首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular basis of familial chylomicronemia: mutations in the lipoprotein lipase and apolipoprotein C-II genes.
Authors:M Reina  J D Brunzell  S S Deeb
Institution:Department of Medicine, University of Washington, Seattle 98195.
Abstract:The molecular basis of familial chylomicronemia (type I hyperlipoproteinemia), a rare autosomal recessive trait, was investigated in six unrelated individuals (five of Spanish descent and one of Northern European extraction). DNA amplification by polymerase chain reaction (PCR) followed by single strand conformation polymorphism (SSCP) analysis allowed rapid identification of the underlying mutations. Six different mutant alleles (three of which are previously undescribed) of the gene encoding lipoprotein lipase (LPL) were discovered in the five LPL-deficient patients. These included an 11 bp deletion in exon 2, and five missense mutations: Trp 86 Arg (exon 3), His 136 Arg (exon 4), Gly 188 Glu (exon 5), Ile 194 Thr (exon 5), and Ile 205 Ser (exon 5). The Trp 86 Arg mutation is the only known missense mutation in exon 3. The other missense mutations lie in the highly conserved "central homology region" in close proximity with the catalytic site of LPL. These and other previously reported missense mutations provide insight into structure/function relationships in the lipase family. The missense mutations point to the important role of particular highly conserved helices and beta-strands in proper folding of the LPL molecule, and of certain connecting loops in the catalytic process. A nonsense mutation (Arg 19 Term) in the gene encoding apolipoprotein C-II (apoC-II), the cofactor of LPL, was found to underlie chylomicronemia in the sixth patient who had normal LPL but was apoC-II-deficient.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号