to Leptodeira. Among xenodontines, the monophyly of seven previously recognized tribes (Alsophiini, Elapomorphini, Hydropsini, Philodryadini, Pseudoboini, Tachymenini and Xenodontini) is confirmed. Among Xenodontini, the genus Liophis is paraphyletic with respect to Erythrolamprus and Umbrivaga and workers should be aware of the inadequacy of the current taxonomy. Finally, the following genera could not confidently be allocated to the above tribes: Caaeteboia, Echinantera and Taeniophallus, Tropidodryas, Manolepis and Pseudalsophis, Xenopholis, Psomophis, Hydrodynastes, Conophis and Crisantophis.  相似文献   

3.
Gao, S., Strüder‐Kypke, M.C., Al‐Rasheid, K.A.S., Lin, X. & Song, W. (2010). Molecular phylogeny of three ambiguous ciliate genera: Kentrophoros, Trachelolophos and Trachelotractus (Alveolata, Ciliophora).—Zoologica Scripta, 39, 305–313. Very few molecular studies on the phylogeny of the karyorelictean ciliates have been carried out because data of this highly ambiguous group are extremely scarce. In the present study, we sequenced the small subunit ribosomal RNA genes of three morphospecies representing two karyorelictean genera, Kentrophoros, Trachelolophos, and one haptorid, Trachelotractus, isolated from the South and East China Seas. The phylogenetic trees constructed using Bayesian inference, maximum likelihood, maximum parsimony and neighbor‐joining methods yielded essentially similar topologies. The class Karyorelictea is depicted as a monophyletic clade, closely related to the class Heterotrichea. The generic concept of the family Trachelocercidae is confirmed by the clustering of Trachelolophos and Tracheloraphis with high bootstrap support; nevertheless, the order Loxodida is paraphyletic. The transfer of the morphotype Trachelocerca entzi Kahl, 1927 to the class Litostomatea and into the new haptorid genus Trachelotractus, as suggested by previous researchers based on morphological studies, is consistently supported by our molecular analyses. In addition, the poorly known species Parduczia orbis occupies a well‐supported position basal to the Geleia clade, justifying the separation of these genera from one another.  相似文献   

4.
Ravara, A., Wiklund, H., Cunha, M. R. & Pleijel, F. (2010). Phylogenetic relationships within Nephtyidae (Polychaeta, Annelida). —Zoologica Scripta, 39, 394–405. We present the first phylogeny of nephtyids, a common, soft‐bottom living polychaete family comprising five genera and over 100 species. Characters used to distinguish nephtyid genera are a matter of controversy and considerable confusion remains as to the generic delineations. The phylogeny is estimated with molecular data from the mitochondrial genes cytochrome oxidase I and 16S rDNA, the nuclear genes 18S rDNA and 28S rDNA and morphological data. The results reveal two well‐supported major clades, corresponding in part to the two main genera of the family, Aglaophamus and Nephtys. The species Nephtys pulchra and Nephtys australiensis are transferred to Aglaophamus, and new diagnoses for the genera are provided. Dentinephtys is synonymized with Nephtys, and Nephtys cornuta is sister to the remaining nephtyids and is referred to the new genus Bipalponephtys, together with Nephtys danida and Micronephthys neotena. Micronephthys is sister to Nephtys and Inermonephtys is of uncertain position.  相似文献   

5.
Generic boundaries among the genera Cheilosporum, Haliptilon, and Jania—currently referred to the tribe Janieae (Corallinaceae, Corallinales, Rhodophyta)—were reassessed. Phylogenetic relationships among 42 corallinoidean taxa were determined based on 26 anatomical characters and nuclear SSU rDNA sequence data for 11 species (with two duplicate plants) referred to the tribe Corallineae and 15 species referred to the tribe Janieae (two species of Cheilosporum, seven of Haliptilon, and six of Jania, with five duplicate plants). Results from our approach were consistent with the hypothesis that the tribe Janieae is monophyletic. Our data indicate, however, that Jania and Haliptilon as currently delimited are not monophyletic, and that Cheilosporum should not be recognized as an independent genus within the Janieae. Our data resolved two well‐supported biogeographic clades for the included Janieae, an Indian‐Pacific clade and a temperate North Atlantic clade. Among anatomical characters, reproductive structures reflected the evolution of the Janieae. Based on our results, three genera, Cheilosporum, Haliptilon, and Jania, should be merged into a single genus, with Jania having nomenclatural priority. We therefore propose new combinations where necessary of some species previously included in Cheilosporum and Haliptilon.  相似文献   

