首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In boreal forests of eastern Canada, wildfire has gradually been replaced by clearcut harvesting as the most extensive form of disturbance. Such a shift in disturbance may influence the chemical properties of the forest floor and its capacity to cycle and supply nutrients, with possible implications for forest productivity. We compared the effects of stem-only harvesting (SOH), whole-tree harvesting (WTH) and wildfire on the chemical composition of forest floor organic matter and nutrient availability for plants, 15–20 years after disturbance in boreal coniferous stands in Quebec (Canada). The forest floor on plots of wildfire origin was significantly enriched in aromatic forms of C with low solubility, whereas the forest floor from SOH and WTH plots was enriched with more soluble and labile C compounds. The forest floor of wildfire plots was also characterized by higher N concentration, but its high C:N and high concentration of 15N suggest that its N content could be recalcitrant and have a slow turnover rate. Total and exchangeable K were associated with easily degradable organic structures, whereas total and exchangeable Ca and Mg were positively correlated with the more recalcitrant forms of C. We suggest that the bulk of Ca and Mg cycling in the soil–plant system is inherited from the influx of exchangeable cations in the forest floor following disturbance. The buildup of Ca and Mg exchangeable reserves should be greater with wildfire than with harvesting, due to the sudden pulse of cation-rich ash and to the deposition of charred materials with high exchange capacity. This raises uncertainties about the long-term availability of Ca and Mg for plant uptake on harvested sites. In contrast, K availability should not be compromised by either harvesting or wildfire since it could be recycled rapidly through vegetation, litter and labile organic compounds.  相似文献   

2.
Vertebrate populations are influenced by environmental processes that operate at a range of spatial and temporal scales. Wildfire is a disturbance that can affect vertebrate populations across large spatial scales, although vertebrate responses are frequently influenced by processes operating at smaller spatial scales such as topography, interspecific interactions and regional history. Here, we investigate the effects of a broad-scale wildfire on lizard assemblages in a desert region. We predicted that a rainfall gradient within the region affected by the wildfire would influence lizard responses to the fire by encouraging post-fire succession to proceed more rapidly in high-rainfall areas, and would be enabled in turn by more rapid vegetation recovery. To test our prediction, we censused lizards, measured rainfall, undertook vegetation surveys and sampled invertebrate abundance across burnt and unburnt habitat ecotones within three regional areas situated along a gradient of long-term annual rainfall. Lizard diversity was not affected by fire or region and lizard abundance was influenced only by region. Lizard assemblage composition was also only influenced by region, but this did not relate to differences in rainfall or habitat as we had predicted. Regional differences in lizard assemblages related instead to food availability. The observed differences also likely reflected regional differences in the strength of biotic interactions with predators and changes in land use. Our study shows that assemblage responses to a disturbance were not uniform within a large desert region and instead were influenced by other environmental processes operating simultaneously at multiple temporal and spatial scales.  相似文献   

3.

Aims

Natural disturbances leave long-term legacies that vary among landscapes and ecosystem types, and which become integral parts of successional processes at a given location. As humans change land use, not only are immediate post-disturbance patterns altered, but the processes of recovery themselves are likely altered by the disturbance. We assessed whether short-term effects on soil and vegetation that distinguish wildfire from forest harvest persist over 60 years after disturbance in boreal black spruce forests, or post-disturbance processes of recovery promote convergence of the two disturbance types.

Methods

Using semi-variograms and Principal Coordinates of Neighbour Matrices, we formulated precise, a priori spatial hypotheses to discriminate spatial signatures following wildfire and forest harvest both over the short- (16–18 years) and long-term (62–98 years).

Results

Both over the short- and the long-term, wildfire generated a wide spectrum of responses in soil and vegetation properties at different spatial scales, while logging produced simpler patterns corresponding to the regular linear pattern of harvest trails and to pre-disturbance ericaceous shrub patches that persist between trails.

Conclusions

Disturbance by harvest simplified spatial patterns associated with soil and vegetation properties compared to patterns associated with natural disturbance by fire. The observed differences in these patterns between disturbance types persist for over 60 years. Ecological management strategies inspired by natural disturbances should aim to increase the complexity of patterns associated with harvest interventions.  相似文献   

4.

Background

Soil response and rehabilitation after wildfires are affected by natural environmental factors such as seasonality, and other time-dependent changes, such as vegetation recovery (e.g., % soil cover). These changes affect soil microbial-community activity. During summer 2006, almost 1,200 hectares (ha) of coniferous forest in northern Israel, including Byria Forest, burned.

