首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the first parsimony analyses of the Neotropical family Quiinaceae using nucleotide sequence data from the non-coding trnL intron and trnL-trnF intergenic spacer of the plastid genome, analysed separately as well as in combination with morphology. Both molecules and combined data recover Quiinaceae as a well-supported monophyletic group. Quiinaceae form a polytomy together with their potential sister groups, the monophyletic Ochnaceae s.str. and the monotypic Medusagynaceae from the Seychelles in the Indian Ocean. Froesia is resolved as sister to the rest of the family. Other members of the family, Lacunaria, Quiina, and Touroulia, are all recovered as monophyletic despite the inclusion of strikingly distinctive representatives (L. oppositifolia and Q. pteridophylla). Relationships among the last three genera, however, are yet uncertain. Optimising characters of breeding system onto the molecular phylogeny reveals that bisexual flowers (Froesia) are the ancestral state in Quiinaceae, whereas androdioecy (Quiina, Touroulia) and dioecy (Lacunaria) are derived breeding systems.  相似文献   

2.
Trogidae constitute a monophyletic and biologically unique family within Scarabaeoidea, being the only keratinophagous group in the superfamily. Traditionally, the family has been divided into three distinctive genera, Polynoncus Burmeister, Omorgus Erichson and Trox Fabricius. Although the taxonomy of the group is relatively well studied, changes to the existing classification have recently been proposed and the family as currently constituted has not been subjected to phylogenetic analyses. Here we present a molecular phylogeny for this cosmopolitan family based on three partially sequenced gene regions: 16S rRNA, 18S rRNA and 28S rRNA (domain 2). Included in the analyses are representatives belonging to four of the five extant genera (and three of the four subgenera) from all major zoogeographic regions, representing about 20% of the known trogid species diversity in the family. Phylogenetic analyses performed included parsimony and Bayesian inference. We deduce their historical biogeography by using trogid fossils as calibration points for divergence estimates. Our analyses resolved relationships between and within genera and subgenera that are largely congruent with existing phylogeny hypotheses based on morphological data. We recovered four well‐supported radiations: Polynoncus, Omorgus, Holarctic Trox and African Phoberus MacLeay. On the basis of this study, it is proposed that taxonomic changes to the generic classification of the family be made. The subgenera Trox and Phoberus should be elevated to genera to include the Holarctic and all the Afrotropical species, respectively, and Afromorgus returned to subgeneric rank. Estimates of divergence time are consistent with a Pangaean origin of the family in the Early Jurassic. The subsequent diversification of the major lineages is largely attributed to the break‐up of Pangaea and Gondwana in the Middle Jurassic and early Late Cretaceous, respectively.  相似文献   

3.
Ranunculaceae are a nearly cosmopolitan plant family with the highest diversity in northern temperate regions and with relatively few representatives in the tropics. As a result of their position among the early diverging eudicots and their horticultural value, the family is of great phylogenetic and taxonomic interest. Despite this, many genera remain poorly sampled in phylogenetic studies and taxonomic problems persist. In this study, we aim to clarify the infrageneric relationships of Clematis by greatly improving taxon sampling and including most of the relevant subgeneric and sectional types in a simultaneous dynamic optimization of phenotypic and molecular data. We also investigate how well the available data support the hypothesis of phylogenetic relationships in the family. At the family level, all five currently accepted subfamilies are resolved as monophyletic. Our analyses strongly imply that Anemone s.l. is a grade with respect to the Anemoclema Clematis clade. This questions the recent sinking of well‐established genera, including Hepatica, Knowltonia and Pulsatilla, into Anemone. In Clematis, 12 clades conceptually matching the proposed sectional division of the genus were found. The taxonomic composition of these clades often disagrees with previous classifications. Phylogenetic relationships between the section‐level clades remain highly unstable and poorly supported and, although some patterns are emerging, none of the proposed subgenera is in evidence. The traditionally recognized and horticulturally significant section Viorna is both nomenclaturally invalid and phylogenetically unsupported. Several other commonly used sections are likewise unjustified. Our results provide a phylogenetic background for a natural section‐level classification of Clematis.  相似文献   