6.
Relative to its diversity (34 genera, 700 species), Scolopendromorpha has been undersampled in molecular phylogenetic analyses compared with the other chilopod orders. Previous analyses based on morphology have not resolved several key controversies in systematics and evolutionary morphology unambiguously. Here we apply new molecular and morphological data to scolopendromorph phylogenetics, with a focus on the evolution of blindness. The taxonomic sample includes 19 genera, many lacking previous molecular data, and diverse, cosmopolitan genera of Scolopendridae are sampled by multiple species. Phylogenetic analysis with Direct Optimization used 94 morphological characters and ca. 4.5 kb of sequence data from two nuclear (18S and 28S rRNA) and two mitochondrial (16S rRNA and COI) loci. A single most‐parsimonious cladogram selected after sensitivity analyses resolves Scolopendromorpha as monophyletic, and divides it into a blind clade of three families (Plutoniumidae, Cryptopidae, Scolopocryptopidae) and its ocellate sister group, Scolopendridae. Some species‐rich, cosmopolitan genera (Cormocephalus, Otostigmus, Scolopendra) in Scolopendridae are non‐monophyletic, and in several instances (e.g. New and Old World Scolopendra) relationships are more congruent with geographical distributions than with traditional classifications. The tribe Asanadini is particularly subject to parameter‐sensitivity, nesting in the combined analysis within Scolopendrini but as sister to all other Scolopendrinae for molecular data alone. The total‐evidence tree unambiguously optimizes trunk segmentation: a 23‐segmented trunk has a single origin in the blind clade. © The Willi Hennig Society 2011.  相似文献   

7.
ABSTRACT

Knowledge of Myanmar land snails is based on the late eighteenth to early twentieth century literature and many species need to be re-investigated, especially in the genera Macrochlamys Gray, 1847 and Sarika Godwin-Austen, 1907. In order to update this knowledge, this paper presents information on these two related genera based on new materials from south-eastern Myanmar. Fifteen species are recognised in the south-east of Myanmar. Of these, live material was available for eight Macrochlamys and Sarika species and these are described in full herein, based on data from the shell, external morphology and genitalia, including three species new to science (M. brachystia n. sp., S. concavata n. sp. and S. lopa n. sp.) and five species redescribed (M. aspides, M. kelantanensis, M. petasus, S. consepta and S. obesior). The remaining five species are known only from their shell morphology (M. cauisa, M. perpaula, M. poongee, M. salwinensis and S. birmana) and two species are known from genitalia (S. dugasti and S. resplendens). For these species the shells are figured and some taxonomic remarks are provided.

http://www.zoobank.org/urn:lsid:zoobank.org:pub:58D2A9E7-50FD-49C2-B2F4-4D00457EA331  相似文献   

8.
9.
Kanouh, M., Tixier, M.‐S., Okassa, M. & Kreiter, S. (2010). Phylogenetic and biogeographic analysis of the genus Phytoseiulus (Acari: Phytoseiidae) —Zoologica Scripta, 39, 450–461. The taxonomy of the genus Phytoseiulus (sub‐family Amblyseiinae), has a tumultuous and confused history. This genus currently contains four species, but in previous revisions it contained five, sometimes grouped in two genera. There are no thorough phylogenetic analyses available for the group, analyses against which taxonomic and evolutionary hypotheses could be tested. The present study aims to apply morphological and molecular data to determine phylogenetic relationships among the four species presently included in this genus plus Afroseiulus robertsi, which was previously included in this genus. The new analyses show that the species of the genus Phytoseiulus do not constitute a monophyletic group. A delineation between (i) P. macropilis, P. persimilis, P. fragariae and (ii) P. longipes and A. robertsi is observed. Biogeographic data sets showed that the Neotropical and Afrotropical regions contain the highest diversity of species of Phytoseiulus and of their host plants. Consequently, the western part of Gondwana is hypothesized to be the probable centre of origin for this taxon.  相似文献   

