首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type 2 Maturity Onset Diabetes of the Young (MODY2) is a monogenic autosomal disease characterized by a primary defect in insulin secretion and hyperglycemia. It results from GCK gene mutations that impair enzyme activity. Between 2006 and 2010, we investigated GCK mutations in 66 diabetic children from southern Italy with suspected MODY2. Denaturing High Performance Liquid Chromatography (DHPLC) and sequence analysis revealed 19 GCK mutations in 28 children, six of which were novel: p.Glu40Asp, p.Val154Leu, p.Arg447Glyfs, p.Lys458_Cys461del, p.Glu395_Arg397del and c.580-2A>T. We evaluated the effect of these 19 mutations using bioinformatic tools such as Polymorphism Phenotyping (Polyphen), Sorting Intolerant From Tolerant (SIFT) and in silico modelling. We also conducted a functional study to evaluate the pathogenic significance of seven mutations that are among the most severe mutations found in our population, and have never been characterized: p.Glu70Asp, p.His137Asp, p.Phe150Tyr, p.Val154Leu, p.Gly162Asp, p.Arg303Trp and p.Arg392Ser. These seven mutations, by altering one or more kinetic parameters, reduced enzyme catalytic activity by >40%. All mutations except p.Glu70Asp displayed thermal-instability, indeed >50% of enzyme activity was lost at 50°C/30 min. Thus, these seven mutations play a pathogenic role in MODY2 insurgence. In conclusion, this report revealed six novel GCK mutations and sheds some light on the structure-function relationship of human GCK mutations and MODY2.  相似文献   

2.
Glucokinase (GCK) plays a key role in glucose metabolism. GCK mutations are known as a pathogenic cause of maturity-onset diabetes of the young type 2 (MODY2). These mutations are also found in gestational diabetics. The aim of our study was to assess the variability of the GCK gene in the Czech diabetic and control populations. We screened all 10 exons specific for the pancreatic isoform of glucokinase (1a and 2-10) including the intron flanking regions in 722 subjects (in 12 patients with an unrecognised type of MODY and their 10 family members, 313 patients with diabetes mellitus type 2 (DM2), 141 gestational diabetics (GDM), 130 healthy offspring of diabetic parents, and 116 healthy controls without family history of DM2). In two MODY families we identified two mutations in exon 2 of the GCK gene: a novel mutation Val33Ala and the previously described mutation Glu40Lys. In other subgroups (excluding MODY families) we detected only intronic variants and previously described polymorphisms in exons 6 (Tyr215Tyr) and 7 (Ser263Ser), we did not find any known GCK pathogenic mutation. We observed no difference in the frequencies of GCK polymorphisms between Czech diabetic (DM2, GDM) and non-diabetic populations.  相似文献   

3.
Glucokinase (GK) acts as a glucose sensor in the pancreatic beta-cell and regulates insulin secretion. Heterozygous mutations in the human GK-encoding GCK gene that reduce the activity index increase the glucose-stimulated insulin secretion threshold and cause familial, mild fasting hyperglycaemia, also known as Maturity Onset Diabetes of the Young type 2 (MODY2). Here we describe the biochemical characterization of five missense GK mutations: p.Ile130Thr, p.Asp205His, p.Gly223Ser, p.His416Arg and p.Ala449Thr. The enzymatic analysis of the corresponding bacterially expressed GST-GK mutant proteins show that all of them impair the kinetic characteristics of the enzyme. In keeping with their position within the protein, mutations p.Ile130Thr, p.Asp205His, p.Gly223Ser, and p.His416Arg strongly decrease the activity index of GK, affecting to one or more kinetic parameters. In contrast, the p.Ala449Thr mutation, which is located in the allosteric activator site, does not affect significantly the activity index of GK, but dramatically modifies the main kinetic parameters responsible for the function of this enzyme as a glucose sensor. The reduced Kcat of the mutant (3.21±0.28 s−1 vs 47.86±2.78 s−1) is balanced by an increased glucose affinity (S0.5 = 1.33±0.08 mM vs 7.86±0.09 mM) and loss of cooperativity for this substrate. We further studied the mechanism by which this mutation impaired GK kinetics by measuring the differential effects of several competitive inhibitors and one allosteric activator on the mutant protein. Our results suggest that this mutation alters the equilibrium between the conformational states of glucokinase and highlights the importance of the fine-tuning of GK and its role in glucose sensing.  相似文献   

