首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cropping on jhum fallows in north-eartern India is predominantly done for one year in a jhum cycle. If second year cropping is done, expanse of the forest land required for slashing and burning could be reduced significantly. We tested this hypothesis in a young (6 yr) and an old (20 yr) jhum fallow. We also evaluated if the productivity during second year cropping could be alleviated by auxiliary measures such as tilling the soil or application of fertilizers (chemical or farm-yard manure or both in combination). The results demonstrate that the ecosystem productivity (total dry matter production) and economic yield (rice grain production) decline with shortening of jhum cycle. Second year cropping causes a further decline in ecosystem productivity in old jhum field, but not in young jhum field. Economic yield from second year cropping in its traditional form (without any fertilizer treatment) is not much lower than that in the first year, and can be improved further by manuring the soil. Tilling of soil improves neither ecosystem productivity nor economic yield. Different fertilization treatments respond differently; while inorganic manuring enhances ecosystem productivity, a combination of inorganic and organic manuring improves economic yield  相似文献   

2.
Energy and economic efficiencies were evaluated on young (6 year) and old (20 year) jhum fields in Mizoram, north-eastern India during second year of cropping, and were compared with those in the first year. The effect of auxiliary measures such as tilling the soil or application of fertilizers (chemical or farm-yard manure or both in combination) was also examined on energy and economic efficiencies. The results indicated that traditional jhum cultivation is labour intensive and energy efficient, producing almost 15–20 times of energy invested. Energy and economic efficiencies decline with shortening of jhum cycle. These efficiencies decline further from first to second year of cropping. Tilling is not useful to improve either energy or economic efficiency. Fertilizer application, which is though profitable from the point of view of economic efficiency, is highly energy inefficient. Application of fertilizers during second year cropping can be encouraged. Organic manuring may be a better option than others to alleviate energy efficiency. However, a combination of organic and inorgamic manuring could be the best option to enhance economic efficiency.  相似文献   

3.
Summary The present study deals with fertility changes in agro-ecosystems where vegetation is removed by slash and burn procedures, the land is planted to crops (cultivated) for one year, and then left to revegetate naturally for upto 50 years (forested fallow, here after referred to as ‘fallow’) before the entire cycle (locally called ‘Jhum’) is repeated. A comparison has been made between three jhum cycles of 30, 10 and 5 years. Depletion in soil carbon continued throughout the cropping period of one year and extended upto a 5 year fallow. This could be one of the reasons against a short jhum cycle, alongwith a similar pattern in depletion of nitrogen. Available phosphorus build up in the fallows also starded only beyond a 5 year fallow period with rapid increase in 10, 15 and 50 year fallows. Cationic concentration in the soil also rapidly declined in the early phases of regrowth of vegetation. This decline was most pronounced for potassium due to the fact thatDendrocalamus hamiltonii is a heavy accumulator of this nutrient. Since this bamboo species dominates the fallow upto about 20 years, potassium build up in the soil was observable only at this stage. It is suggested that this species plays an important role in conservation of this nutrient. In a 50 year fallow, low levels of calcium and magnesium were maintained with rapid depletion of both with depth which is in contrast to that of potassium and phosphorus. In general, short jhum cycles of 5 year permit only low levels of soil fertility with very poor recovery during the fallow period. The significance of these results are discussed.  相似文献   

