首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Disentangling the relative effects of local and regional processes on local species richness (LSR) is critical for understanding the mechanisms underlying large‐scale biodiversity patterns. In this study we used 1098 forest plots from 41 mountains across China, together with regional flora data, to examine the relative influence of local climate vs regional species richness (RSR) on LSR patterns. Both RSR and LSR for woody species and all species combined decreased with increasing latitude, while richness of herbaceous species exhibited a hump‐shaped pattern. The major climatic orrelates of species richness differed across spatial scales. At the regional scale, winter coldness was the best predictor of RSR patterns for both woody and herbaceous species. At the local scale, however, productivity‐related climatic indices were the best predictors of LSR patterns. Local climate and RSR together explained 48, 54 and 23% of the variation in LSR, for overall, woody and herbaceous species, respectively. Both local climate and RSR independently influenced LSR in addition to their joint effects, suggesting that LSR patterns were shaped by local and regional processes together. Local climate and RSR affected LSR of woody species mainly through their joint effects, while there were few shared effects of climate and RSR on the LSR of herbaceous species. Our findings suggest that while geographic RSR patterns are mainly determined by winter coldness, the ecological processes driven by productivity may be critical to the filtering of regional flora into local communities. We also demonstrate that biogeographic region is not a good surrogate for regional richness, at least for our dataset. Consequently, whether biogeographic region can effectively reflect regional effects needs further examination.  相似文献   

2.
Ecologists frequently regress local species richness on regional species richness to draw inferences about the processes that structure local communities. A more promising approach is to quantify the contributions of alpha and beta diversity to regional diversity (the ABR approach) using additive partitioning. We applied this approach to four local–regional relationships based on data from 583 arboreal beetle species collected in a hierarchically nested sampling design. All four local–regional relationships exhibited proportional sampling, yet the ABR approach indicated that each was produced by a different combination of alpha and beta richness. Using the results of the ABR analysis, we also analysed the scale dependence of alpha and beta using a hierarchical linear model. Alpha diversity contributed less than expected to regional diversity at the finest spatial scale and more than expected at the broadest spatial scale. A switch in relative dominance from beta to alpha diversity with increasing spatial scale suggested scale transitions in ecological processes. Analysing the scale dependence of diversity components using the ABR approach furthers our understanding about the additivity of species diversity in biological communities.  相似文献   

3.
Widely occurred woody encroachment in grass‐dominated ecosystems has the potential to influence soil organic carbon (SOC) and total nitrogen (TN) pools at local, regional, and global scales. Evaluation of this potential requires assessment of both pool sizes and their spatial patterns. We quantified SOC and TN, their relationships with soil and vegetation attributes, and their spatial scaling along a catena (hill‐slope) gradient in the southern Great Plains, USA where woody cover has increased substantially over the past 100 years. Quadrat variance analysis revealed spatial variation in SOC and TN at two scales. The larger scale variation (40–45 m) was approximately the distance between centers of woody plant communities and their adjoining herbaceous patches. The smaller scale variation (10 m) appeared to reflect the local influence of shrubs on SOC and TN. Litter, root biomass, shrub, and tree basal area (a proxy for plant age) exhibited not only similar spatial scales, but also strong correlations with SOC and TN, suggesting invasive woody plants alter both the storage and spatial scaling of SOC and TN through ecological processes related primarily to root turnover and, to a lesser extent litter production, as mediated by time of occupancy. Forb and grass biomass were not significantly correlated with SOC and TN suggesting that changes in herbaceous vegetation have not been the driving force for the observed changes in SOC and TN. Because SOC and TN varied at two scales, it would be inappropriate to estimate SOC and TN pools at broad scales by extrapolating from point sampling at fine scales. Sampling designs that capture variation at multiple scales are required to estimate SOC and TN pools at broader scales. Knowledge of spatial scaling and correlations will be necessary to design field sampling protocols to quantify the biogeochemical consequences of woody plant encroachment at broad scales.  相似文献   