4.
Maturity Onset Diabetes of the Young (MODY) is a heterogeneous group of genetic diseases characterized by a primary defect in insulin secretion and hyperglycemia, non-ketotic disease, monogenic autosomal dominant mode of inheritance, age at onset less than 25 years, and lack of auto-antibodies. It accounts for 2–5% of all cases of non-type 1 diabetes. MODY subtype 2 is caused by mutations in the glucokinase (GCK) gene. In this study, we sequenced the GCK gene of two volunteers with clinical diagnosis for MODY2 and we were able to identify four mutations including one for a premature stop codon (c.76C>T). Based on these results, we have developed a specific PCR-RFLP assay to detect this mutation and tested 122 related volunteers from the same family. This mutation in the GCK gene was detected in 21 additional subjects who also had the clinical features of this genetic disease. In conclusion, we identified new GCK gene mutations in a Brazilian family of Italian descendance, with one due to a premature stop codon located in the second exon of the gene. We also developed a specific assay that is fast, cheap and reliable to detect this mutation. Finally, we built a molecular ancestry model based on our results for the migration of individuals carrying this genetic mutation from Northern Italy to Brazil.  相似文献   

5.

Background

Maturity onset diabetes of the young type 2 (or GCK MODY) is a genetic form of diabetes mellitus provoked by mutations in the glucokinase gene (GCK).

Methodology/Principal Findings

We screened the GCK gene by direct sequencing in 30 patients from South Italy with suspected MODY. The mutation-induced structural alterations in the protein were analyzed by molecular modeling. The patients'' biochemical, clinical and anamnestic data were obtained. Mutations were detected in 16/30 patients (53%); 9 of the 12 mutations identified were novel (p.Glu70Asp, p.Phe123Leu, p.Asp132Asn, p.His137Asp, p.Gly162Asp, p.Thr168Ala, p.Arg392Ser, p.Glu290X, p.Gln106_Met107delinsLeu) and are in regions involved in structural rearrangements required for catalysis. The prevalence of mutation sites was higher in the small domain (7/12: ∼59%) than in the large (4/12: 33%) domain or in the connection (1/12: 8%) region of the protein. Mild diabetic phenotypes were detected in almost all patients [mean (SD) OGTT = 7.8 mMol/L (1.8)] and mean triglyceride levels were lower in mutated than in unmutated GCK patients (p = 0.04).

Conclusions

The prevalence of GCK MODY is high in southern Italy, and the GCK small domain is a hot spot for MODY mutations. Both the severity of the GCK mutation and the genetic background seem to play a relevant role in the GCK MODY phenotype. Indeed, a partial genotype-phenotype correlation was identified in related patients (3 pairs of siblings) but not in two unrelated children bearing the same mutation. Thus, the molecular approach allows the physician to confirm the diagnosis and to predict severity of the mutation.  相似文献   

6.
目的从单核苷酸多态性(single nucleotide polymorphism,SNP)水平探索小鼠生化标记基因Hbb多态性的形成机理。方法从DNA、RNA和蛋白多肽3个方面分析研究Hbb基因的多态性。结果基因组DNA中有4个SNP位点与Hbbd/s多态性相关:分别为外显子1中的2个T(G),外显子2中的G(A)和外显子3中的A(G);RNA水平有4个SNP位点与Hbbd/s多态性相关:分别对应为外显子1中的2个T(G),外显子2中的G(A)和外显子3中的A(G);蛋白多肽水平第13、20和139位氨基酸残基,即Cys/Gly、Ser/Ala和Thr/Ala间的转换与Hbb/s多态性相关,分别对应于外显子1中的2个T(G)和外显子3中的A(G)。结论第13、20和139位氨基酸残基,即Cys/Gly、Ser/Ala和Thr/Ala间的转换可能是Hbbd/s多态性的形成原因。  相似文献   