4.
5.
Bayesian, maximum‐likelihood, and maximum‐parsimony phylogenies, constructed using nucleotide sequences from the plastid gene region trnK‐matK, are employed to investigate relationships within the Cactaceae. These phylogenies sample 666 plants representing 532 of the 1438 species recognized in the family. All four subfamilies, all nine tribes, and 69% of currently recognized genera of Cactaceae are sampled. We found strong support for three of the four currently recognized subfamilies, although relationships between subfamilies were not well defined. Major clades recovered within the largest subfamilies, Opuntioideae and Cactoideae, are reviewed; only three of the nine currently accepted tribes delimited within these subfamilies, the Cacteae, Rhipsalideae, and Opuntieae, are monophyletic, although the Opuntieae were recovered in only the Bayesian and maximum‐likelihood analyses, not in the maximum‐parsimony analysis, and more data are needed to reveal the status of the Cylindropuntieae, which may yet be monophyletic. Of the 42 genera with more than one exemplar in our study, only 17 were monophyletic; 14 of these genera were from subfamily Cactoideae and three from subfamily Opuntioideae. We present a synopsis of the status of the currently recognized genera.
© The Willi Hennig Society 2011.  相似文献   

6.
Juncus and Luzula are the largest, almost cosmopolitan, genera in the Juncaceae. Relationships within Juncus and Luzula and among other genera of Juncaceae (Distichia, Marsippospermum, Oxychloë, Patosia and Rostkovia) remain incompletely resolved. RbcL sequence data resolved a part of the supraspecific phylogeny, but many clades remain polytomic. For this reason, the non‐coding cpDNA regions, trnL intron and trnL‐trnF intergenic spacer, were sequenced. We intended to create hypotheses of relationships within Juncaceae and to test the classification of the sections, but a primary goal to this study was to assess the relationships within Juncus and Luzula and to test for monophyly of groups recognized from rbcL data (especially the monophyly of genus Luzula and the Southern Hemisphere Clade (SHC)). Furthermore, we tested the influence of different rooting and ingroup composition on the tree topology. The parsimony analyses revealed several well‐supported lineages. The traditionally distinguished genus Luzula is monophyletic and Juncus is non‐monophyletic. Two subgenera of Luzula (Pterodes and Luzula) are non‐monophyletic, while subg. Marlenia forms a sister group to the whole Luzula clade (trnL‐F data set). Within Juncus, both subgenus Juncus and subgenus Agathryon are non‐monophyletic. SHC is clustered not only with the South African J. lomatophylus and J. capensis, but also together with members of the section Juncus, Caespitosi and Graminifolii. These sections form a well‐separated sister group to the SHC. Within the genera Juncus and Luzula, monophyly is demonstrated for a number of groups (e.g., Juncus section Stygiopsis, Luzula section Luzula) but questioned for others (e.g., Juncus section Graminifolii). The unusual, separate positioning of Juncus trifidus and J. monanthos were clarified by trnL‐trnF sequence data, but vary within the tree topology depending on outgroup selection and also due to LBA phenomenon. © The Willi Hennig Society 2006.  相似文献   

7.
Previous taxonomic schemes for the Cylindropuntieae were re‐evaluated in the light of a molecular phylogeny derived from a Bayesian, maximum‐likelihood and parsimony reconstructions with three plastid regions (atpB‐rbcL, psbA‐trnH and trnK/matK data sets). The reconstruction revealed that Corynopuntia and Grusonia as currently defined were polyphyletic. Quiabentia, Micropuntia, Pereskiopsis and Cylindropuntia were the only genera recovered as monophyletic. Grusonia s.s. (only including Gbradtiana) is nested in a polytomy with the rest of the species of Corynopuntia. Grusonia s.l. (Gbradtiana plus Corynopuntia) and Corynopuntia as currently defined are polyphyletic because Gpulchella is sister to Pereskiopsis. Some previous taxonomic proposals for Cylindropuntia and Grusonia recognized polyphyletic series and subgenera that do not conform to the strongly supported monophyletic groups here recovered. This study proposes redefining the polyphyletic Grusonia excluding Gpulchella in order to recognize a strongly supported monophyletic genus and the acceptance of a monotypic Micropuntia (Gpulchella) avoiding a new combination into Pereskiopsis. The infrageneric classification for Grusonia is discussed and the recognition of only four monophyletic strongly supported series (Bigelovianae, Imbricatae, Leptocaules and Ramosissimae) for Cylindropuntia is presented.  相似文献   