4.
Ecologists have long recognized that factors operating at both local and regional scales influence whether a given species occurs in an ecological community. The relative roles of variables manifested at local and regional scales on community structure, however, remain an unexplored issue for many faunas. To address this question, we compared the community composition and species diversity of forest Lepidoptera between (i) large forest tracts in historically glaciated and unglaciated regions of the eastern deciduous forest in North America, and (ii) large and small forest patches within a highly fragmented forest landscape. Specifically, we used seasonally stratified sampling to test whether regional and local differences in moth communities were related to variation in stand structure and floristic composition. At the local scale, we tested three alternative hypotheses describing the effects of patch size on moth species richness: species impoverishment, species replacement, or species supplementation. Cluster analysis revealed significant compositional differences in moth communities sampled between (i) early and late seasons, (ii) glaciated and unglaciated forest eco‐regions, and (iii) large and small forest patches. Canonical correspondence analysis suggested that floristic variation at regional scales had a greater role in determining moth community composition than local vegetation or patch‐size effects. Species richness was higher in the glaciated North Central Tillplain, and was attributable to a more diverse herbaceous feeding moth assemblage. Finally, we found evidence that both species impoverishment and species replacement processes structure the moth fauna of small woodlots; the richness of moths with larvae that feed on woody plants decreased with patch area, but herbaceous feeding species increased in diversity in smaller patches. Thus, our results suggest that local and regional differences in moth community structure are mediated by differences in host‐plant resources attributable to regional biogeographic history and local differences in patch size. Because community composition appeared to be more sensitive to environmental variation than species richness, we suggest that monitoring lepidopteran species diversity in forests will not detect significant changes in species composition due to environmental change.  相似文献   

5.
Understanding how species diversity is related to sampling area and spatial scale is central to ecology and biogeography. Small islands and small sampling units support fewer species than larger ones. However, the factors influencing species richness may not be consistent across scales. Richness at local scales is primarily affected by small‐scale environmental factors, stochasticity and the richness at the island scale. Richness at whole‐island scale, however, is usually strongly related to island area, isolation and habitat diversity. Despite these contrasting drivers at local and island scales, island species–area relationships (SARs) are often constructed based on richness sampled at the local scale. Whether local scale samples adequately predict richness at the island scale and how local scale samples influence the island SAR remains poorly understood. We investigated the effects of different sampling scales on the SAR of trees on 60 small islands in the Raja Ampat archipelago (Indonesia) using standardised transects and a hierarchically nested sampling design. We compared species richness at different grain sizes ranging from single (sub)transects to whole islands and tested whether the shape of the SAR changed with sampling scale. We then determined the importance of island area, isolation, shape and habitat quality at each scale on species richness. We found strong support for scale dependency of the SAR. The SAR changed from exponential shape at local sampling scales to sigmoidal shape at the island scale indicating variation of species richness independent of area for small islands and hence the presence of a small‐island effect. Island area was the most important variable explaining species richness at all scales, but habitat quality was also important at local scales. We conclude that the SAR and drivers of species richness are influenced by sampling scale, and that the sampling design for assessing the island SARs therefore requires careful consideration.  相似文献   

6.

Background

The palm family occurs in all tropical and sub-tropical regions of the world. Palms are of high ecological and economical importance, and display complex spatial patterns of species distributions and diversity.

Scope

This review summarizes empirical evidence for factors that determine palm species distributions, community composition and species richness such as the abiotic environment (climate, soil chemistry, hydrology and topography), the biotic environment (vegetation structure and species interactions) and dispersal. The importance of contemporary vs. historical impacts of these factors and the scale at which they function is discussed. Finally a hierarchical scale framework is developed to guide predictor selection for future studies.

Conclusions

Determinants of palm distributions, composition and richness vary with spatial scale. For species distributions, climate appears to be important at landscape and broader scales, soil, topography and vegetation at landscape and local scales, hydrology at local scales, and dispersal at all scales. For community composition, soil appears important at regional and finer scales, hydrology, topography and vegetation at landscape and local scales, and dispersal again at all scales. For species richness, climate and dispersal appear to be important at continental to global scales, soil at landscape and broader scales, and topography at landscape and finer scales. Some scale–predictor combinations have not been studied or deserve further attention, e.g. climate on regional to finer scales, and hydrology and topography on landscape and broader scales. The importance of biotic interactions – apart from general vegetation structure effects – for the geographic ecology of palms is generally underexplored. Future studies should target scale–predictor combinations and geographic domains not studied yet. To avoid biased inference, one should ideally include at least all predictors previously found important at the spatial scale of investigation.  相似文献   