4.
Crop response, tree biomass production and changes in soil fertility characteristics were monitored in a long-term (1986–2002) alley-cropping trial in Ibadan, Nigeria. The systems included two alley cropping systems with Leucaena leucocephala and Senna siamea on the one hand and a control (no-trees) system on the other hand, all cropped annually with a maize–cowpea rotation. All systems had a plus and minus fertilizer treatment. Over the years, the annual biomass return through tree prunings declined steadily, but more drastically for Leucaena than for Senna. In 2002, the nitrogen contribution from Leucaena residues stabilized at about 200 kg N/ha/year, while the corresponding value for Senna was about 160 kg N/ha/year. On average, the four Leucaena prunings were more equal in biomass as well as in amounts of N, P and cations, while the first Sennapruning was always contributing up to 60% of the annual biomass or nutrient return. Maize crop yields declined steadily in all treatments, but the least so in the Senna + fertilizer treatment where in 2002 still 2.2 tonnes/ha of maize were obtained. Nitrogen fertilizer use efficiency was usually higher in the Senna treatment compared to the control or the Leucaena treatment. Added benefits due to the combined use of fertilizer N and organic matter additions were observed only for the Sennatreatment and only in the last 6 years. At all other times, they remained absent or were even negative in the Leucaenatreatments for the first 3 years. Most chemical soil fertility parameters decreased in all the treatments, but less so in the alley cropping systems. The presence of trees had a positive effect on remaining carbon stocks, while they were reduced compared to the 1986 data. Trees had a positive effect on the maintenance of exchangeable cations in the top soil. Exchangeable Ca, Mg and K – and hence ECEC – were only slightly reduced after 16 years of cropping in the tree-based systems, and even increased in the Senna treatments. In the control treatments, values for all these parameters reduced to 50% or less of the original values after 16 years. All the above points to the Senna-based alley system with fertilizers as the more resilient one. This is reflected in all soil fertility parameters, in added benefits due to the combined use of fertilizer nitrogen and organic residue application and in a more stable maize yield over the years, averaging 2.8 tonnes/ha with maximal deviations from the average not exceeding 21%.  相似文献   

5.
Abstract To characterize the altitudinal and successional trends in microbial biomass and to understand their role in soil nutrient dynamics during the aggradation phase (vegetation recovery) of abandoned shifting cultivation systems, we determined the soil properties and microbial C and N in jhum (slash‐and‐burn) cultivation systems at different altitudes and 1‐, 7‐, and 16‐year‐old fallow agricultural lands at lower and higher altitudes in the northeastern Indian hills. Density of ground vegetation was lower in the undisturbed forest than in the jhum fallows. In general, 1‐year jhum fallow had greater herbaceous vegetation both at lower and higher altitudes. Although woody plants were observed in 7‐ and 16‐year‐old jhum fallows, their density was highest in the forest. Soil moisture, organic C, and total N also increased gradually with increasing altitude and progressive secondary succession. Soil pH showed a negative correlation with altitude (as also confounded by soil type) and fallow age. Both microbial C and N had a close correlation with altitude and fallow age. Contribution of microbial C to soil organic C was 2.0–2.6% and microbial N to total N 1.4–2.2% in jhum fields, 2.4–4.3% and 1.2–2.1%, respectively, in jhum fallows, and 2.5–2.9% and 1.6–1.9% in the forests. Microbial C and N showed a negative correlation with herbaceous plant density. Microbial biomass in the jhum fallows and forest stands had a positive relationship with woody vegetation. Along an altitudinal and/or successional gradient, microbial C and N were positively correlated with water‐holding capacity, soil moisture, organic C, and total N and negatively correlated with soil pH. Microbial C and N were positively correlated with each other. Therefore, the study suggests that the altitudinal and successional dynamics of microbial C and N are linked to, among other properties, soil organic matter and total nitrogen contents in the soil during community development after land abandonment from shifting cultivation.  相似文献   

6.
Summary Soil properties under continuous cropping were compared with those under planted fallows and natural bush regrowth for three years after forest clearing. The cropping treatments consisted of continuous maize with and without stover returned as surface mulch, continuous soybean, and maize and cassava intercropped. The fallow treatments included pigeon pea, leucaena, Guinea grass and natural bush regrowth.In the continuous soybean and unmulched maize plots, soil organic matter and pH declined rapidly; whereas the mulched maize plots maintained a soil organic matter level comparable to the fallow treatments. To maintain soil organic matter in the surface soil at a level comparable to soil under secondary forest, two to three applications of a total amount of 16 MT/ha/annum of dry plant materials (maize stover or grass) are required when the material is applied as surface mulch.In the cropped plots, favorable physical characteristics in the surface soil were also maintained when sufficient plant residue was returned; whereas the deterioration of subsoil structure of the forest soil occurred in all cropping treatments.Guinea grass fallow has a distinct advantage in recycling mineral nutrients and maintaining soil physical properties and organic matter. It is suggested that soils may be planted with a combination of Guinea grass and pigeon pea fallow for one or two years after three or four years of arable cultivation.IITA Journal Paper No. 65 IITA Journal Paper No. 65  相似文献   