8.
Apple snails (Ampullariidae) are a diverse family of pantropical freshwater snails and an important evolutionary link to the common ancestor of the largest group of living gastropods, the Caenogastropoda. A clear understanding of relationships within the Ampullariidae, and identification of their sister taxon, is therefore important for interpreting gastropod evolution in general. Unfortunately, the overall pattern has been clouded by confused systematics within the family and equivocal results regarding the family's sister group relationships. To clarify the relationships among ampullariid genera and to evaluate the influence of including or excluding possible sister taxa, we used data from five genes, three nuclear and two mitochondrial, from representatives of all nine extant ampullariid genera, and species of Viviparidae, Cyclophoridae, and Campanilidae, to reconstruct the phylogeny of apple snails, and determine their affinities to these possible sister groups. The results obtained indicate that the Old and New World ampullariids are reciprocally monophyletic with probable Gondwanan origins. All four Old World genera, Afropomus, Saulea, Pila, and Lanistes, were recovered as monophyletic, but only Asolene, Felipponea, and Pomella were monophyletic among the five New World genera, with Marisa paraphyletic and Pomacea polyphyletic. Estimates of divergence times among New World taxa suggest that diversification began shortly after the separation of Africa and South America and has probably been influenced by hydrogeological events over the last 90 Myr. The sister group of the Ampullariidae remains unresolved, but analyses omitting certain outgroup taxa suggest the need for dense taxonomic sampling to increase phylogenetic accuracy within the ingroup. The results obtained also indicate that defining the sister group of the Ampullariidae and clarifying relationships among basal caenogastropods will require increased taxon sampling within these four families, and synthesis of both morphological and molecular data. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 61–76.  相似文献   

9.
With 72 species belonging to ten genera, Sarcolaenaceae are the largest and most diverse of Madagascar's endemic plant families. Comprising shrubs and trees, with members found in nearly all of this island nation's biogeographic regions, they are characterised by the presence of a distinctive extra‐floral involucre that is more or less accrescent, partially or completely covering or enveloping the fruit. We present the first molecular phylogenetic study of Sarcolaenaceae, using broad sampling that encompasses the family's taxonomic and morphological diversity, including 46 species representing all ten genera and sequence data from one nuclear marker (ITS) and three plastid regions (psaA‐ORF170, psbAtrnH and rbcL), to reconstruct phylogenetic relationships using Bayesian inference and maximum likelihood. Results confirm the monophyly of Sarcolaenaceae and of eight of the ten genera; the monophyly of Rhodolaena remains ambiguous, although the taxa sampled were recovered in two well supported clades that are coherent in terms of morphology and geography. Only a single species of Eremolaena was available for study. The phylogenetic backbone of Sarcolaenaceae is not fully resolved, making it difficult to identify potential morphological synapomorphies or ecological preferences between and within genera. In the family, two monophyletic groups were, however, found [Pentachlaena + Eremolaena + Perrierodendron (Clade A) and Xyloolaena + Leptolaena + Sarcolaena + Mediusella + Xerochlamys (Clade B)] that are consistent with previous results based on morphology. Expanded species sampling and data from additional, more quickly evolving markers will be needed to produce a fully resolved phylogenetic tree for Sarcolaenaceae, which could then serve as a basis for exploring macroevolutionary patterns and processes in this remarkable family and reconstructing its biogeographic history.  相似文献   