7.
It is widely accepted that species diversity is contingent upon the spatial scale used to analyze patterns and processes. Recent studies using coarse sampling grains over large extents have contributed much to our understanding of factors driving global diversity patterns. This advance is largely unmatched on the level of local to landscape scales despite being critical for our understanding of functional relationships across spatial scales. In our study on West African bat assemblages we employed a spatially explicit and nested design covering local to regional scales. Specifically, we analyzed diversity patterns in two contrasting, largely undisturbed landscapes, comprising a rainforest area and a forest‐savanna mosaic in Ivory Coast, West Africa. We employed additive partitioning, rarefaction, and species richness estimation to show that bat diversity increased significantly with habitat heterogeneity on the landscape scale through the effects of beta diversity. Within the extent of our study areas, habitat type rather than geographic distance explained assemblage composition across spatial scales. Null models showed structure of functional groups to be partly filtered on local scales through the effects of vegetation density while on the landscape scale both assemblages represented random draws from regional species pools. We present a mixture model that combines the effects of habitat heterogeneity and complexity on species richness along a biome transect, predicting a unimodal rather than a monotonic relationship with environmental variables related to water. The bat assemblages of our study by far exceed previous figures of species richness in Africa, and refute the notion of low species richness of Afrotropical bat assemblages, which appears to be based largely on sampling biases. Biome transitions should receive increased attention in conservation strategies aiming at the maintenance of ecological and evolutionary processes.  相似文献   

8.
以太白山牛皮桦林林隙内草本植物总数为区域物种丰富度,分别采用0.25m2和1m2样方重复抽样的丰富度平均值为局域物种丰富度,来探讨区域物种多样性变异对局域多样性的影响。结果显示:(1)0.25m2和1m2局域物种丰富度与区域物种丰富度显著相关(r=0.791和r=0.861),且随区域物种丰富度的增加而增加;同时,林隙面积也能显著增加局域和区域物种丰富度。(2)控制林隙面积变量的多元回归分析显示,0.25m2和1m2局域物种丰富度与区域物种丰富度存在显著线性回归关系(R2=0.642和R2=0.743);方差分离分析显示,林隙面积仅能解释0.25m2和1m2局域物种丰富度变异的4.0%和4.4%,而区域物种丰富度能解释25.8%和35.3%。研究表明,区域物种丰富度变异在一定程度上决定着局域物种丰富度的组成。  相似文献   

9.
Woody and herbaceous plants are differentially influenced by the environment, with non‐random association with the evolutionary history of these taxa and their traits. In general, woody plants may have climate‐dominated niches, whereas herbaceous plants may have edaphic and microhabitat‐dominated niches. Here, we explored and mapped how the patterns of species richness, phylogenetic diversity, and structures of total, woody, and herbaceous plants vary across the geographical regions and with respect to 12 environmental variables across Ethiopia and Eritrea, in the horn of Africa. Our result showed that both richness and phylogenetic diversity had almost the same tendency in total woody and herbaceous plants, in which they showed positive relationships with annual precipitation, precipitation annual range of climate, all the three variables of topography, and total nitrogen and total extractable phosphorus of soil, and negative relations with mean annual temperature. Compared with the total and herbaceous plants, the environmental variables explained greater variance both in the standardized effect size phylogenetic diversity and net relatedness index for woody plants. Our results highlight that, on the large spatial scales, the environmental filtering process has played a greater role in structuring species into local communities for woody plants than for herbaceous plants.  相似文献   

10.
Aim  To study how differences in species richness patterns of woody and herbaceous plants may be influenced by ecological and evolutionary factors. Unimodal species richness–productivity relationships (SRPRs) have been of interest to ecologists since they were first described three decades ago for British herbaceous vegetation by J. P. Grime. The decrease in richness at high productivity may be due to competitive exclusion of subordinate species, or diverse factors related to evolution and dispersal. Unimodal SRPRs are most often reported for plants, but there are exceptions. For example, unimodal SRPRs are common in the temperate zone but not in the tropics. Similarly, woody species and forest communities in the Northern Hemisphere do not tend to show unimodal SRPRs.
Location  Global.
Methods  We used data from the literature to test whether a unimodal SRPR applies to woody species and forest communities on a global scale. We explored whether the shape of SRPRs may be related to the lack of clonality in woody species (which may prevent their being competitively superior), or the legacy of evolutionary history (most temperate woody species originate from tropical lineages, and due to niche conservatism they may still demonstrate 'tropical patterns'). We used case studies that reported the names of the dominant or most abundant species for productive sites.
Results  Woody species were indeed less clonal than herbaceous species. Both clonality and the temperate evolutionary background of dominating species were associated with unimodality in SRPRs, with woodiness modifying the clonality effect.
Main conclusions  The unimodal SRPR has been common in the ecological literature because most such studies originate from temperate herbaceous communities with many clonal species. Consequently, both evolutionary and ecological factors may influence species richness patterns.  相似文献   