7.
Changes in N, P, K, Ca and Mg in soil and rice plants were investigated during a cropping season following a long fallow period in a system of traditional cultivation practised for several centuries, under a village tank irrigation system. Soil, N, P, K, Ca and Mg were not found to be deficient for rice production throughout the season. Flooding did not produce toxic levels of Fe and Na and soil pH remained at 6.4 during the season. The average grain yield (3.5 t/ha) without any addition of chemical fertilizer was almost the same as that from fields under major irrigation systems where fertilizer application (less than the recommended level) was common. The sustainability of soil fertility under the traditional system of rice cultivation appears to be dependent upon long fallow periods. The natural build-up of soil fertility during a three-year fallow was evidently adequate to support a good growth of the crop which produced a yield comparable to that obtained in chemically fertilized, more intensively cropped rice fields under major irrigation systems.  相似文献   

8.
赵刚  樊廷录  李尚中  张建军  王勇  党翼  王磊 《生态学杂志》2013,24(10):2807-2813
以冬小麦收获后高留茬休闲地为对照,连续4年在陇东黄土旱塬设6个油菜播种期,研究了休闲期作物覆盖对土壤水分及后作冬小麦产量与水分利用效率的影响.结果表明:不同播种期夏休闲期土壤贮水量差异显著(P<0.05),其中8月5日播种油菜的土壤蓄水效率为58.5%,产量和水分利用效率较对照提高7.5%和5.9%.平均而言,夏休闲期复种油菜后作小麦干旱年份增产16.1%,平水年份增产6.8%.夏休闲期复种油菜是西北旱地小麦抗旱增产的有益途径.  相似文献   

9.
Decline in soil fertility accelerated by shorter fallow periods was expected to be a major constraint in slash-and-burn rice production systems in northern Laos. In this paper we describe relationships between fallow period, soil fertility parameters, weeds and rice yield. Soil infertility is not perceived a major yield constraint by the farmers. Of the various soil parameters observed only soil organic matter showed consistent association with rice yield (r=0.42, p<0.01). Fallow period and rice yield showed no association and the relationship between fallow and organic matter was very weak (r=0.16, p<0.01). Rice yield was negatively related to densities of Ageratum conyzoides and Lygodium flexuosum. Soil loss during the cropping period ranged from 300–29.300 kg ha–1. For the same period organic matter, total N, available P and available K content in the top 0–3 cm decreased by 11,12,17, and 17%, respectively, and loss of total N for the soil depth of 0–25 cm was estimated at 400 kg ha–1. Soil physical properties, moisture stress and available N are the most likely detriments to rice yields. Further attempts to relate soil properties to rice yield should include repeated measurements during the cropping season and observations on soil physical properties.The research presented was supported by the Provincial Agriculture Service, Luang Prabang, Laos, and the Swiss Development Cooperation.  相似文献   

10.
Summary The nitrogen budge of rotational bush fallow agriculture (jhum) was investigated at higher elevations of Meghalaya in north-eastern India under 15, 10 and 5 year fallow cycles (the intervening fallow period between one or two croppings on the same site). Nitrogen depletion was affected by initial stocks in the soil and vegetation compartment at the time of slash and burn as well as the rate at which this was lost during the subsequent land use. While nitrogen losses due to the burn was more severe under longer cycles compared to the 5 year cycle the losses through sediment and water was more under a 15 year cycle compared to 10 and 5 year cycles. Transfer of nitrogen from soil to the weed biomass increased with shortening of the fallow cycle. The positive role of weeds in conservation of nitrogen in their biomass and subsequent release through organic manure into the agriculture system has been highlighed. Under a short fallow cycle of 5 years, considered on a time scale of 15 years, the soil nitrogen was depleted to a very low level compared to a 15 year cycle, suggesting that a 5 year cycle as prevalent today is not viable from the point of view of nitrogen economy.  相似文献   