10.
Gelechioidea are one of the most species rich and least studied superfamilies of Lepidoptera. We examine the interrelationships within the superfamily using the densest taxon sampling to date, combined with the most extensive ever morphological and molecular character data. We perform partitioned and combined analyses using maximum likelihood, Bayesian and parsimony approaches. The combined dataset consists of 155 exemplar species of Gelechioidea, representing nearly all subfamilies recognized in recent classifications. Parsimony analyses are performed with a dataset including 28 additional terminal taxa with only morphological data available. We use eight genes with a total of 6127 bp, and morphological data with 253 characters derived from larval, pupal, and adult morphology. The analyses of combined data yield more resolved trees and significantly better‐supported groupings than either dataset when analysed alone. The recurrent monophyletic groupings in all our model‐based analyses support a revision of the family classification. Deeper relationships vary between analyses and data partitions, leaving them ambiguous. The place of the root remains a challenge for future research. We propose a revised classification and suggest the division of Gelechioidea into 16 families. We redefine Depressariidae Meyrick, 1883 for a monophylum that includes Acriinae, Aeolanthinae, Cryptolechiinae, Depressariinae, Ethmiinae, Hypercalliinae, Hypertrophinae, Peleopodinae, Oditinae, Stenomatinae, Carcina, and a diversity of predominantly New World taxa previously excluded from Lypusidae (Amphisbatidae s. authors) but left without family position. A monophyletic Oecophoridae s. s., including Deuterogoniinae and Pleurotinae, is obtained for the first time with significant support. Elachistidae s. l. is found to be polyphyletic, and Elachistidae is restricted to comprise Agonoxeninae, Elachistinae, and Parametriotinae. Batrachedridae are polyphyletic, with several genera pending further study. Apart from the core Batrachedra, the taxa previously included in this family are grouped in an expanded Pterolonchidae, together with Coelopoetinae and Syringopainae. Lypusidae s. s. and Chimabachidae form a monophylum; Chimabachinae is united with Lypusidae as a subfamily, stat. n. Our results contradict the subfamily classifications of several families, notably Lecithoceridae and Autostichidae, but due to insufficient sampling of taxa we refrain from comprehensive taxonomic conclusions on the subfamily level, and encourage focused studies to resolve these groups.  相似文献   

11.
Molecular markers are routinely used to assess levels of diversity within and among populations, particularly with regard to species of conservation concern. However, when interpreting the level and partitioning of diversity observed, an implicit assumption is often made that the populations of the species in question form a monophyletic group. We tested this assumption in three endemics of Antirrhinum (A. charidemi, A. subbaeticum, and A. valentinum) using 79 nuclear [internal transcribed spacer (ITS)] and 85 plastid (psbA-trnH, trnT-trnL, trnK-matK, trnS-trnG) sequences representing multiple accessions of each of 24 Antirrhinum species (single accession of A. cirrhigerum). These species share six life history traits implicated in levels of genetic diversity, and have been the subject of previous population genetic studies. Populations of all three species formed monophyletic groups on ITS analysis. In contrast, none of the three species formed monophyletic groups on plastid sequence analysis: populations of A. charidemi fall in a monophyletic group including one accession of A. mollissimum, populations of A. subbaeticum form a polyphyletic group with plastid sequences shared with A. pulverulentum, and populations of A. valentinum are unresolved within a clade containing six other species. Lack of monophyly using plastid sequences is interpreted as a combination of shared ancestral polymorphism and hybridization in a reticulate evolutionary history of these species. Monophyly in the ITS tree may reflect a more recent sequence homogenization. We draw attention to the evaluation of species monophyly alongside the contribution of other life history traits in the historical interpretation of the level and partitioning of genetic diversity, and its use in recommendations for species conservation programs.  相似文献   