11.
Planning riparian restoration to resemble historic reference conditions requires an understanding of both local and regional patterns of plant species diversity. Thus, understanding species distributions at multiple spatial scales is essential to improve restoration planting success, to enhance long‐term ecosystem functioning, and to match restoration planting designs with historic biogeographic distributions. To inform restoration planning, we examined the biogeographic patterns of riparian plant diversity at local and regional scales within a major western U.S.A. drainage, California's Sacramento—San Joaquin Valley. We analyzed patterns of species richness and complementarity (β‐diversity) across two scales: the watershed scale and the floodplain scale. At the watershed scale, spatial patterns of native riparian richness were driven by herbaceous species, whereas woody species were largely cosmopolitan across the nearly 38,000 km2 study area. At the floodplain scale, riparian floras reflected species richness and dissimilarity patterns related to hydrological and disturbance‐driven successional sequences. These findings reinforce the importance of concurrently evaluating both local and regional processes that promote species diversity and distribution of native riparian flora. Furthermore, as restoration activities become more prevalent across the landscape, strategies for restoration outcomes should emulate the patterns of species diversity and biogeographic distributions found at regional scales.  相似文献   

12.
The arthropod species richness of pastures in three Azorean islands was used to examine the relationship between local and regional species richness over two years. Two groups of arthropods, spiders and sucking insects, representing two functionally different but common groups of pasture invertebrates were investigated. The local-regional species richness relationship was assessed over relatively fine scales: quadrats (= local scale) and within pastures (= regional scale). Mean plot species richness was used as a measure of local species richness (= alpha diversity) and regional species richness was estimated at the pasture level (= gamma diversity) with the 'first-order-Jackknife' estimator. Three related issues were addressed: (i). the role of estimated regional species richness and variables operating at the local scale (vegetation structure and diversity) in determining local species richness; (ii). quantification of the relative contributions of alpha and beta diversity to regional diversity using additive partitioning; and (iii). the occurrence of consistent patterns in different years by analysing independently between-year data. Species assemblages of spiders were saturated at the local scale (similar local species richness and increasing beta-diversity in richer regions) and were more dependent on vegetational structure than regional species richness. Sucking insect herbivores, by contrast, exhibited a linear relationship between local and regional species richness, consistent with the proportional sampling model. The patterns were consistent between years. These results imply that for spiders local processes are important, with assemblages in a particular patch being constrained by habitat structure. In contrast, for sucking insects, local processes may be insignificant in structuring communities.  相似文献   

13.
Aim In terrestrial plant communities, the relationship between native species diversity and exotic success is typically scale‐dependent. It is often proposed that within local neighbourhoods, high native diversity limits resources, thereby inhibiting exotic success. However, environmental variation that manifests over space or time can create positive correlations between native diversity and exotic success at larger scales. In marine habitats, there have been few multi‐scale surveys of this pattern, so it is unclear how diversity, resource limitation and the environment influence the success of exotic species in these systems. Location Washington, USA. Methods I analysed nested spatial and temporal surveys of fouling communities, which are assemblages of sessile marine invertebrates, to test whether the relationships between native richness, resource availability and exotic cover supported the diversity‐stability and diversity‐resistance theories, to test whether these relationships changed with spatio‐temporal scale, and to explore the temperature preferences of native and exotic fouling species. Results Survey data failed to support diversity‐stability theory: space availability actually increased with native richness at the local neighbourhood scale, and neither space availability nor variability decreased with native richness across larger spatio‐temporal scales. I did find support for diversity‐resistance theory, as richness negatively correlated with exotic cover in local neighbourhoods. Unexpectedly, this negative correlation disappeared at intermediate scales, but emerged again at the regional scale. This scale‐dependent pattern could be partially explained by contrasting water temperature preferences of native and exotic species. Main conclusions Within local neighbourhoods, native diversity may inhibit exotic abundance, but the mechanism is unlikely related to resource limitation. At the largest scale, correlations suggest that native richness is higher in cooler environments, whereas exotic richness is higher in warmer environments. This large‐scale pattern contrasts with the typical plant community pattern, and has important implications for coastal management in the face of global climate change.  相似文献   