11.
Changes in the soil after clearing tropical forest   总被引:8,自引:1,他引:7  
Summary About one-and-a-half acres of tropical forest, of known mass and chemical composition, was cleared and burned. Soil changes during clearing and two years' cropping were studied.Following burning, approximately all the K, Ca, and Mg in the vegetation were accounted for by the rise in exchangeable K, Ca, and Mg in the soil. There was a marked rise in soil pH. A small but significant increase in C and N was attributed to admixture of parts of the vegetation with the soil.Following cultivation, there was a rapid loss of nutrients by leaching and erosion during the first year and a substantial loss of K and Mg, but smaller loss of Ca in the second year. Losses of calcium were less and of potassium more under the local practice of shifting cultivation than under cultivation treatments involving clearing of roots followed by bare fallow or a maize-cassava rotation. Depths of cultivation had little effect on nutrient losses. Losses of organic matter in the first year were rapid due to oxidation of unhumified material. They were much reduced in the second year. Greater production of food was obtained from the maize-cassava rotation than by local practice.  相似文献   

12.
Summary Field trials were conducted in the forest zone of southern Nigeria on three soil series, gravelly loamy sand Ibadan soil (Oxic paleustalf), gravelly sandy loam Egbeda soil (Oxic paleustalf) and sandy loam Alagba soil (Oxic paleustalf). The trials were carried out to study the effects of planting on flatversus various mound sizes and NPK fertilizer on performance of white Guinea yam (Dioscorea rotundata) cultivar Laoko.Mound size appeared to have a more pronounced effect on tuber yield than fertilizer even on land which was in the second and third year of cropping after bush fallow. The average tuber yield for the three locations without fertilizers was 7.83 tons/ha on the flat compared with 9.44 tons/ha on large mound (about 30 cm height). With fertilizer application, tuber yields were 7.43 tons/ha on the flat and 11.30 tons/ha on large mound respectively. Total yield reduction on flat may in part be related to physical soil impedence. Planting on large mounds also resulted in longer tubers and shorter harvesting time.  相似文献   

13.
Changes in ovarian follicular kinetics were studied in relation to aging in the Indian skipper frog Rana cyanophlyctis.Age was determined by skeletochronology, by counting the number of growth rings and lines of arrest of growth from the cross sections of 4th phalange of 4th toe. For follicular kinetics study oocytes were counted under binocular using 10% of Bouin’s fixed ovary and they were classified into first growth phase, medium-sized second growth phase, large-sized second growth phase and atretic follicles. Analysis of phalangeal cross sections indicated that frogs ranging 14–54 g in body weight and 4.9–8.9 cm in body size showed 1–7 year rings. Frogs that weighed 14–16 g showed 1 year ring, and contained immature ovaries; those with 18 g body weight had one to two year rings, in which second growth phase oocytes appeared for the first time in the primiparous ovary. Frogs with 20–54 g body weight showed 2–5 year rings in which ovary contained 5–24% of second growth phase oocytes. Further, body weight, body size, ovarian weight, number and size of second growth phase oocytes and total number of oocytes showed a significant (P < 0.05) positive correlation, while, the number of first growth phase and atretic follicles showed a poor correlation with age. The results suggest that in nature, the age of Rana cyanophlyctis ranges between 1–7 years. Phalangeal growth rings are formed annually. Females attain sexual maturity in 2nd year. Frogs with 2–5 years of age may constitute breeding females. Body weight, body size, ovarian mass, number of second growth phase and total oocytes, and egg size increase with age up to 5 years.  相似文献   

14.
Soil organic carbon (SOC) is essential for soil fertility and climate change mitigation, and carbon can be sequestered in soil through proper soil management, including straw return. However, results of studies of long‐term straw return on SOC are contradictory and increasing SOC stocks in upland soils is challenging. This study of North China upland agricultural fields quantified the effects of several fertilizer and straw return treatments on SOC storage changes and crop yields, considering different cropping duration periods, soil types, and cropping systems to establish the relationships of SOC sequestration rates with initial SOC stocks and annual straw C inputs. Our meta‐analysis using long‐term field experiments showed that SOC stock responses to straw return were greater than that of mineral fertilizers alone. Black soils with higher initial SOC stocks also had lower SOC stock increases than did soils with lower initial SOC stocks (fluvo‐aquic and loessial soils) following applications of nitrogen‐phosphorous‐potassium (NPK) fertilizer and NPK+S (straw). Soil C stocks under the NPK and NPK+S treatments increased in the more‐than‐20‐year duration period, while significant SOC stock increases in the NP and NP+S treatment groups were limited to the 11‐ to 20‐year period. Annual crop productivity was higher in double‐cropped wheat and maize under all fertilization treatments, including control (no fertilization), than in the single‐crop systems (wheat or maize). Also, the annual soil sequestration rates and annual straw C inputs of the treatments with straw return (NP+S and NPK+S) were significantly positively related. Moreover, initial SOC stocks and SOC sequestration rates of those treatments were highly negatively correlated. Thus, long‐term straw return integrated with mineral fertilization in upland wheat and maize croplands leads to increased crop yields and SOC stocks. However, those effects of straw return are highly dependent on fertilizer management, cropping system, soil type, duration period, and the initial SOC content.  相似文献   