12.
Despite recent molecular systematic studies on the fossorial southern African skink subfamily Acontinae, evolutionary relationships among the three genera remain unresolved and disputed. Among these, the most recent study suggests that both Typhlosaurus and Acontias are paraphyletic, contrasting earlier results that suggest the presence of two divergent clades within Acontias. Here we further investigate the evolutionary relationships in the limbless fossorial southern African subfamily Acontinae with partial sequenced data derived from four mitochondrial loci (16S rRNA, 12S rRNA, cytochrome oxidase I and cytochrome b), as well as two nuclear protein coding loci (c‐mos and RAG‐1), in an attempt to clarify evolutionary relationships. Phylogenetic results derived from combined data analyses (comprising all six loci and totalling ~3.1 kb) using maximum parsimony, maximum likelihood and Bayesian inferences converged on the same topology. The resulting phylogeny showed Typhlosaurus as monophyletic, while the monotypic genus Acontophiops was nested intermediate to two reciprocally monophyletic Acontias clades. These two Acontias clades can be distinguished on the basis of a number of morphological, morphometric and biogeographical characters, underscoring the presence of two distinct groups. In the present study, we propose the following taxonomic changes based on the multilocus phylogeny. We retain the genus name Acontias for the medium‐ and large‐bodied skinks in clade 2 comprising all taxa in the Acontias meleagris complex as well as Acontias plumbeus, Acontias gracilicauda gracilicauda, Acontias breviceps, Acontias percivali percivali and Acontias percivali occidentalis. We designate a new genus Microacontias gen. nov. for the reciprocally monophyletic taxa in clade 1 comprised of all the small‐bodied taxa that include Microacontias litoralis, Microacontias lineatus lineatus, Microacontias lineatus grayi and Microacontias lineatus tristis. We examine the evolution of characters used in the taxonomy of the Acontinae and suggest that symplesiomorphic morphological characters among fossorial taxa have been an impediment to understanding the evolution of this subfamily. This study underscores the importance of the application of multiple molecular markers (both nuclear and mitochondrial) in determining the taxonomic diversity among fossorial skinks and emphasizes the application of phylogenetics in defining synapomorphic (shared derived) features.  相似文献   

13.
14.
Phylogenetic relationships among members of the family Gyrinidae (Coleoptera: Adephaga) were inferred from analysis of 42 morphological characters and DNA sequence data from the genes 12S rRNA, cytochrome c oxidase I and II, elongation factor 1 alpha (2 different copies) and histone III. Eighty‐nine species of Gyrinidae were included representing all known subfamilies, tribes and genera. Outgroups include species from Noteridae, Paelobiidae and Dytiscidae. Analyses include parsimony analysis, and partitioned time‐free and relaxed‐clock Bayesian analyses of the combined data using reversible‐jump MCMC to simultaneously integrate over all possible 4 × 4 nucleotide substitution models. Analyses resulted in conflicting topologies between the combined parsimony and Bayesian analyses on the one hand, and the relaxed‐clock analysis on the other. The marginal likelihoods of competing models were calculated with stepping‐stone sampling and used in a Bayes factor test, which, along with arguments from morphology, supported the topology generated by the relaxed‐clock analysis. This phylogenetic hypothesis is adopted to revise the higher classification of Gyrinidae. Major taxonomic conclusions include: (i) monophyletic Gyrinidae, (ii) the Nearctic Spanglerogyrinae Folkerts (with one species, Spanglerogyrus albiventris Folkerts) sister to all other Gyrinidae, (iii) the Madagascar endemic Heterogyrinae Brinck stat. n. (with one species, Heterogyrus milloti Legros) sister to all Gyrinidae except Spanglerogyrinae, (iv) monophyletic Gyrininae Latreille including three monophyletic tribes with the following relationship: Orectochilini Régimbart + (Gyrinini Latreille + Enhydrini Régimbart), (v) monophyletic Orectochilini comprising four monophyletic genera with the following relationships: (Gyretes Brullé + Patrus Aubé stat. n. ) + (Orectogyrus Régimbart + Orectochilus Dejean), (vi) monophyletic Gyrinini comprising three genera with the following relationships: Gyrinus Geoffroy + (Metagyrinus Brinck + Aulonogyrus Motschulsky), each monophyletic except Metagyrinus with only one included species and not tested for monophyly, and (vii) monophyletic Enhydrini comprising five genera with the following relationships: (Porrorhynchus Laporte + Dineutus MacLeay) + (Enhydrus Laporte + (Andogyrus Ochs + Macrogyrus Régimbart)), each monophyletic except Porrorhynchus, Enhydrus and Andogyrus each with one included species and untested for monophyly. Each subfamily, tribe and genus is diagnosed and discussed. The female reproductive tract of each group is presented, illustrated and discussed with respect to the phylogenetic conclusions.  相似文献   