7.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

8.
Replacement of Tyr52 with Val or Ala in Lactobacillus pentosus d-lactate dehydrogenase induced high activity and preference for large aliphatic 2-ketoacids and phenylpyruvate. On the other hand, replacements with Arg, Thr or Asp severely reduced the enzyme activity, and the Tyr52Arg enzyme, the only one that exhibited significant enzyme activity, showed a similar substrate preference to the Tyr52Val and Tyr52Ala enzymes. Replacement of Phe299 with Gly or Ser greatly reduced the enzyme activity with less marked change in the substrate preference. Except for the Phe299Ser enzyme, these mutant enzymes with low catalytic activity consistently stimulated NADH oxidation in the absence of 2-ketoacid substrates. However, the double mutant enzymes, Tyr52Arg/Phe299Gly and Tyr52Thr/Phe299Ser, did not exhibit synergically decreased enzyme activity or the substrate-independent NADH oxidation, but rather increased activities toward certain 2-ketoacid substrates. These results indicate that the coordinative combination of amino acid residues at two positions is pivotal in both the functional recognition of the 2-ketoacid side chain and the protection of the bound NADH molecule from the solvent. Multiplicity in such combinations appears to provide d-LDH-related 2-hydroxyacid dehydrogenases with a great variety of catalytic and physiological functions.  相似文献   

9.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

10.
The central role of human pancreatic glucokinase in insulin secretion and, consequently, in maintenance of blood glucose levels has prompted investigation into identification of ATP-binding site residues and examination of ATP- and glucose-binding interactions. Because glucokinase has been resistant to crystallization, computer generated homology models were developed based on the X-ray crystal structure of the COOH-terminal domain of human brain hexokinase 1 bound to glucose and ADP or glucose and glucose-6-phosphate. Human pancreatic glucokinase mutants were designed based upon these models and on ATPase domain sequence conservation to identify and characterize potential glucose and ATP-binding sites. Specifically, mutants Asp78Ala, Thr82Ala, Lys90Ala, Lys102Ala, Gly227Ala, Thr228Ala, Ser336Leu, Ser411Ala, and Ser411Leu were constructed, expressed, purified, and kinetically characterized under steady-state conditions. Compared to their respective wild type controls, several mutants demonstrated dramatic changes in V(max), cooperativity of glucose binding and S(0.5) for ATP and glucose. Results suggest a role for Asp78, Thr82, Gly227, Thr228, and Ser336 in ATP binding and indicate these residues are essential for glucose phosphorylation by human pancreatic glucokinase.  相似文献   

11.
The mutations underlying Hurler syndrome (mucopolysaccharidosis IH) in Druze and Muslim Israeli Arab patients have been characterized. Four alleles were identified, using a combination of (a) PCR amplification of reverse-transcribed RNA or genomic DNA segments, (b) cycle sequencing of PCR products, and (c) restriction-enzyme analysis. One allele has two amino acid substitutions, Gly409-->Arg in exon 9 and Ter-->Cys in exon 14. The other three alleles have mutations in exon 2 (Tyr64-->Ter), exon 7 (Gln310-->Ter), or exon 8 (Thr366-->Pro). Transfection of mutagenized cDNAs into Cos-1 cells showed that two missense mutations, Thr366-->Pro and Ter-->Cys, permitted the expression of only trace amounts of alpha-L-iduronidase activity, whereas Gly409-->Arg permitted the expression of 60% as much enzyme as did the normal cDNA. The nonsense mutations were associated with abnormalities of RNA processing: (1) both a very low level of mRNA and skipping of exon 2 for Tyr64-->Ter and (2) utilization of a cryptic splice site for Gln310-->Ter. In all instances, the probands were found homozygous, and the parents heterozygous, for the mutant alleles, as anticipated from the consanguinity in each family. The two-mutation allele was identified in a family from Gaza; the other three alleles were found in seven families, five of them Druze, residing in a very small area of northern Israel. Since such clustering suggests a classic founder effect, the presence of three mutant alleles of the IDUA gene was unexpected.  相似文献   