15.
豆科绿肥及施氮量对旱地麦田土壤主要肥力性状的影响   总被引:10,自引:0,他引:10  
通过2a田间定位试验,研究渭北旱塬地区夏闲期插播并翻压不同豆科绿肥(长武怀豆、大豆和绿豆)以及小麦生长季不同施氮量(0,108,135,162 kg/hm2)对麦田土壤肥力性状的影响,以期为提高旱地土壤质量提供理论依据.试验结果表明:(1)种植豆科绿肥能显著提高土壤有机质、活性有机质和全氮含量,增加土壤碳库管理指数(CPMI),对土壤速效钾含量没有显著影响;(2)绿豆还田量高于长武怀豆和大豆,然而土壤培肥效果逊于长武怀豆和大豆;(3)夏闲期种植绿肥明显消耗了土壤水分,导致绿肥翻压前、小麦播前直至收获后,0-200 cm土壤贮水量显著低于休闲处理,但耗水量与休闲没有明显差异,由于小麦产量显著增加,因此豆科绿肥显著提高了水分生产效率;(4)与不施氮相比,小麦生长季施用氮肥能显著增加土壤水分生产效率,却对土壤各肥力性状的影响均不显著.夏闲期种植并翻压豆科绿肥是旱地培肥土壤、提高水分生产效率的有效途径.  相似文献   

16.
Application of chemical fertilizers at the recommended level (medium fertility) or lower stimulated growth of the diazotrophic cyanobacterial population and nitrogenase activity in a paddy field. High fertilizer levels proved to be inhibitory to nitrogen-fixing cyanobacteria indicating that indiscriminate use of chemical fertilizers for a longer period drastically disturbed the natural ecological balance. The rice–mustard–moong (RMM) crop rotation was observed to be more suitable for cyanobacterial nitrogen fixation than rice–wheat–maize rotation. The cropped plots had higher nitrogenase activity than fallow plots. The low fertility coupled with RMM rotation were found to be best suited for promoting nitrogen fixation by cyanobacteria to supply the rice plants. A top dressing of chemical nitrogenous fertilizer drastically suppressed the cyanobacterial nitrogenase activity (ARA) within 12 h; the magnitude of inhibition varied with respect to the cropping system. The inhibition was overcome by the 10th day and the ARA value reached the preapplication value or even higher in the case of low fertility and medium fertility level plots. A regression equation was established to predict nitrogen fixation in a given soil ecosystem.  相似文献   

17.
长期施肥对土壤微生物量及土壤酶活性的影响   总被引:80,自引:0,他引:80       下载免费PDF全文
 该文以北京国家褐潮土土壤肥力与肥料效益长期监测基地的长期肥料定位试验为平台,研究了长期不同施肥制度对土壤的生物学特性及其土壤酶的影响。主要研究结果:长期撂荒土壤(15年)的有机质和全氮(TN)的含量、微生物量碳(SMB-C)和氮(SMB-N)、土壤的蔗糖酶、磷酸酶和脲酶活性以及SMB-C/SOC(土壤有机碳)和SMB-N/TN比值都高于种植作物的农田土壤;而其代谢商和容重值低于农田土壤。长期施肥的农田(NPK、NPKM 、NPKS和NPKF),其土壤养分含量、微生物量碳和氮以及土壤蔗糖酶、磷酸酶和脲酶活性均高于不施肥的农田(CK);而小麦(Triticum aestivum)-玉米(Zea mays)→小麦-大豆(Glycine max)复种轮作(NPKF)的农田又高于长期复种连作(NPK)的农田;在施肥处理中(NPK、NPKM、NPKS和NPKF),长期化肥与有机肥配合施用的处理(NPKM )的土壤上述指标高于其它施肥处理(NPK、NPKS和NPKF),但其土壤的代谢商、pH值和容重值较低。  相似文献   