15.
Relative to its diversity (34 genera, 700 species), Scolopendromorpha has been undersampled in molecular phylogenetic analyses compared with the other chilopod orders. Previous analyses based on morphology have not resolved several key controversies in systematics and evolutionary morphology unambiguously. Here we apply new molecular and morphological data to scolopendromorph phylogenetics, with a focus on the evolution of blindness. The taxonomic sample includes 19 genera, many lacking previous molecular data, and diverse, cosmopolitan genera of Scolopendridae are sampled by multiple species. Phylogenetic analysis with Direct Optimization used 94 morphological characters and ca. 4.5 kb of sequence data from two nuclear (18S and 28S rRNA) and two mitochondrial (16S rRNA and COI) loci. A single most‐parsimonious cladogram selected after sensitivity analyses resolves Scolopendromorpha as monophyletic, and divides it into a blind clade of three families (Plutoniumidae, Cryptopidae, Scolopocryptopidae) and its ocellate sister group, Scolopendridae. Some species‐rich, cosmopolitan genera (Cormocephalus, Otostigmus, Scolopendra) in Scolopendridae are non‐monophyletic, and in several instances (e.g. New and Old World Scolopendra) relationships are more congruent with geographical distributions than with traditional classifications. The tribe Asanadini is particularly subject to parameter‐sensitivity, nesting in the combined analysis within Scolopendrini but as sister to all other Scolopendrinae for molecular data alone. The total‐evidence tree unambiguously optimizes trunk segmentation: a 23‐segmented trunk has a single origin in the blind clade. © The Willi Hennig Society 2011.  相似文献   

16.
Euptychiina is the most species‐rich subtribe of Neotropical Satyrinae, with over 450 known species in 47 genera (14 monotypic). Here, we use morphological characters to examine the phylogenetic relationships within Euptychiina. Taxonomic sampling included 105 species representing the majority of the genera, as well as five outgroups. A total of 103 characters were obtained: 45 from wing pattern, 48 from genitalia and 10 from wing venation. The data matrix was analysed using maximum parsimony under both equal and extended implied weights. Euptychiina was recovered as monophyletic with ten monophyletic genera, contrasting previous DNA sequence‐based phylogenies that did not recover the monophyly of the group. In agreement with sequence‐based hypotheses, however, three main clades were recognized: the ‘Megisto clade’ with six monophyletic and three polyphyletic genera, the ‘Taygetis clade’ with nine genera of which three were monophyletic, and the ‘Pareuptyhia clade’ with four monophyletic and two polyphyletic genera. This is the first morphology‐based phylogenetic hypothesis for Euptychiina and the results will be used to complement molecular data in a combined analysis and to provide critical synapomorphies for clades and genera in this taxonomically confused group.  相似文献   