14.
Aim To determine the empirical relationships between species richness and spatial turnover in species composition across spatial scales. These have remained little explored despite the fact that such relationships are fundamental to understanding spatial diversity patterns. Location South‐east Scotland. Methods Defining local species richness simply as the total number of species at a finer resolution than regional species richness and spatial turnover as turnover in species identity between any two or more areas, we determined the empirical relationships between all three, and the influence of spatial scale upon them, using data on breeding bird distributions. We estimated spatial turnover using a measure independent of species richness gradients, a fundamental feature which has been neglected in theoretical studies. Results Local species richness and spatial turnover exhibited a negative relationship, which became stronger as larger neighbourhood sizes were considered in estimating the latter. Spatial turnover and regional species richness did not show any significant relationship, suggesting that spatial species replacement occurs independently of the size of the regional species pool. Local and regional species richness only showed the expected positive relationship when the size of the local scale was relatively large in relation to the regional scale. Conclusions Explanations for the relationships between spatial turnover and local and regional species richness can be found in the spatial patterns of species commonality, gain and loss between areas.  相似文献   

15.
Aim To understand cross‐taxon spatial congruence patterns of bird and woody plant species richness. In particular, to test the relative roles of functional relationships between birds and woody plants, and the direct and indirect environmental effects on broad‐scale species richness of both groups. Location Kenya. Methods Based on comprehensive range maps of all birds and woody plants (native species > 2.5 m in height) in Kenya, we mapped species richness of both groups. We distinguished species richness of four different avian frugivore guilds (obligate, partial, opportunistic and non‐frugivores) and fleshy‐fruited and non‐fleshy‐fruited woody plants. We used structural equation modelling and spatial regressions to test for effects of functional relationships (resource–consumer interactions and vegetation structural complexity) and environment (climate and habitat heterogeneity) on the richness patterns. Results Path analyses suggested that bird and woody plant species richness are linked via functional relationships, probably driven by vegetation structural complexity rather than trophic interactions. Bird species richness was determined in our models by both environmental variables and the functional relationships with woody plants. Direct environmental effects on woody plant richness differed from those on bird richness, and different avian consumer guilds showed distinct responses to climatic factors when woody plant species richness was included in path models. Main conclusions Our results imply that bird and woody plant diversity are linked at this scale via vegetation structural complexity, and that environmental factors differ in their direct effects on plants and avian trophic guilds. We conclude that climatic factors influence broad‐scale tropical bird species richness in large part indirectly, via effects on plants, rather than only directly as often assumed. This could have important implications for future predictions of animal species richness in response to climate change.  相似文献   

16.
Abstract. An emerging body of literature suggests that the richness of native and naturalized plant species are often positively correlated. It is unclear, however, whether this relationship is robust across spatial scales, and how a disturbance regime may affect it. Here, I examine the relationships of both richness and abundance between native and naturalized species of plants in two mediterranean scrub communities: coastal sage scrub (CSS) in California and xeric-sloped matorral (XSM) in Chile. In each vegetation type I surveyed multiple sites, where I identified vascular plant species and estimated their relative cover. Herbaceous species richness was higher in XSM, while cover of woody species was higher in CSS, where woody species have a strong impact upon herbaceous species. As there were few naturalized species with a woody growth form, the analyses performed here relate primarily to herbaceous species. Relationships between the herbaceous cover of native and naturalized species were not significant in CSS, but were nearly significant in XSM. The herbaceous species richness of native and naturalized plants were not significantly correlated on sites that had burned less than one year prior to sampling in CSS, and too few sites were available to examine this relationship in XSM. In post 1-year burn sites, however, herbaceous richness of native and naturalized species were positively correlated in both CSS and XSM. This relationship occurred at all spatial scales, from 400 m2 to 1 m2 plots. The consistency of this relationship in this study, together with its reported occurrence in the literature, suggests that this relationship may be general. Finally, the residuals from the correlations between native and naturalized species richness and cover, when plotted against site age (i.e. time since the last fire), show that richness and cover of naturalized species are strongly favoured on recently burned sites in XSM; this suggests that herbaceous species native to Chile are relatively poorly adapted to fire.  相似文献   