10.
The systematics and taxonomy of North Americancyprinid fishes has historically been said tobe in a chaotic state of affairs. Much of theconfusion as to relationships of species restsin the lack of explicit phylogenetic hypothesesof species and reliance upon degree ofdistinctiveness of taxa or their overallsimilarity for generic placement. Some specieshave had more turbulent or variable taxonomichistories than others. The ornate shiner, Cyprinella ornata, is one of those species,having been placed in the genera Notropis,Codoma, and Cyprinella within the last20 years and found in current texts in any ofthese three genera. Most of the confusionregarding placement of this species has beenrelated to lack of explicit phylogenetichypotheses to formulate its classification, butto a certain degree some researchers haveignored phylogenetic studies and preferred torely upon its morphological distinctiveness orreproductive behavioral traits of questionablehomology to place it in a monotypic genus andalign it with the genera Pimephales andOpsopoeodus.I present a phylogenetic analysis based oncomplete Cytochrome b sequences fromornate shiners, other species of Cyprinella, purported relatives, and severalother species of the Shiner Clade to determinethe phylogenetic affinities of this enigmaticspecies. Molecular analysis reveals the ornateshiner to be more closely related to species ofCyprinella than to a Pimephalesplus Opsopoeodus clade as previouslydiscussed in one morphological analysis, or asargued by Page and Johnston (1990), Johnstonand Page (1992) and Page and Ceas (1989) basedon observations of spawning behaviors andhypotheses of homology between crevice-spawningand egg-clumping behaviors. This molecularanalysis is more consistent with earliermorphological phylogenetic hypotheses of Mayden(1989) wherein these two clades are notconsidered to be closely related and the ornateshiner is a member of the genus Cyprinella.  相似文献   

11.
The entire sequence of the mitochondrial cytochrome b gene and 2 partial sequences of the ribosomal RNA12S and 16S genes have been used to study the molecular phylogeny in 10 species of soles belonging to the genera Solea, Monochirus, Microchirus, Dicologlossa, and Synaptura from the Atlantic waters of the Gulf of Cádiz (Spain). The results obtained by means of different phylogenetic analyses (maximum likelihood, maximum parsimony, and neighbor-joining) were quite similar, supporting the monophyly of the Solea species. Nevertheless, they favor the differentiation of Dicologlossa cuneata and Dicologlossa hexophthalma in 2 distinct genera, since the most closely related species to the last one is Microchirus azevia. The fact that M. azevia is also more closely linked to Monochirus hispidus than to its congeneric Microchirus boscanion argues in favor of a taxonomic reorganization of these genera.  相似文献   

12.
Eighteen new 16S rDNA and 16 new 18S rDNA sequences from 24 strains, representing 23 species of photoautotrophic euglenoids, were obtained in nearly their entire length. Maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses were performed on separate data (39 sequences of 16S rDNA and 58 sequences of 18S rDNA), as well as on combined data sets (37 sequences). All methods of sequence analysis gave similar results in those cases in which the clades received substantial support. However, the combined data set produced several additional well‐supported clades, not encountered before in the analyses of green euglenoids. There are three main well‐defined clades (A, B/C/D, and G) on trees from the combined data set. Clade G diverges first, while clades A and B/C/D form sister groups. Clade A consists of Euglena species sensu stricto and is divided into three sub‐clades (A1, A2, and A3). Clade A3 (composed of E. deses and E. mutabilis) branches off first; then, two sister clades emerge: A1 (composed of E. viridis‐like species) and A2 (consisting of E. agilis and E. gracilis species). Clade B/C/D consists of the Strombomonas, Trachelomonas, Cryptoglena, Monomorphina, and Colacium genera. Clade G comprises Phacus and Lepocinclis, as well as the Discoglena species of Euglena, with Discoglena branching off first, and then Phacus and Lepocinclis emerging as sister groups.  相似文献   

13.
The phylogenetic relationships among the fishes in the perciform tribe Epinephelini (Serranidae) have long been poorly understood, in large part because of the numerous taxa that must be considered and the large, circumtropical distribution of the group. In this study, genetic data from two nuclear (Tmo-4C4 and histone H3) and two mitochondrial (16S and 12S) genes were gathered from 155 serranid and acanthomorph species as a means of developing a phylogenetic hypothesis using both maximum-likelihood and -parsimony criteria. The maximum-parsimony analysis recovered 675 most parsimonious trees of length 5703 steps (CI = 0.2523, HI = 0.7477, RI = 0.6582), and the maximum-likelihood analysis recovered 1 tree at −lnLikelihood = 28279.58341. These phylogenetic hypotheses are discussed in light of previous morphological evidence to evaluate the evolutionary history of the group and their implications for the currently recognized taxonomy. Our results question the monophyly of the Serranidae, as well as the genera Cephalopholis, Epinephelus, and Mycteroperca as currently defined. The Serranidae is monophyletic only with the exclusion of the genera Acanthistius and Niphon. We propose a revised classification of the tribe Epinephelini that reflects the hypothesized shared ancestry of the group and recognizes 11 genera: Alphestes, Cephalopholis, Dermatolepis, Epinephelus, Gonioplectrus, Hyporthodus (which is resurrected for 11 species of deep-bodied groupers), Mycteroperca (including 7 species heretofore allocated to Epinephelus), Plectropomus, Saloptia, Triso, and Variola.  相似文献   