17.
Geckos are one of the most species‐rich, abundant, and widely distributed of all Squamata lineages and present several characteristics that have made them favorite model organisms for biogeographical, ecological, physiological, and evolutionary studies. One of the key aspects of any comparative study is to have a robust, comprehensive phylogeny, and an updated taxonomy. Recently, the Infraorder Gekkota has been the subject of several phylogenetic analyses and taxonomic revisions at different levels. Despite all these phylogenetic and taxonomic advances, there are still some groups whose systematics and taxonomy remain highly problematic. Maybe one of the most poorly resolved groups in spite of decades of intensive research by many herpetologists are the so‐called Palearctic naked‐toed geckos of the family Gekkonidae. This group of nocturnal geckos distributed from Mauritania across North Africa, Arabia, southwestern and central Asia to northern India, western China and southern Mongolia is characterized by the synapomorphy of lack of adhesive subdigital pads. Within the Palearctic naked‐toed geckos, the Saharo‐Arabian clade comprised by the genera Pseudoceramodactylus, Stenodactylus, and Tropiocolotes is the clade with the largest distribution range. At the same time, it is one of the problematic groups, presenting poorly supported phylogenetic relationships, with the genus Tropiocolotes being recovered non‐monophyletic in all analyses despite its morphological uniformity. To reassess the phylogeny of the Palearctic naked‐toed geckos with a special interest in the systematics of Tropiocolotes, we assembled a dataset comprising 298 gecko specimens from 283 different species (including all Tropiocolotes species but one) belonging to 122 of a total of 124 described gecko genera. This dataset included the nuclear c‐mos, ACM4, RAG1, RAG2, and PDC and the mitochondrial ND2 gene. To further investigate the relationships within Tropiocolotes and to revise the systematics of the south Arabian endemic species Tropiocolotes scorteccii, we used an integrative approach including information from the nuclear MC1R and c‐mos, the mitochondrial 12S, 16S, cytb genes, and morphological data from nine of the 10 described Tropiocolotes species. The phylogenetic analyses of the Gekkota dataset recovered a similar topology for the Palearctic naked‐toed geckos to previous studies, but in this case, Tropiocolotes was recovered monophyletic in all analyses, with high support in two of them. The results of the analyses of three datasets specifically assembled to test the effect of both gene sampling and taxon sampling in the monophyly of Tropiocolotes, and the internal relationships of the Palearctic naked‐toed geckos clearly showed that both the number and kind of characters (nuclear or mitochondrial data) and the number of taxa played a fundamental role in recovering the correct phylogenetic relationships. The phylogenetic analyses within Tropiocolotes suggested the existence of high levels of undescribed diversity in the south Arabian T. scorteccii, including a new genetically and morphologically distinct species endemic to Oman (Tropiocolotes confusus sp. nov. ). Our study using a large dataset, including several loci and a dense taxon sampling within Gekkota and especially within Tropiocolotes, has proved a valuable strategy to address the monophyly of Tropiocolotes and the relationships within the Saharo‐Arabian Palearctic naked‐toed geckos. The integrative systematic approach including several samples of south Arabian T. scorteccii based on many years of fieldwork has, once more, uncovered a new species endemic to this region. This highlights the importance of this area of Arabia as a reservoir of reptile endemicity and biodiversity, which is likely linked to the high degree of habitat heterogeneity and the effect of the monsoons. Obviously, based on this and previously published evidence, south Arabia represents an area with still high levels of undiscovered diversity.  相似文献   

18.
19.
20.
Abstract Genera Lamiophlomis and Paraphlomis were originally separated from genus Phlomis s.l. on the basis of particular morphological characteristics. However, their relationship was highly contentious, as evidenced by the literature. In the present paper, the systematic positions of Lamiophlomis, Paraphlomis, and their related genera were assessed based on nuclear internal transcribed spacer (ITS) and chloroplast rpl16 and trnL‐F sequence data using maximum parsimony (MP) and Bayesian methods. In total, 24 species representing six genera of the ingroup and outgroup were sampled. Analyses of both separate and combined sequence data were conducted to resolve the systematic relationships of these genera. The results reveal that Lamiophlomis is nested within Phlomis sect. Phlomoides and its generic status is not supported. With the inclusion of Lamiophlomis rotata in sect. Phlomoides, sections Phlomis and Phlomoides of Phlomis were resolved as monophyletic. Paraphlomis was supported as an independent genus. However, the resolution of its monophyly conflicted between MP and Bayesian analyses, suggesting the need for expended sampling and further evidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号