17.
Incentivizing carbon storage can be a win‐win pathway to conserving biodiversity and mitigating climate change. In savannas, however, the situation is more complex. Promoting carbon storage through woody encroachment may reduce plant diversity of savanna endemics, even as the diversity of encroaching forest species increases. This trade‐off has important implications for the management of biodiversity and carbon in savanna habitats, but has rarely been evaluated empirically. We quantified the nature of carbon‐diversity relationships in the Brazilian Cerrado by analyzing how woody plant species richness changed with carbon storage in 206 sites across the 2.2 million km2 region at two spatial scales. We show that total woody plant species diversity increases with carbon storage, as expected, but that the richness of endemic savanna woody plant species declines with carbon storage both at the local scale, as woody biomass accumulates within plots, and at the landscape scale, as forest replaces savanna. The sharpest trade‐offs between carbon storage and savanna diversity occurred at the early stages of carbon accumulation at the local scale but the final stages of forest encroachment at the landscape scale. Furthermore, the loss of savanna species quickens in the final stages of forest encroachment, and beyond a point, savanna species losses outpace forest species gains with increasing carbon accumulation. Our results suggest that although woody encroachment in savanna ecosystems may provide substantial carbon benefits, it comes at the rapidly accruing cost of woody plant species adapted to the open savanna environment. Moreover, the dependence of carbon‐diversity trade‐offs on the amount of savanna area remaining requires land managers to carefully consider local conditions. Widespread woody encroachment in both Australian and African savannas and grasslands may present similar threats to biodiversity.  相似文献   

18.
19.
Question: What is the effect of shrubs on herbaceous species richness at three spatial scales: quadrat, site, and region? Location: Prepuna, subtropical semi‐arid Andes. Methods: At eight sites, we recorded the presence of herbaceous species in spaces beneath shrubs/small trees and in open areas. At the quadrat scale, the average species number per quadrat was calculated and compared between the two microhabitats (shrubs/open). At the local (site) scale, all quadrats of each site were pooled according to microhabitat, and all sites were then combined for the regional analysis. Results and conclusions: We found greater herbaceous species richness below shrubs at all three spatial scales considered. Several species were found exclusively associated with the shrub undercanopy. This effect seems to depend more on greater inventory diversity at the different scales than on greater differentiation diversity in the herbaceous communities associated with shrubs. Facilitation seems to be responsible for the increase of species richness beneath shrubs, but further experimental study is needed to obtain insight into the underlying mechanisms.  相似文献   

20.
Aim Understanding complex ecological phenomena, such as the determinants of species richness, is best achieved by investigating their properties at different spatial scales. Factors significantly affecting the number of species occurring at one scale may not impact on richness at other scales. While this scale dependence has become increasingly recognized, there still remains a need to elucidate exactly how richness is structured across scales, and which mechanisms are influential for determining this important community property. This study explores how woody plant species richness varies in a fragmented system at multiple scales, and which factors are primarily responsible for these patterns. Location The study area is located in the Sonoran Desert within the bounds of metropolitan Phoenix, Arizona, which is the locus of the Central Arizona–Phoenix Long‐Term Ecological Research (CAP‐LTER) site. Methods Estimates of local and fragment plant species richness were generated from field data collected from 22 sites. Independent variables describing fragment sites were also calculated, including area, habitat heterogeneity, density of individuals, mean elevation, and extent of isolation. Structural equation modelling, multiple regression, and analysis of covariance were used to assess the contribution of independent variables to richness at the fragment and local scales. Results Fragment species richness was significantly influenced by area, though not isolation, habitat heterogeneity, mean elevation, or density of individuals. Local richness was not significantly related to fragment area, but was positively related to fragment richness, plant density, and elevation. Main conclusions The fragment species–area effect resulted from larger remnants supporting higher numbers of individuals at comparable densities, increasing richness through either passive sampling of progressively less common species and/or lower extinction rates among larger populations. Without using multi‐temporal data it is not possible to disentangle these mechanisms. We found that patterns evident at one scale are not necessarily apparent at other scales, as elevation and density of individuals significantly affected richness at the local scale but not at the fragment scale. These results lend support to the concept that mechanisms influencing the species richness of natural communities may be operable only within certain domains and that relevant scales should be specified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号