14.
As the taxonomic knowledge of cyanobacteria from terrestrial environments increases, it remains important to analyze biodiversity in areas that have been understudied to fully understand global and endemic diversity. This study was completed as part of a larger algal biodiversity study of the soil biocrusts of San Nicholas Island, California, USA. Among the taxa isolated were several new species in three genera (Atlanticothrix, Pycnacronema, and Konicacronema) which were described from, and previously restricted to, Brazil. New taxa are described herein using a polyphasic approach to cyanobacterial taxonomy that considers morphological, molecular, ecological, and biogeographical factors. Morphological data corroborated by molecular analysis including sequencing of the 16S rRNA gene, and the associated 16S–23S ITS rRNA region was used to delineate three new species of Atlanticothrix, two species of Pycnacronema, and one species of Konicacronema. The overlap of genera from San Nicolas Island and Brazil suggests that cyanobacterial genera may be widely distributed across global hemispheres, whereas the presence of distinct lineages may indicate that this is not true at the species level. Our data suggest that based upon global wind patterns, cyanobacteria in both Northern and Southern hemispheres of the Americas may have a more recent common ancestor in Northern Africa, but this common ancestry is distant enough that speciation has occurred since transatlantic dispersal.  相似文献   

15.
16.
17.
A phylogenetic analysis of the tribe Liparocephalini Fenyes is presented based on morphological and molecular characters. The data set comprised 50 adult morphological characters, partial COI (907 bp), COII (366 bp) and 12S rDNA (325–355 bp), and nearly complete sequences of 18S rDNA (1768–1902 bp) for 21 species. Eighteen species of liparocephaline beetles from all eight genera and three outgroups, are included. The sequences were analysed separately and simultaneously with morphological characters by direct optimization in the program POY4 and by partitioned Bayesian analysis for the combined data. The direct optimization (DO) tree for the combined data under equal weighting, which also shows a minimum incongruence length difference value, resulted in a monophyletic Liparocephalini with the following patterns of phylogenetic relationships (outgroup ((Baeostethus, Ianmoorea) (Paramblopusa ((Amblopusa, Halorhadinus) (Liparocephalus, Diaulota))))). A sensitivity analysis using 16 different parameter sets for the combined data shows the monophyly of the liparocephalines and all its genera under all parameter sets. Bayesian analysis resulted in topological differences in comparison with the DO tree under equal weighting only in the position of the genus Paramblopusa and clade (Amblopusa + Halorhadinus), which were reversed. Historical biogeography and the stepwise evolutionary colonization of intertidal habitat in the Liparocephalini are discussed. Based on the biogeographical analyses, we hypothesize that the ancestor of the Liparocephalini occurred along the Panthallassan Ocean, the direct antecedent of the Pacific Ocean, followed by repeated dispersals to the Nearctic from the Palearctic. We also hypothesize that ancestors of the Liparocephalini appear to have arisen in the littoral zone of beaches and then colonized rocky reef areas in the low tidal zone later through high‐ to mid‐tide zones. © The Willi Hennig Society 2009.  相似文献   