18.
A simple N balance model was used to calculate fertilizer requirement for a target N uptake by maize. Nitrogen uptake from soil sources and target uptake of N with fertilizer N additions were obtained from fertilizer trials in Africa and Latin America. Most experiments had data for only one cropping period, although some from Latin America had data for four to six crops. The transfer coefficient of fertilizer N to the crop was adjusted to realize maximum recovery of fertilizer N under best methods of fertilizer application. The time constants of transfer of soil N to the crop were allowed to vary and were affected mainly by soil texture. Where 4 to 6 cropping periods were available good agreement between actual and predicted fertilizer N requirements was obtained. With this approach long-term fertilizer N requirements for 14 sites were predicted using first cropping period N uptake. This study showed that pools of organic N in more coarse-textured soils were usually smaller and declined more rapidly than in fine-textured soils. Labile organic N pools declined with time under all simulations, but approached equilibrium within 10 croppings seasons. Equilibrium N uptake from the soil organic N pool was predicted to be 31 kg ha–1 for the more coarse-textured soils and 36 kg ha–1 for the fine-textured soils. Long-term projections of fertilizer requirements using input data of the field experiments were reasonable, and effects of legume green manures and other amendments could be clearly evaluated.  相似文献   

19.
Spring wheat cv. ‘Gutha’ was grown in continuous wheat (W/W) and narrow-leafed lupin (L. angustifolius L. cv. Yandee)-wheat (L/W) rotation on a yellow earth over mottled clay (Arenic Fragiudult) in a mediterranean climate for two years. The first year had a higher than average rainfall with adequate soil water until anthesis. The second year was very dry (only 232 mm total rainfall) and soil water contents were low throughout the growing season. Nitrogen fertilizer (+N) treatments were included in both years. In the first year an adjacent experiment compared the effects of loosening a pronounced traffic pan which existed on the site (LS)versus unloosened (US). In the first year roots contained more dry matter than tops in the early vegetative stage in all crops and then declined exponentially to a ratio of 0.1 in the US and LS treatments. In the second year however, the decline was both linear and much less, so that root:shoot ratios at harvest were still between 0.4 and 0.8. There was a consistent trend in root:shoot ratios from the most favourable (LS) to least favourable (W/W-N) treatments over the combined two years’ data, and this was also found in grain yield, with a higher yield in year one from the LS than US, and the lowest yield in year two from the W/W-N treatment. The proportion of total biomass recovered from below ground was substantially higher than is commonly reported from studies carried out in temperate, high fertility soils, but probably still under-estimates of the true amount of dry matter in roots because of inadequacies of sampling, washing and storage techniques. Root length densities were much greater in the drier year, especially in the surface 0.1-m, and based on theoretical considerations, much greater than required for extraction of available water. The effect of environmental conditions on the relative size of cereal crop carbon sinks are discussed in relation to these results.  相似文献   

20.
红壤旱地不同复种方式养地效果   总被引:2,自引:0,他引:2  
为了提出适宜南方红壤区旱地质量提升的持续高效种植模式,在江西农业大学科技园开展田间试验,以传统复种方式为对照,从土壤理化性状、微生物及酶活性等多方面分析比较不同复种方式对土壤的养地效果,为提出可持续发展的农田耕作模式提供理论基础。结果表明:不同复种方式中,绿肥种植和绿肥翻压还田对土壤具有明显养地效果,其中处理C"黑麦草-花生‖玉米-粟‖荞麦"具有较高的土壤阳离子交换量、有机质、碱解氮、全磷含量以及土壤酶活性和较多的土壤微生物种类、数量,从而显著提高土壤肥力和土壤持续生产力,养地效果最佳;处理B"混播绿肥(油菜、紫云英、肥田萝卜)-大豆‖玉米-绿豆‖芝麻"降低土壤容重,增加土壤孔隙度,改善土壤的通气性、透水性,明显提高土壤pH值、全氮、有效磷、全钾和速效钾含量,养地效果次之。因此,大力推广应用冬季绿肥是促进红壤旱地生态系统可持续发展的有效耕作措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号