Methods

Soil samples were collected seasonally from severely burned and unburned areas, on a time scale of 7?days to 4?years after wildfire. Chemical and microbial parameters of the forest soil system were examined.

Results

Results obtained show that increase in total soluble nitrogen (TSN) in burned areas may limit microbial activity during the first year after wildfire. Two years after wildfire, soil TSN levels in burned areas decreased to unburned levels after plant growth, allowing the microbial community to proliferate.

Conclusions

Wildfire had a significant impact on TSN, soil moisture (SM), and microbial nitrogen (MBN) compared to seasonality. These parameters are recommended for monitoring post-fire soil state. The direct effect of wildfire on soil constituents at the study site was stronger during the first 2–4?years. Indirect changes due to vegetation cover could have a longer effect on burned soil systems and should be further examined.  相似文献   

5.
Aims Studies of species distribution patterns traditionally have been conducted at a single scale, often overlooking species–environment relationships operating at finer or coarser scales. Testing diversity-related hypotheses at multiple scales requires a robust sampling design that is nested across scales. Our chief motivation in this study was to quantify the contributions of different predictors of herbaceous species richness at a range of local scales.Methods Here, we develop a hierarchically nested sampling design that is balanced across scales, in order to study the role of several environmental factors in determining herbaceous species distribution at various scales simultaneously. We focus on the impact of woody vegetation, a relatively unexplored factor, as well as that of soil and topography. Light detection and ranging (LiDAR) imaging enabled precise characterization of the 3D structure of the woody vegetation, while acoustic spectrophotometry allowed a particularly high-resolution mapping of soil CaCO 3 and organic matter contents.Important findings We found that woody vegetation was the dominant explanatory variable at all three scales (10, 100 and 1000 m 2), accounting for more than 60% of the total explained variance. In addition, we found that the species richness–environment relationship was scale dependent. Many studies that explicitly address the issue of scale do so by comparing local and regional scales. Our results show that efforts to conserve plant communities should take into account scale dependence when analyzing species richness–environment relationships, even at much finer resolutions than local vs. regional. In addition, conserving heterogeneity in woody vegetation structure at multiple scales is a key to conserving diverse herbaceous communities.  相似文献   

6.
At a broad (regional to global) spatial scale, tropical vegetation is controlled by climate; at the local scale, it is believed to be determined by interactions between disturbance, vegetation and local conditions (soil and topography) through feedback processes. It has recently been suggested that strong fire–vegetation feedback processes may not be needed to explain tree‐cover patterns in tropical ecosystems and that climate–fire determinism is an alternative possibility. This conclusion was based on the fact that it is possible to reproduce observed patterns in tropical regions (e.g. a trimodal frequency distribution of tree cover) using a simple model that does not explicitly incorporate fire–vegetation feedback processes. We argue that these two mechanisms (feedbacks versus fire–climate control) operate at different spatial and temporal scales; it is not possible to evaluate the role of a process acting at fine scales (e.g. fire–vegetation feedbacks) using a model designed to reproduce regional‐scale pattern (scale mismatch). While the distributions of forest and savannas are partially determined by climate, many studies are providing evidence that the most parsimonious explanation for their environmental overlaps is the existence of feedback processes. Climate is unlikely to be an alternative to feedback processes; rather, climate and fire–vegetation feedbacks are complementary processes at different spatial and temporal scales.  相似文献   

7.
林火干扰对森林生态系统土壤有机碳的影响研究进展   总被引:4,自引:0,他引:4  
林火干扰是森林生态系统特殊而重要的生态因子,可改变生态系统的养分循环与能量传递。研究林火干扰对森林生态系统土壤有机碳的影响,有助于理解森林生态系统中土壤碳固持和碳循环过程,为制定科学合理的旨在减缓全球变化的林火管理策略具有重要意义。从4个方面阐述了林火干扰对森林生态系统土壤有机碳的影响及内在机制:分别从大尺度和小尺度两个方面阐述了林火干扰对土壤有机碳的影响及对森林生态系统碳循环与碳平衡的作用机制;探讨了不同林火干扰类型和林火干扰强度下,土壤活性有机碳对林火干扰的响应机制;阐明了林火干扰对土壤惰性有机碳的影响及作用机制;论述了林火干扰主要通过改变土壤有机碳的输入和输出过程进而影响土壤有机碳的稳定性及内在机制。最后提出了提高林火干扰对森林生态系统土壤有机碳影响定量化研究的4种路径选择:(1)全面比较研究不同林火干扰类型对土壤有机碳循环及其碳素再分配过程的功能特征;(2)进一步阐明林火干扰通过改变植被结构进而影响土壤生物群落结构,剖析土壤碳库循环的内在机制;(3)完善不同时空尺度下林火干扰对森林生态系统土壤碳库周转过程的定量化研究;(4)加强不同林火干扰类型土壤碳库稳定性差异的研究。  相似文献   