12.
13.
14.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

15.
Generalised progressive retinal atrophy (gPRA) is a heterogeneous group of hereditary diseases causing degeneration of the retina in dogs and other animals. The genetic origin is unknown in most cases. We have screened the coding sequence of the ROM1 gene for disease causing mutations in Tibetan Terriers, Miniature Poodles, Dachshunds and Chesapeake Bay Retrievers by single strand conformation polymorphism analysis (SSCP). Two polymorphisms have been identified by sequencing, one in exon 1 in all examined breeds (position 210: G→A; Gly40Arg and position 252: G→T; Ala53Ser). Another polymorphism was present in exon 2 (position 1150: C→T and position 1195: C→T) segregating in Miniature Poodles. None of these polymorphisms were cosegregating with gPRA rendering a disease causing mutation in the ROM1 gene unlikely.  相似文献   

16.
The molecular basis of familial chylomicronemia (type I hyperlipoproteinemia), a rare autosomal recessive trait, was investigated in six unrelated individuals (five of Spanish descent and one of Northern European extraction). DNA amplification by polymerase chain reaction (PCR) followed by single strand conformation polymorphism (SSCP) analysis allowed rapid identification of the underlying mutations. Six different mutant alleles (three of which are previously undescribed) of the gene encoding lipoprotein lipase (LPL) were discovered in the five LPL-deficient patients. These included an 11 bp deletion in exon 2, and five missense mutations: Trp 86 Arg (exon 3), His 136 Arg (exon 4), Gly 188 Glu (exon 5), Ile 194 Thr (exon 5), and Ile 205 Ser (exon 5). The Trp 86 Arg mutation is the only known missense mutation in exon 3. The other missense mutations lie in the highly conserved "central homology region" in close proximity with the catalytic site of LPL. These and other previously reported missense mutations provide insight into structure/function relationships in the lipase family. The missense mutations point to the important role of particular highly conserved helices and beta-strands in proper folding of the LPL molecule, and of certain connecting loops in the catalytic process. A nonsense mutation (Arg 19 Term) in the gene encoding apolipoprotein C-II (apoC-II), the cofactor of LPL, was found to underlie chylomicronemia in the sixth patient who had normal LPL but was apoC-II-deficient.  相似文献   

17.
The biotin-containing tryptic peptides of pyruvate carboxylase from sheep, chicken, and turkey liver mitochondria have been isolated and their primary structures determined. The amino acid sequences of the 19 residue peptides from chicken and turkey are identical and share a common sequence of 14 residues around biocytin with the 24-residue peptide isolated from sheep. The sequences obtained were: residue 1 → 11 Avian: Gly Ala Pro Leu Val Leu Ser Ala Met Biocytin Met Sheep: Gly Gln Pro Leu Val Leu Ser Ala Met Biocytin Met residues 12 → 19 or 24 Avian: Glu Thr Val Val Thr Ala Pro Arg Sheep: Glu Thr Val Val Thr Ser Pro Val Thr Glu Gly Val Arg A sensitive radiochemical assay for biotin was developed based on the tight binding of biotin by avidin. The ability of zinc sulfate to precipitate, without dissociating, the avidin-biotin complex provided a convenient procedure for separating free and bound biotin, and hence, for back-titrating a standard amount of avidin with [14C]biotin.  相似文献   

18.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

19.
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.  相似文献   

20.
The small (116 amino acids) inner membrane protein MerT encoded by the transposon Tn501 has been overexpressed under the control of the bacteriophage T7 expression system. Random mutants of MerT were made and screened for loss of mercuric ion hypersensitivity. Several mutantmerT genes were selected and sequenced: Cys24Arg and Cys25Tyr mutations abolish mercury resistance, as do charge-substitution mutations in the first predicted transmembrane helix (Glyl4Arg, Glyl5Arg, Gly27Arg, Ala18Asp), and the termination mutations Trp66Ter and Cys82Ter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号