18.
The phylogeny of the temperate Gondwanan harvestman family Pettalidae is investigated by means of a new morphological matrix of 45 characters, and DNA sequence data from five markers, including two nuclear ribosomal genes (18S rRNA and 28S rRNA), one nuclear protein coding gene (histone H3), and two mitochondrial genes–one protein coding (cytochrome c oxidase subunit I) and one ribosomal (16S rRNA). Phylogenetic analyses using an array of homology schemes (dynamic and static), criteria (parsimony and maximum likelihood), and sampling strategies (optimal trees versus Bayesian phylogenetics) all agree on the monophyly of Pettalidae as well as several of its subclades, each of which is restricted to a modern landmass. While most genera as traditionally defined are monophyletic, Rakaia and Neopurcellia, distributed across Queensland (Australia) and New Zealand, are not. Instead, the species from Queensland, previously described under three genera, constitute a well‐supported clade, suggesting that in this case biogeography prevails over traditional taxonomy. A taxonomic emendation of the genera from Queensland and New Zealand is presented, and the new genus Aoraki is erected to include the species of the New Zealand denticulata group. A biogeographical hypothesis of the relationships of the former temperate Gondwana landmasses (with the exception of Madagascar) is presented, although ambiguity in the deep nodes of the pettalid tree renders such inference provisional. The data suggest that neither the South African fauna, the New Zealand fauna nor the Australian fauna is monophyletic but instead monophyly is found at smaller geographic scales (e.g., Western Australia, Queensland, NE South Africa). © The Willi Hennig Society 2007.  相似文献   

19.
Abstract Oak gallwasps (Hymenoptera; Cynipidae, tribe Cynipini) are cyclically parthenogenetic insects that induce galls on specific plant hosts in the family Fagaceae. Understanding the processes underlying the evolution of specific oak associations requires knowledge of the phylogenetic relationships among oak gallwasp genera. Although three major lineages of oak gallwasps have been identified, the status and relationships of several species‐poor but biologically significant genera remain unresolved. Two such genera are Chilaspis and Dryocosmus, whose western palaearctic species all gall oaks in the section Cerris. Dryocosmus is particularly significant biologically because it includes: (a) the only palaearctic gallwasp to gall chestnuts, Castanea, and (b) nearctic species. The oak section Cerris is wholly absent from the nearctic, and the relationship between palaearctic and nearctic Dryocosmus is significant for patterns of host plant evolution in the tribe as a whole. We examined the relationships between Chilaspis, Dryocosmus and other oak cynipid genera using cladograms from sequence data for two mitochondrial loci (cytochrome c oxidase subunit I and cytochrome b) and two nuclear loci (the 28S ribosomal gene regions D2 and D3–5). Our analyses support the following conclusions: (1) palaearctic Chilaspis and Dryocosmus species form an intermingled monophyletic group. (2) We propose that Chilaspis Mayr, 1881 is a syn.n. of Dryocosmus Giraud, 1859 and propose the name D. mayri as a comb.rev. for the species previously named C. mayri, and D. nitidus and D. israeli as comb.n. of C. nitida and C. israeli, respectively. (3) We reassess the utility of morphological characters previously regarded as diagnostic for these genera. (4) Two species previously known only from a single generation represent two halves of a single species lifecycle. Dryocosmus nervosus is here designated a syn.n. of D. cerriphilus. (5) The nearctic species D. favus lies outside the palaearctic Chilaspis/Dryocosmus clade, and Dryocosmus as currently recognized is not a monophyletic group. (6) Dryocosmus/Chilaspis is closely related to the other oak gallwasp taxa (Aphelonyx, Plagiotrochus, Pseudoneuroterus, Trichagalma, and some Neuroterus species) galling section Cerris oaks. This implies an early branching evolution of this oak association within this group, and supports previous work showing the rarity of oak gallwasp host shifts.  相似文献   

20.
Reid, D. G., Dyal, P. & Williams, S.T. (2012) A global molecular phylogeny of 147 periwinkle species (Gastropoda, Littorininae). —Zoologica Scripta, 41, 125–136. Complete species‐level molecular phylogenies have been published for several genera of Littorinidae (e.g. Echinolittorina, Littoraria). Here we add new sequence data from three genes (28S rRNA, 12S rRNA, cytochrome oxidase c subunit I) for single specimens of an additional 24 species, to make a data set of 147 (97%) of the 152 recognized species of the subfamily Littorininae. This three‐gene data set is analysed to produce a phylogenetic hypothesis for the subfamily, which includes the first complete species‐level phylogeny of the genus Peasiella and the first three‐gene phylogeny of all Littorina species. The non‐planktotrophic species of Littorina have previously been classified together (as subgenus Neritrema), implying a single origin of this developmental mode. Tests of this hypothesis with the new data are inconclusive, and resolution is not improved in a tree constructed from five genes (adding previously published sequences of 16S rRNA and cytochrome b). Using available fossils for calibration we generate a BEAST chronogram, which emphasizes that the radiation of Littorina is more recent than that of other littorinine genera. A database is provided, listing all known species of Littorininae, with their distributions, development, ecology and gene sequences, as a tool for future evolutionary studies of this model group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号