8.
We elucidate spatial controls of wind and fire disturbance across northern Wisconsin (USA), where climatic and topographic gradients are not strong, using data from the original US Public Land Survey (PLS) notes. These records contain information on the location and extent of heavy windthrows and stand-replacing fires prior to Euro-American settlement. The spatial patterns of windthrow and fire were spatially clustered at all scales in this historical environment, with stronger associations at local than regional scales. Logistic regression shows environmental variables to have a strong influence on this pattern. In the case of heavy windthrow, environmental drivers of disturbance pattern are fairly consistent across the region. The effects of climate and vegetation are predominant at all scales, but effects are often indirect, with strong interactions between them. Interactions between these two drivers and soil characteristics are also sometimes present. In contrast, models of stand-replacing fire show simple and direct control within and across fire-prone landscapes of historical northern Wisconsin, with climate and physiography as the main factors explaining the distribution of fire disturbance. This simple and direct control is lost at the regional scale, where climate, physiographic, soil, and vegetation variables, along with interactions between them, are significant factors. Contrary to other regions, the topographic effects are generally not important in predicting either wind or fire disturbance. Our work suggests that, in landscapes that lack strong environmental patterning, climate maintains its role as a primary driver of these natural disturbances, but topography is replaced by interactions and feedbacks with other forms of environmental heterogeneity.  相似文献   

9.
全球变化背景下野火研究进展   总被引:5,自引:2,他引:3  
野火是森林和多种植被生态系统面临的最重要自然干扰,也是一种重要的自然灾害;而人类活动已在全球范围内显著影响了野火的发生与分布,因此野火成为全球变化及其环境影响研究的关键议题之一。本文基于国际野火研究的文献搜索和统计分析,从野火的观测-评估-预警技术、野火时空格局研究、气候变化和人类活动对野火的影响、野火的环境-生态-进化效应等方面入手,综述了自21世纪以来的国际野火研究进展。概括起来,遥感技术的快速发展,推动了野火观测的时空分辨率不断提高,对野火时空格局的刻画从单一因子向多重指标的火烧体系评估转变。气候变化在某些区域已经显著影响了野火的发生频率,预计随着全球变暖野火风险将进一步加大,并且极端大火的发生机制和生态影响越来越受到关注。人类活动一方面通过增加火源提高了野火频率,另一方面又通过提高生态系统管理的强度、扑救火灾以及降低可燃物的连通性抑制了野火的发生。植被在长期演化过程中形成了一系列适应火的功能机制,这些功能属性影响着生态系统对野火的响应,并对火后生态恢复和重建具有科学指导价值。未来野火研究将向跨时空尺度、观测和模拟深度融合、典型机制和大尺度效应相结合的方向发展。  相似文献   

10.
Improved quantification of the factors controlling soil organic matter (SOM) stabilization at continental to global scales is needed to inform projections of the largest actively cycling terrestrial carbon pool on Earth, and its response to environmental change. Biogeochemical models rely almost exclusively on clay content to modify rates of SOM turnover and fluxes of climate-active CO2 to the atmosphere. Emerging conceptual understanding, however, suggests other soil physicochemical properties may predict SOM stabilization better than clay content. We addressed this discrepancy by synthesizing data from over 5,500 soil profiles spanning continental scale environmental gradients. Here, we demonstrate that other physicochemical parameters are much stronger predictors of SOM content, with clay content having relatively little explanatory power. We show that exchangeable calcium strongly predicted SOM content in water-limited, alkaline soils, whereas with increasing moisture availability and acidity, iron- and aluminum-oxyhydroxides emerged as better predictors, demonstrating that the relative importance of SOM stabilization mechanisms scales with climate and acidity. These results highlight the urgent need to modify biogeochemical models to better reflect the role of soil physicochemical properties in SOM cycling.  相似文献   

11.
There is a lack of understanding on factors influencing the occurrence of high species heterogeneity at fine scale in the Brazilian cerrado. Soil is a major determinant of vegetation in the Brazilian cerrado and an important candidate to influence species distribution at fine scales, since soil features vary at very small distances, whereas many environmental variables are relatively homogeneous at such scale. We tested plant-soil relationships at fine scales in a cerrado site. We placed 100 contiguous 25 m2 plots, where we identified all woody individuals and measured several soil features. We did partial redundancy analysis, controlling for spatial autocorrelation, to test for relationships between soil features and floristic composition. We also did multiple regressions or spatial autoregressive models to test for relationships between soil features and: (1) the abundance of the five most common species, (2) total abundance, (3) richness, (4) evenness, and (5) diversity. We found weak relationships between soil and floristic composition, richness, and total abundance, which, coupled with also weak relationship found in another study with plant available water, indicate there is no major environmental variable influencing vegetation at fine scales, but several of them interacting. Organic matter was positively related with the abundance of Myrsine umbellata and was negatively related to evenness. Although a causal relationship cannot be inferred with certainty, the dominance of Myrsine umbellata seems to be related to a positive feedback with soil.  相似文献   

12.
Tropical ecosystems are under increasing pressure from land‐use change and deforestation. Changes in tropical forest cover are expected to affect carbon and water cycling with important implications for climatic stability at global scales. A major roadblock for predicting how tropical deforestation affects climate is the lack of baseline conditions (i.e., prior to human disturbance) of forest–savanna dynamics. To address this limitation, we developed a long‐term analysis of forest and savanna distribution across the Amazon–Cerrado transition of central Brazil. We used soil organic carbon isotope ratios as a proxy for changes in woody vegetation cover over time in response to fluctuations in precipitation inferred from speleothem oxygen and strontium stable isotope records. Based on stable isotope signatures and radiocarbon activity of organic matter in soil profiles, we quantified the magnitude and direction of changes in forest and savanna ecosystem cover. Using changes in tree cover measured in 83 different locations for forests and savannas, we developed interpolation maps to assess the coherence of regional changes in vegetation. Our analysis reveals a broad pattern of woody vegetation expansion into savannas and densification within forests and savannas for at least the past ~1,600 years. The rates of vegetation change varied significantly among sampling locations possibly due to variation in local environmental factors that constrain primary productivity. The few instances in which tree cover declined (7.7% of all sampled profiles) were associated with savannas under dry conditions. Our results suggest a regional increase in moisture and expansion of woody vegetation prior to modern deforestation, which could help inform conservation and management efforts for climate change mitigation. We discuss the possible mechanisms driving forest expansion and densification of savannas directly (i.e., increasing precipitation) and indirectly (e.g., decreasing disturbance) and suggest future research directions that have the potential to improve climate and ecosystem models.  相似文献   

13.
土壤水分时空变异及其与环境因子的关系   总被引:35,自引:2,他引:33  
土壤水分的时空变异是指在一定的景观内,不同时间、地点和土层的土壤水分特征存在明显的差异性和多样性。土壤水分时空变异是由多重尺度上的土地利用(植被)、气象(降雨)、地形、土壤、人为活动等诸因子综合作用的结果,但就其某一具体地区而言存在着重点尺度和主控因子,土壤水分时空变异的重点尺度与主控因子的时空关系因时间、空间和尺度而异。本文综述了土壤水分(尤其是黄土高原地区)的时空变异与其环境因子时空关系的研究进展,并提出了广眨开展多重时空尺度上土壤水分的时空变异与其诸因素的时空关系,研究土壤水分时空变异性的尺度转换规律,确定重点尺度及其相应的主控因子。  相似文献   

14.
草地生态系统中土壤氮素矿化影响因素的研究进展   总被引:41,自引:5,他引:36  
氮素是各种植物生长和发育所需的大量营养元素之一,也是牧草从土壤吸收最多的矿质元素.土壤中的氮大部分以有机态形式存在,而植物可以直接吸收利用的是无机态氮.这些有机态氮在土壤动物和微生物的作用下。由难以被植物直接吸收利用的有机态转化为可被植物直接吸收利用的无机态的过程就是土壤氮的矿化.氮素矿化受多种因子的影响,这些因子可以归结为生物因子和非生物因子.生物因子包括:土壤动物、土壤微生物和植物种类.土壤动物可以促进土壤有机质的矿化;土壤微生物种类、结构及功能与氮的分解、矿化有密切的关系;不同的植物种类对土壤氮素的矿化作用是不相同的,一般来说。有豆科植物生长的土壤比其它种类土氮素矿化的作用大.非生物因素一般可以分为环境因子和人类活动干扰.环境因子中土壤温度和含水量对土壤氮素矿化的影响是国内外众多科学家研究的方向.尽管如此,在此方面的研究还没有取得一致意见,仍然需要进行这方面的研究,而在其他诸如:不同的土壤质地与土壤类型方面,研究报道的结论也很不一致,草地生态系统中人类活动对土壤氮素矿化的影响主要包括,不同强度的放牧,割草以及施肥、火烧强度等.非生物因子对氮素矿化的影响非常直接和明显,尤其是人类活动.本文综述了近年来影响草地生态系统土壤氮素矿化有关因素的一些进展.  相似文献   

15.
Question: Species composition during secondary succession is influenced by a number of factors, such as soil moisture, disturbance timing and surrounding vegetation. How does the importance of these factors change over the course of succession? Methods: We set up a full‐factorial block design using molehills differing in (a) disturbance timing, (b) soil moisture and (c) composition of surrounding vegetation, and recorded the cover of all species present on the molehills over 3 years. M1ultiple regression analyses on the dissimilarity matrices of community composition and of environmental factors were applied for each of five age classes of molehills to estimate the effect of the single factors at different stages of succession. Results: The timing of disturbance did not significantly affect community composition at any stage of succession. In contrast, the effects of soil moisture and surrounding vegetation changed significantly over time, with moisture being more important at earlier stages of succession and surrounding vegetation at later stages. Conclusion: The importance of environmental factors for species composition change significantly over the course of secondary succession. Instead of aggregating the effects of environmental factors over time, future studies should consider underlying dynamics of recolonization more comprehensively.  相似文献   

16.
The influence of biotic interactions on soil biodiversity   总被引:13,自引:1,他引:12  
Wardle DA 《Ecology letters》2006,9(7):870-886
Belowground communities usually support a much greater diversity of organisms than do corresponding aboveground ones, and while the factors that regulate their diversity are far less well understood, a growing number of recent studies have presented data relevant to understanding how these factors operate. This review considers how biotic factors influence community diversity within major groups of soil organisms across a broad spectrum of spatial scales, and addresses the mechanisms involved. At the most local scale, soil biodiversity may potentially be affected by interactions within trophic levels or by direct trophic interactions. Within the soil, larger bodied invertebrates can also influence diversity of smaller sized organisms by promoting dispersal and through modification of the soil habitat. At larger scales, individual plant species effects, vegetation composition, plant species diversity, mixing of plant litter types, and aboveground trophic interactions, all impact on soil biodiversity. Further, at the landscape scale, soil diversity also responds to vegetation change and succession. This review also considers how a conceptual understanding of the biotic drivers of soil biodiversity may assist our knowledge of key topics in community and ecosystem ecology, such as aboveground–belowground interactions, and the relationship between biodiversity and ecosystem functioning. It is concluded that an improved understanding of what drives the diversity of life in the soil, incorporated within appropriate conceptual frameworks, should significantly aid our understanding of the structure and functioning of terrestrial communities.  相似文献   

17.
Species distribution models (SDMs) that rely on regional‐scale environmental variables will play a key role in forecasting species occurrence in the face of climate change. However, in the Anthropocene, a number of local‐scale anthropogenic variables, including wildfire history, land‐use change, invasive species, and ecological restoration practices can override regional‐scale variables to drive patterns of species distribution. Incorporating these human‐induced factors into SDMs remains a major research challenge, in part because spatial variability in these factors occurs at fine scales, rendering prediction over regional extents problematic. Here, we used big sagebrush (Artemisia tridentata Nutt.) as a model species to explore whether including human‐induced factors improves the fit of the SDM. We applied a Bayesian hurdle spatial approach using 21,753 data points of field‐sampled vegetation obtained from the LANDFIRE program to model sagebrush occurrence and cover by incorporating fire history metrics and restoration treatments from 1980 to 2015 throughout the Great Basin of North America. Models including fire attributes and restoration treatments performed better than those including only climate and topographic variables. Number of fires and fire occurrence had the strongest relative effects on big sagebrush occurrence and cover, respectively. The models predicted that the probability of big sagebrush occurrence decreases by 1.2% (95% CI: ?6.9%, 0.6%) when one fire occurs and cover decreases by 44.7% (95% CI: ?47.9%, ?41.3%) if at least one fire occurred over the 36 year period of record. Restoration practices increased the probability of big sagebrush occurrence but had minimal effect on cover. Our results demonstrate the potential value of including disturbance and land management along with climate in models to predict species distributions. As an increasing number of datasets representing land‐use history become available, we anticipate that our modeling framework will have broad relevance across a range of biomes and species.  相似文献   

18.
Abstract The impacts of prescribed burning and timber harvesting on species diversity have been the subject of considerable debate. The temporal and spatial scale of these disturbances often presents major limitations to many studies. Here we present the medium‐term results of a planned long‐term study examining the impacts of logging and prescribed burning on the understorey floristic richness in shrubby dry sclerophyll forest in the south‐east of New South Wales, Australia. Generalized estimating equations were used to model the effect of environmental factors and disturbance variables on species richness at the coupe (~30 ha) and plot (~0.01 ha) scale. At the plot scale, fire effects on separate components of the vegetation were broadly consistent with other studies, with frequent fire resulting in a relative increase of species richness for species less than 1 m in height and a decline of larger species taller than this height. At the coupe scale, there was no decline in richness of larger shrub species, possibly owing to the spatial heterogeneity of fire frequency at this scale. Logging resulted in significantly greater species richness in the shrub layer, but had no significant effect on species richness in the ground layer. During the study period, there was a general decline in plant species richness at both coupe and plot scales which occurred independently of imposed management regimes. This is thought to be related to a natural succession following wildfire, and may be due to the absence of high‐intensity fire in the study area since 1973, or to an effect related to season of burning.  相似文献   

19.
Biological diversities of multiple kingdoms potentially respond in similar ways to environmental changes. However, studies either compare details of microbial diversity across general vegetation or land use classes or relate details of plant community diversity with the extent of microbially governed soil processes, via physiological profiling. Here, we test the hypothesis of shared responses of plant and rhizosphere bacterial, fungal and metazoan biodiversities (especially across‐habitat β‐diversity patterns) along a disturbance gradient encompassing grazed to abandoned Alpine pasture, on acid soil in the European Central Alps. Rhizosphere biological diversity was inferred from eDNA fractions specific to bacteria, fungi and metazoans from contrasting plant habitats indicative of different disturbance levels. We found that soil β‐diversity patterns were weakly correlated with plant diversity measures and similarly ordinated along an evident edaphic (pH, C:N, assimilable P) and disturbance gradient but, contrary to our hypothesis, did not demonstrate the same diversity patterns. While plant communities were well separated along the disturbance gradient, correlating with fungal diversity, the majority of bacterial taxa were shared between disturbance levels (75% of bacteria were ubiquitous, cf. 29% plant species). Metazoa exhibited an intermediate response, with communities at the lowest levels of disturbance partially overlapping. Thus, plant and soil biological diversities were only loosely dependent and did not exhibit strictly linked environmental responses. This probably reflects the different spatial scales of organisms (and their habitats) and capacity to invest resources in persistent multicellular tissues, suggesting that vegetation responses to environmental change are unreliable indicators of below‐ground biodiversity responses.  相似文献   

20.
 气候变化对陆地生态系统的影响及其反馈是全球变化研究的焦点之一。本文利用1951~2000年的气温、降水等气候资料、1982~2000年的NOAA/AVHRR遥感数据和1951~2000年北京春季物候的代表性指标——山桃(Prunus davidiana)始花的物候数据,分析了在年际和年内时间尺度上北京地区各气候参量与植被变化之间的关系。结果显示:植物生长与温度之间的关系远比其与降水之间的关系密切;各气候参量和植被生长状况之间的关系因时间尺度而不同。1)月际水平上,具有显著生态学意义的气候指标对植被生长状况的影响更明显。2)温度与NDVI指标的相互作用最大为零时滞:年际水平上,影响时效约为1年;月际水平上,约为1个月。3)植物物候期与温度之间的关系远比其与降水之间的关系密切。年际尺度上,气候参量和植物物候期的相互作用是同时的,其中气温的影响时效为2年;月际尺度上,实际温度和植物物候期的相互作用时效约为1个月。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号